
BUILDING OPENDRIVE MODEL FROM MOBILE MAPPING DATA

M. Barsi 1, *, A. Barsi 1

1 Dept. Photogrammetry and Geoinformatics, Budapest University of Technology and Economics, Hungary -

barsimark@gmail.com, barsi.arpad@emk.bme.hu

Commission IV, WG IV/1

KEYWORDS: self-driving car, HD-map, OpenDRIVE standard, software development

ABSTRACT:

The development of self-driving vehicles has been efficiently accelerated by applying computer simulations. These environments can
achieve the best result only if reality has been digitized: highly accurate and detailed maps are required. The high-definition (HD) maps

aim to fulfill these requests. Companies and academia are seeking adequate technology, where OpenDRIVE standard seems to win this

race.

A software was developed to create high-definition road models for self-driving car testing purposes, which can also be used in driving
simulators, for example, for testing vehicle prototypes.

The data of a sample area was received located in northern Budapest, which included inconsistent information about the lanes of the

road network. The top-priority task was to build a highly structured, consistent model satisfying this open standard, an increasingly

popular modeling format to describe the environment for various simulating software. In order to do that, the relevant information had
to be extracted from an AutoCAD file. The result was a collection of points that was added to a software module written in C++. The

code has built a structure from those points, including determining connections between lanes, building roads from the lanes,

determining connections between roads, adding road marks, and building the final OpenDRIVE model.

Two different sets of data have been used thus far in the software: a circa 8 km long road section and a separate junction — meaning

about 20,000 points to process. Two independent models were created; both were tested in various automotive simulators – including

IPG CarMaker, probably the most well-known simulating tool used in car manufacturing – which showed that both are indeed correct.

The overall time required to build those models from simple text files to well-structured OpenDRIVE models is no more than two

minutes, while before the software development – when all of those aforementioned processes were done by humans – it required
several weeks, if not months.

The software is already capable of building basic road models but is nowhere near finished. Numerous other features can be added to

it as well, for instance, traffic signs and signals and environmental elements such as roadside objects, trees, and buildings.

1. INTRODUCTION

The idea of having self-driving, autonomous vehicles on the

roads has changed from a future possibility and dream to
inevitability over the last couple of years. Due to the numerous

technological breakthroughs and innovations, important pieces of

both hardware and software were designed, such as various cruise

systems, driving assistants, or even highway autopilots. These
were created to help and support the driver who is still the one

actively driving or supervising the car; technology only grants

them valuable information and quality-of-life improvements.

However, as the world is moving towards having fully capable,

autonomous means of transportation, less and less human

interaction is needed (KPMG 2020). At the end of this process,

the computers inside the vehicle are going to be in charge at all

times, meaning that steering wheels, pedals, or gear sticks are no
longer required (RAND 2020, SAE 2020).

In order to develop the supporting technology for this humongous

achievement in a safe manner, highly accurate computer

simulations are an absolute necessity as they enable companies
to test their products in almost any circumstances, weather

condition, and area without the need to physically move there

with all of their equipment. These environments can only reach
their full potential if the simulated world can accurately represent

reality and all the various, unique conditions of said area.

* Corresponding author

To fulfill these requirements, many description formats were

designed by various organizations, out of which the OpenDRIVE

standard seems to be the most successful as it was designed
explicitly for driving simulators, capable of managing not only

the road itself but its surrounding objects as well, and is available

without the need of licensing in all the countries in the world.

This format suits the needs of the most well-known auto
manufacturer brands – such as Audi, BMW, or Daimler – and

multiple universities are involved in the development process

(Apollo 2020, OpenDRIVE 2021, USDOT 2020).

The remainder of this paper is as follows: Section 2 introduces

the OpenDRIVE; Section 3 demonstrates the pilot sites from

where the input data was taken; Section 4 details the backbone

algorithms of the software; Finally, Section 5 and 6 summarize

the results and propose a few future development ideas.

2. THE OPENDRIVE STANDARD

The OpenDRIVE standard is probably the most promising way
to describe road networks with all connecting and surrounding

objects. The fully detailed, official description exceeds the

context of the current article; hence only a short insight is given
here, which enables the reader to fully understand the latter

chapters. This includes the structure, main components, and the

basic concept of the standard (OpenDRIVE 2021).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

9

Figure 1. The bead structure of OpenDRIVE

The model consists of multiple building blocks which follow a

predefined hierarchy. The six main components are header, road,

controller, junction, junction group, and station. (Fig. 1)
The first element – the header – provides general details of the

current model. These metadata can include the version of

OpenDRIVE used, name of the database the data is from, name

of the model, name of the company where the model was created,
or geographic reference. These pieces of information are mainly

for other developers or end-users as they have little effect on the

simulator itself.

