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ABSTRACT: 

 

The development of self-driving vehicles has been efficiently accelerated by applying computer simulations. These environments can 
achieve the best result only if reality has been digitized: highly accurate and detailed maps are required. The high-definition (HD) maps 

aim to fulfill these requests. Companies and academia are seeking adequate technology, where OpenDRIVE standard seems to win this 

race. 

A software was developed to create high-definition road models for self-driving car testing purposes, which can also be used in driving 
simulators, for example, for testing vehicle prototypes. 

The data of a sample area was received located in northern Budapest, which included inconsistent information about the lanes of the 

road network. The top-priority task was to build a highly structured, consistent model satisfying this open standard, an increasingly 

popular modeling format to describe the environment for various simulating software. In order to do that, the relevant information had 
to be extracted from an AutoCAD file. The result was a collection of points that was added to a software module written in C++. The 

code has built a structure from those points, including determining connections between lanes, building roads from the lanes,  

determining connections between roads, adding road marks, and building the final OpenDRIVE model. 

Two different sets of data have been used thus far in the software: a circa 8 km long road section and a separate junction — meaning 

about 20,000 points to process. Two independent models were created; both were tested in various automotive simulators – including 

IPG CarMaker, probably the most well-known simulating tool used in car manufacturing – which showed that both are indeed correct. 

The overall time required to build those models from simple text files to well-structured OpenDRIVE models is no more than two 

minutes, while before the software development – when all of those aforementioned processes were done by humans – it required 
several weeks, if not months. 

The software is already capable of building basic road models but is nowhere near finished. Numerous other features can be added to 

it as well, for instance, traffic signs and signals and environmental elements such as roadside objects, trees, and buildings. 

 
 

1. INTRODUCTION 

The idea of having self-driving, autonomous vehicles on the 

roads has changed from a future possibility and dream to 
inevitability over the last couple of years.  Due to the numerous 

technological breakthroughs and innovations, important pieces of 

both hardware and software were designed, such as various cruise 

systems, driving assistants, or even highway autopilots. These 
were created to help and support the driver who is still the one 

actively driving or supervising the car; technology only grants 

them valuable information and quality-of-life improvements. 

However, as the world is moving towards having fully capable, 

autonomous means of transportation, less and less human 

interaction is needed (KPMG 2020). At the end of this process, 

the computers inside the vehicle are going to be in charge at all 

times, meaning that steering wheels, pedals, or gear sticks are no 
longer required (RAND 2020, SAE 2020).  

In order to develop the supporting technology for this humongous 

achievement in a safe manner, highly accurate computer 

simulations are an absolute necessity as they enable companies 
to test their products in almost any circumstances, weather 

condition, and area without the need to physically move there 

with all of their equipment. These environments can only reach 
their full potential if the simulated world can accurately represent 

reality and all the various, unique conditions of said area.  

                                                                   
*  Corresponding author 

 

To fulfill these requirements, many description formats were 

designed by various organizations, out of which the OpenDRIVE 

standard seems to be the most successful as it was designed 
explicitly for driving simulators, capable of managing not only 

the road itself but its surrounding objects as well, and is available 

without the need of licensing in all the countries in the world. 

This format suits the needs of the most well-known auto 
manufacturer brands – such as Audi, BMW, or Daimler – and 

multiple universities are involved in the development process 

(Apollo 2020, OpenDRIVE 2021, USDOT 2020). 

The remainder of this paper is as follows: Section 2 introduces 

the OpenDRIVE; Section 3 demonstrates the pilot sites from 

where the input data was taken; Section 4 details the backbone 

algorithms of the software; Finally, Section 5 and 6 summarize 

the results and propose a few future development ideas. 

 

 

2. THE OPENDRIVE STANDARD 

The OpenDRIVE standard is probably the most promising way 
to describe road networks with all connecting and surrounding 

objects. The fully detailed, official description exceeds the 

context of the current article; hence only a short insight is given 
here, which enables the reader to fully understand the latter 

chapters. This includes the structure, main components, and the 

basic concept of the standard (OpenDRIVE 2021).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-9-2021 | © Author(s) 2021. CC BY 4.0 License.