The vast majority of the valuable information can be found under
the road tag, which is the section describing the individual roads,

resulting in a fairly complex structure. It contains the reference

line of the current road segment creating a local system in which

the rest of the road – including the lanes, elevation, roadside
objects – must be described. When it comes to the lanes, an ID

number is assigned to all of them, which are unique within the

road section. The ones on the right get negative, the ones on the

left positive values. The closer a lane is to the reference line, the
smaller the absolute value of said ID is.

OpenDRIVE is capable of handling a vast majority of different

road types, which all have an effect on the simulation result. The

most basic and most commonly used one is driving, which
represents the pavement. Other types can include border, parking,

curb, biking, sidewalk, etc.

In order to create a proper structure and connect the individual

roads and lanes, links must be established between them. It
enables the vehicle to travel from one section to another. To

define the connections, each road and lane can have predecessors

(previous item) and successors (following item).

The issue with such connections is the limitation of only being
able to create them between two roads; therefore, intersections

cannot be established without another building block, called a

junction. It can replace the road tag as either predecessor or

successor of any road. A separate block has to be created in the

model for them, where the problem of overlapping lanes, called
virtual lanes must be detailed. More complex junctions

(roundabouts, for example) can be divided into multiple smaller

ones and later organized into a junction group.

The remaining two units, controllers and stations, are not
essential. The former can help to ensure the correct flow of traffic

in junctions with various light settings and phases, while the latter

marks the area where pedestrians get on and off public means of

transportation.
The formal description of an OpenDRIVE model follows the

same hierarchy as the model itself. Therefore, a suitable,

hierarchic format was chosen in a form of a modified version of

XML version, called XODR, short for XML OpenDRIVE.

3. FIELD SURVEYS AND PILOT SITES

In order to receive data for my software, BKK (Center for
Budapest Transportation) was contacted as they are using various

mobile mapping systems to gain up-to-date information about the

city’s road network. The most recent version of which is called

KARESZ, short for Public Road Data Collection System (Fekete
2015). The georeferencing of this set of data happens afterwards,

resulting in a colored point cloud with geographic information

available. Various mapping systems – for example, RapidLasso,

TerraSolid, and TopoDot – are used to process these few-billion-
point data sets. The final step requires human operators not only

to check the result of these automated processes, but they also

help creating the suitable structures for later use. It involves on-

screen visualization and lane tracking.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

10

Figure 2. The developed workflow

The final product is in the form of a database, which can be easily

updated when a new field survey is conducted in the same area.
It can also be the beginning of another long process where digital

maps are drawn using the processed data. As a result of these

processes using human operators, numerous errors can be found
in these files, meaning further software development involving

them is complicated by the unknown nature of these mistakes.

Two pilot sites are particularly interesting as these were the ones

my software was tested on. The first one is an urban area in the
northern part of Budapest, along the main road No. 11. This circa

8-kilometer-long section poses many challenges. It has many

lanes in both directions, with new ones opening and closing both

on the inner and outer side. There are multiple intersections and
a couple of bus stops as well. As it was detailed in Section 2, the

format is capable of managing changes in the vertical component.

To properly test this feature, a bridge over a suburban railway

gave an excellent challenge to the overall planer region.
The other test site is a section of the M86 highway. The road is

not only newly built, but the plans specifically required it to be

suitable for self-driving cars. Therefore, it is frequently closed off

to conduct such surveys and test drives for local and international
companies and organizations.

Both data sets were created and provided by BKK, using the

methods and techniques briefly described earlier.

4. SOFTWARE DEVELOPMENT

The first data set was received in the form of an AutoCAD file;

therefore, a parser program was required to properly extract the
valuable, relevant information from the exported plain text

format of the drawing. It was written in C++ and is able to convert

said file to another one without all the irrelevant pieces added

automatically by AutoCAD. As it was mentioned previously,
these input files were all created by human operators, which as a

result contained numerous errors, which made it impossible to

use the parser program effectively. These included the use of

various drawing commands both with and without z coordinates,
making later extension to the third dimension impossible.

After the problem being reported to BKK, a new set of data was

provided in the form of three text files: one including information
of all the polygons describing the lanes of the roads within the

given pilot site, another one containing the axes of them point by

point, and the third one was the reference line coordinates. All of
these files were exported directly from the company’s

geodatabase, meaning that human intervention is even further

reduced.

Our comprehensive analysis of the three sets of data resulted in
the structure and outline of the required algorithms. The content

of all of them follows the same pattern: ID of the object (polygon

or line), ID of the point within that shape, and the coordinates (x,

y, and z) of the point. Numerous details were found in the text
files using multiple Matlab scripts, for instance: the polygons are

closed, meaning that in the point-by-point description of the

lane’s polygons, the last point is the same as the first one; the

axes of said polygons are almost perfectly connected, meaning a
less than 3 centimeter difference between the last point of one

and the first of the next axis.