 
9



 

Figure 1. The bead structure of OpenDRIVE 

 

 
 

The model consists of multiple building blocks which follow a 

predefined hierarchy. The six main components are header, road, 

controller, junction, junction group, and station. (Fig. 1) 
The first element – the header – provides general details of the 

current model. These metadata can include the version of 

OpenDRIVE used, name of the database the data is from, name 

of the model, name of the company where the model was created, 
or geographic reference. These pieces of information are mainly 

for other developers or end-users as they have little effect on the 

simulator itself. 

The vast majority of the valuable information can be found under 
the road tag, which is the section describing the individual roads, 

resulting in a fairly complex structure. It contains the reference 

line of the current road segment creating a local system in which 

the rest of the road – including the lanes, elevation, roadside 
objects – must be described. When it comes to the lanes, an ID 

number is assigned to all of them, which are unique within the 

road section. The ones on the right get negative, the ones on the 

left positive values. The closer a lane is to the reference line, the 
smaller the absolute value of said ID is.  

OpenDRIVE is capable of handling a vast majority of different 

road types, which all have an effect on the simulation result. The 

most basic and most commonly used one is driving, which 
represents the pavement. Other types can include border, parking, 

curb, biking, sidewalk, etc.  

In order to create a proper structure and connect the individual 

roads and lanes, links must be established between them. It 
enables the vehicle to travel from one section to another. To 

define the connections, each road and lane can have predecessors 

(previous item) and successors (following item).  

The issue with such connections is the limitation of only being 
able to create them between two roads; therefore, intersections 

cannot be established without another building block, called a 

junction. It can replace the road tag as either predecessor or 

successor of any road. A separate block has to be created in the 

model for them, where the problem of overlapping lanes, called 
virtual lanes must be detailed. More complex junctions 

(roundabouts, for example) can be divided into multiple smaller 

ones and later organized into a junction group.  

The remaining two units, controllers and stations, are not 
essential. The former can help to ensure the correct flow of traffic 

in junctions with various light settings and phases, while the latter 

marks the area where pedestrians get on and off public means of 

transportation.  
The formal description of an OpenDRIVE model follows the 

same hierarchy as the model itself. Therefore, a suitable, 

hierarchic format was chosen in a form of a modified version of 

XML version, called XODR, short for XML OpenDRIVE. 
 

 

3. FIELD SURVEYS AND PILOT SITES 

In order to receive data for my software, BKK (Center for 
Budapest Transportation) was contacted as they are using various 

mobile mapping systems to gain up-to-date information about the 

city’s road network. The most recent version of which is called 

KARESZ, short for Public Road Data Collection System (Fekete 
2015). The georeferencing of this set of data happens afterwards, 

resulting in a colored point cloud with geographic information 

available. Various mapping systems – for example, RapidLasso, 

TerraSolid, and TopoDot – are used to process these few-billion-
point data sets. The final step requires human operators not only 

to check the result of these automated processes, but they also 

help creating the suitable structures for later use. It involves on-

screen visualization and lane tracking. 
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Figure 2. The developed workflow 

 

 

The final product is in the form of a database, which can be easily 

updated when a new field survey is conducted in the same area. 
It can also be the beginning of another long process where digital 

maps are drawn using the processed data. As a result of these 

processes using human operators, numerous errors can be found 
in these files, meaning further software development involving 

them is complicated by the unknown nature of these mistakes.  

Two pilot sites are particularly interesting as these were the ones 

my software was tested on. The first one is an urban area in the 
northern part of Budapest, along the main road No. 11. This circa 

8-kilometer-long section poses many challenges. It has many 

lanes in both directions, with new ones opening and closing both 

on the inner and outer side. There are multiple intersections and 
a couple of bus stops as well. As it was detailed in Section 2, the 

format is capable of managing changes in the vertical component. 

To properly test this feature, a bridge over a suburban railway 

gave an excellent challenge to the overall planer region. 
The other test site is a section of the M86 highway. The road is 

not only newly built, but the plans specifically required it to be 

suitable for self-driving cars. Therefore, it is frequently closed off 

to conduct such surveys and test drives for local and international 
companies and organizations. 

Both data sets were created and provided by BKK, using the 

methods and techniques briefly described earlier. 