The idea of using the provided reference line data was thrown out

after the realization was made that the left side of the innermost
lane can replace it perfectly. In fact, due to this line creating a

local reference system, this way the road’s description is a lot

simpler. A dependency on human operators was eliminated,

which further increased the accuracy of the final model.
The main algorithms were developed according to the following

flowchart, using C++ for efficiency purposes. (Fig. 2)

The first function implemented was the one connecting axes and

lanes. It was found by our analysis that both the first and last point
of all the axes are exactly on an edge of a polygon, therefore if

all lanes are checked for all the ends of all axes, the center lines

can be found. Due to the model containing not only rectangle-

shaped polygons but triangle-shaped ones (for example, bus stops
or when a new lane opens) as well, the method needed a few

minor corrections in a form of allowing either the first or the last

– but not both – point of the axes to have the same coordinates as

a point of a lane.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

11

Figure 3. Lane-axis matching

In order to optimize the algorithm, a common strategy of using

Minimal Closing Rectangles (MCR) was decided, meaning that
only those axes are checked for a certain lane, which are inside

the smallest possible rectangle fitting the polygon. This condition

is faster to calculate; hence it greatly reduces the execution time

of the code despite its time-complexity remaining the same.
Furthermore, one axis cannot be used multiple times; therefore,

checking it more than once is redundant and can be eliminated

via noting which of them is already used. (Fig. 3)

The second algorithm is used for determining which polygons are
connected. Despite it being a straightforward function, it is

crucial in later methods. Given the fact that lanes are also

perfectly connected without any gap, it can safely be said that two

polygons are connected only if they share at least two common
vertexes. For optimization purposes, the exact same MCR

method was used.

The third main function is for finding predecessor and successor

polygons for each lane if there are any. The basic concept is built
on the prior realization that axes are perfectly connected to each

other; hence if the last point of an axis is the same as the first one

of another, the lane matching the former is continuing in the one

matching the latter. It is possible that polygons have multiple
predecessors and successors in junctions, for instance, however,

the algorithm is capable of finding all of them.

As it was mentioned earlier, the left side of the innermost

polygons is used as a reference line for the given road section;
therefore, these lanes must be found. In order to do that, a similar

method was implemented as in the previous function, namely the

use of axes. It is significantly easier and much more effective to

make various calculations with them. At first, a structure was
created for each road segment, which where the right-side

neighboring polygon was connected to each lane by utilizing

basic third-dimensional distances and directions for the axes.

From this point, determining the innermost ones were straight-
forward as they are the lanes that are not on the right side of any

of the polygons. (Fig. 4)

This function was a bit complicated by the fact that the input data

contained triangle-shaped polygons, and in intersections, a lane
can have more than one right-hand neighbor. To overcome this,

a constant epsilon value was introduced, which served as a

minimum distance between the axes first and last point, as well

as allowing having many right-hand connected polygons. Due to
the lanes being directed, this method works even when there is

no median area between the two sides of the road.

Figure 4. Innermost polygon and its right neighbor

After these crucial functions were implemented, the OpenDRIVE

model was written using all the algorithms detailed above. To
follow the guidelines and the hierarchy of the standard, a couple

of extra calculations, data manipulation, and sorting was still

required. These include measuring the width of the lanes at all

the polygons’ vertexes or finding the distance between these
points and the reference line.

The models were built according to the 1.4 version of

OpenDRIVE (OpenDRIVE 2021).

5. RESULTS

As a result of having two different sets of input data, two

independent OpenDRIVE models were built. Both of them went
through multiple simulators, which included the scenario-based

IPG CarMaker (IPG CarMaker 2019) and the VTD Vires

(Vires Virtual Test Drive 2019), where the latter was developed

by the creators of the standard itself. (Fig. 6)
The first pilot site’s (main road No. 11) input contained 757

polygons and 967 axes, meaning that a large portion of center

lines was not used. The reason for this significant difference can

be explained with the fact that these are stored in different
database relations, and were exported by different human

operators. The length of this particular road section is circa 8

kilometers. The total runtime of my software is under 2 minutes.

The second pilot site (M86 highway) consisted of 119 polygons
and 121 axes. This set of data was created after our feedback

based on the previous one was received; therefore, the number of

errors was almost eliminated. Although the code was originally

developed for the first set, it ran flawlessly on this 3.5-kilometer-
long section as well, with an overall runtime of less than 20

seconds.

 No. 11

main road

M86

highway

Length of section 8 km 3.5 km

Number of polygons 757 119

Number of axes 967 121

Model building time < 2 minutes < 20 seconds

Table 1. Efficiency of the software

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

12

a) all data is seemingly good

b) missing complete lane axis for the turning lane

c) model created with all unnecessary points at the edges of

the lane border

d) automatically corrected topology

Figure 5. Automatic topology check and correction

The developed software presented in the previous section imports

the surveyed and preprocessed data: lane borders and axis lines.

The algorithm performs the matchings but also checks the
topology. Human errors were mentioned already: not only

missing elements occur, but further hardly detectable errors

burden the datasets: too dense placed border points, which come

from digitizing or handling lane segments. Due to cutting,
joining, and other lane segment manipulations, disturbing very

close points enter the lane description. These unintended points

could be avoided by fully human geometry construction tools, for

example, by snapping. Because the preprocessing workflow had
minimal human interactions, we can’t rely on this beneficial tool

and had implemented a basic topological correction by removing

these disturbances. Fig. 5 illustrates a junction example, where

diverse topological anomalies were detected, and our
development has managed them.

Ignoring these anomalies, but following the prescription of the

OpenDRIVE standard, severe structural and visual errors will be

the output (Fig. 5c); therefore, they need to be corrected –
possibly – automatically. The tolerances of the method are

adjustable, so multiple levels of error correction are within the

possibilities of the user. These values are flexible and can also be

stored for future use, meaning that when the correct parameters
of a sample area are found, these can be used for larger maps as

well. As it can be seen, the designed and implemented correcting

algorithm tremendously improves the overall quality of the final

model in junction areas (Fig. 5d).

6. CONCLUSION

It is safe to say that such an algorithm was developed, which can

have the potential to make a significant impact on creating a
realistic simulation environment for self-driving cars by building

high-definition road network models of reality. This was

achieved via writing software in C++ purely due to its efficiency.

The finished product follows the strict rules and hierarchy of the
OpenDRIVE standard, however, it is far from being perfect.

Numerous extensions can be made to improve either the

performance or the number of supported roadside elements;

many of them are already planned. These include the cross or
lateral profile of the road (for instance, superelevation) or traffic

lights, signs, and signals, which only enhance the visual

experience but don’t have any impact on the simulation itself.

ACKNOWLEDGEMENT

I want to express my special thanks to BKK for providing the

data sets for my research.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

13

Figure 6. The finished model during simulation

REFERENCES

Apollo. (2020, Oktober 18). Retrieved from https://apollo.auto/i

ndex.html

Barsi, Á. (2019). Map production. Localization and mapping

lecture notes. Budapest

Barsi, Á., Csepinszky, A., Gábor, Á., Krausz, N., Lógó, J. M.,

Potó, V., Varga, B. (2020). Evaluate and test physical map data

formats. Budapest: Mobility Platform.

dSPACE (2019, September 26). Retrieved from https://www.ds

pace.com/en/pub/home.cfm

Fekete, G. (2015). Introduction to KARESZ based on 3D laser
point cloud [in Hungarian]. KARESZ Conference. Budapest

IPG CarMaker (2019, September 26). Retrieved from https://ipg

-automotive.com/products-services/simulation-software/carmak
er/

KPMG. (2020, September 1). Retrieved from https://assets.kpm

g/content/dam/kpmg/images/2015/05/connected-and-autonomo
us-vehicles.pdf

Mapping Ignorance. (2020, September 20). Retrieved from https

://mappingignorance.org/2014/04/07/one-way-googles-cars-loca
lize/

OpenDRIVE (2021, April 18) Retrieved from https://www.asa

m.net/standards/detail/opendrive/

PreScan | TASS International (2019, September 26). Retrieved

from https://tass.plm.automation.siemens.com/prescan

RAND. (2020, September 2). Retrieved from https://www.rand.

org/content/dam/rand/pubs/research_reports/RR400/RR443-2/R

AND_RR443-2.pdf

SAE. (2020, September 2). Retrieved from https://www.sae.org/

news/press-room/2018/12/sae-international-releases-updated-vis

ual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E

2%80%9D-standard-for-self-driving-vehicles

Simulation Technologies – AVL (2019, September 26).

Retrieved from https://www.avl.com/hu/web/guest/simulation

The Ohio State University. (2020, September 1). Retrieved from

 https://onlinemasters.ohio.edu/blog/the-future-of-driving/

USDOT. (2020, September 1). Retrieved from https://www.nhts
a.gov/technology-innovation/automated-vehicles-safety

Vires odrViewer (2019, September 26). https://vires.com/

Vires Virtual Test Drive (2019, September 26). Retrieved from

https://vires.com/vtd-vires-virtual-test-drive/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

14