 
 

4. SOFTWARE DEVELOPMENT 

The first data set was received in the form of an AutoCAD file; 

therefore, a parser program was required to properly extract the 
valuable, relevant information from the exported plain text 

format of the drawing. It was written in C++ and is able to convert 

said file to another one without all the irrelevant pieces added 

automatically by AutoCAD. As it was mentioned previously, 
these input files were all created by human operators, which as a 

result contained numerous errors, which made it impossible to 

use the parser program effectively. These included the use of 

various drawing commands both with and without z coordinates, 
making later extension to the third dimension impossible.  

After the problem being reported to BKK, a new set of data was 

provided in the form of three text files: one including information 
of all the polygons describing the lanes of the roads within the 

given pilot site, another one containing the axes of them point by 

point, and the third one was the reference line coordinates. All of 
these files were exported directly from the company’s 

geodatabase, meaning that human intervention is even further 

reduced.  

Our comprehensive analysis of the three sets of data resulted in 
the structure and outline of the required algorithms. The content 

of all of them follows the same pattern: ID of the object (polygon 

or line), ID of the point within that shape, and the coordinates (x, 

y, and z) of the point. Numerous details were found in the text 
files using multiple Matlab scripts, for instance: the polygons are 

closed, meaning that in the point-by-point description of the 

lane’s polygons, the last point is the same as the first one; the 

axes of said polygons are almost perfectly connected, meaning a 
less than 3 centimeter difference between the last point of one 

and the first of the next axis.  

The idea of using the provided reference line data was thrown out 

after the realization was made that the left side of the innermost 
lane can replace it perfectly. In fact, due to this line creating a 

local reference system, this way the road’s description is a lot 

simpler. A dependency on human operators was eliminated, 

which further increased the accuracy of the final model. 
The main algorithms were developed according to the following 

flowchart, using C++ for efficiency purposes. (Fig. 2) 

The first function implemented was the one connecting axes and 

lanes. It was found by our analysis that both the first and last point 
of all the axes are exactly on an edge of a polygon, therefore if 

all lanes are checked for all the ends of all axes, the center lines 

can be found. Due to the model containing not only rectangle-

shaped polygons but triangle-shaped ones (for example, bus stops 
or when a new lane opens) as well, the method needed a few 

minor corrections in a form of allowing either the first or the last 

– but not both – point of the axes to have the same coordinates as 

a point of a lane.   
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Figure 3. Lane-axis matching 

 

In order to optimize the algorithm, a common strategy of using 

Minimal Closing Rectangles (MCR) was decided, meaning that 
only those axes are checked for a certain lane, which are inside 

the smallest possible rectangle fitting the polygon. This condition 

is faster to calculate; hence it greatly reduces the execution time 

of the code despite its time-complexity remaining the same. 
Furthermore, one axis cannot be used multiple times; therefore, 

checking it more than once is redundant and can be eliminated 

via noting which of them is already used. (Fig. 3) 

The second algorithm is used for determining which polygons are 
connected. Despite it being a straightforward function, it is 

crucial in later methods. Given the fact that lanes are also 

perfectly connected without any gap, it can safely be said that two 

polygons are connected only if they share at least two common 
vertexes. For optimization purposes, the exact same MCR 

method was used. 

The third main function is for finding predecessor and successor 

polygons for each lane if there are any. The basic concept is built 
on the prior realization that axes are perfectly connected to each 

other; hence if the last point of an axis is the same as the first one 

of another, the lane matching the former is continuing in the one 

matching the latter. It is possible that polygons have multiple 
predecessors and successors in junctions, for instance, however, 

the algorithm is capable of finding all of them.  

As it was mentioned earlier, the left side of the innermost 

polygons is used as a reference line for the given road section; 
therefore, these lanes must be found. In order to do that, a similar 

method was implemented as in the previous function, namely the 

use of axes. It is significantly easier and much more effective to 

make various calculations with them. At first, a structure was 
created for each road segment, which where the right-side 

neighboring polygon was connected to each lane by utilizing 

basic third-dimensional distances and directions for the axes. 

From this point, determining the innermost ones were straight-
forward as they are the lanes that are not on the right side of any 

of the polygons. (Fig. 4) 

This function was a bit complicated by the fact that the input data 

contained triangle-shaped polygons, and in intersections, a lane 
can have more than one right-hand neighbor. To overcome this, 

a constant epsilon value was introduced, which served as a 

minimum distance between the axes first and last point, as well 

as allowing having many right-hand connected polygons. Due to 
the lanes being directed, this method works even when there is 

no median area between the two sides of the road.  

 

 

Figure 4. Innermost polygon and its right neighbor 

 

After these crucial functions were implemented, the OpenDRIVE 

model was written using all the algorithms detailed above. To 
follow the guidelines and the hierarchy of the standard, a couple 

of extra calculations, data manipulation, and sorting was still 

required. These include measuring the width of the lanes at all 

the polygons’ vertexes or finding the distance between these 
points and the reference line.  

The models were built according to the 1.4 version of 

OpenDRIVE (OpenDRIVE 2021). 

 
 

5. RESULTS 

As a result of having two different sets of input data, two 

independent OpenDRIVE models were built. Both of them went 
through multiple simulators, which included the scenario-based 

IPG CarMaker (IPG CarMaker 2019) and the VTD Vires 

(Vires Virtual Test Drive 2019), where the latter was developed 

by the creators of the standard itself. (Fig. 6) 
The first pilot site’s (main road No. 11) input contained 757 

polygons and 967 axes, meaning that a large portion of center 

lines was not used. The reason for this significant difference can 

be explained with the fact that these are stored in different 
database relations, and were exported by different human 

operators. The length of this particular road section is circa 8 

kilometers. The total runtime of my software is under 2 minutes. 

The second pilot site (M86 highway) consisted of 119 polygons 
and 121 axes. This set of data was created after our feedback 

based on the previous one was received; therefore, the number of 

errors was almost eliminated. Although the code was originally 

developed for the first set, it ran flawlessly on this 3.5-kilometer-
long section as well, with an overall runtime of less than 20 

seconds. 

 

 

 No. 11  

main road 

M86 

highway 

Length of section 8 km 3.5 km 

Number of polygons 757 119 

Number of axes 967 121 

Model building time < 2 minutes < 20 seconds 

Table 1. Efficiency of the software 
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a) all data is seemingly good 

 
b) missing complete lane axis for the turning lane 

 

 
c) model created with all unnecessary points at the edges of 

the lane border 

 

 
d) automatically corrected topology 

 

Figure 5. Automatic topology check and correction 

 

 

The developed software presented in the previous section imports 

the surveyed and preprocessed data: lane borders and axis lines. 

The algorithm performs the matchings but also checks the 
topology. Human errors were mentioned already: not only 

missing elements occur, but further hardly detectable errors 

burden the datasets: too dense placed border points, which come 

from digitizing or handling lane segments. Due to cutting, 
joining, and other lane segment manipulations, disturbing very 

close points enter the lane description. These unintended points 

could be avoided by fully human geometry construction tools, for 

example, by snapping. Because the preprocessing workflow had 
minimal human interactions, we can’t rely on this beneficial tool 

and had implemented a basic topological correction by removing 

these disturbances. Fig. 5 illustrates a junction example, where 

diverse topological anomalies were detected, and our 
development has managed them. 

Ignoring these anomalies, but following the prescription of the 

OpenDRIVE standard, severe structural and visual errors will be 

the output (Fig. 5c); therefore, they need to be corrected – 
possibly – automatically. The tolerances of the method are 

adjustable, so multiple levels of error correction are within the 

possibilities of the user. These values are flexible and can also be 

stored for future use, meaning that when the correct parameters 
of a sample area are found, these can be used for larger maps as 

well. As it can be seen, the designed and implemented correcting 

algorithm tremendously improves the overall quality of the final 

model in junction areas (Fig. 5d). 

6. CONCLUSION 

It is safe to say that such an algorithm was developed, which can 

have the potential to make a significant impact on creating a 
realistic simulation environment for self-driving cars by building 

high-definition road network models of reality. This was 

achieved via writing software in C++ purely due to its efficiency. 

The finished product follows the strict rules and hierarchy of the 
OpenDRIVE standard, however, it is far from being perfect.  

Numerous extensions can be made to improve either the 

performance or the number of supported roadside elements; 

many of them are already planned. These include the cross or 
lateral profile of the road (for instance, superelevation) or traffic 

lights, signs, and signals, which only enhance the visual 

experience but don’t have any impact on the simulation itself.  
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Figure 6. The finished model during simulation 
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