Primitive Floats in Coq

Guillaume Bertholon¹ Érik Martin-Dorel² Pierre Roux³

¹École Normale Supérieure, Paris, France

²IRIT, Université Paul Sabatier, Toulouse, France

³ONERA, Toulouse, France

Tuesday 10 September 2019

ITP

Introduction	State of the art	Implementation	Numerical results	Conclusion
●0000	000000	000000	000	00

Proofs involving floating-point computations (1/3)

Example (Square root)

• To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).

Introduction	State of the art	Implementation	Numerical results	Conclusion
●0000	0000000	000000	000	00

Proofs involving floating-point computations (1/3)

Example (Square root)

- To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).
- Using floating-point square root, $a \neq \mathrm{fl}(\sqrt{a})^2$

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	0000000	000000	000	00

Proofs involving floating-point computations (1/3)

Example (Square root)

- To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).
- Using floating-point square root, $a \neq \mathrm{fl}(\sqrt{a})^2$
- but one can subtract appropriate (tiny) c_a for which: if $fl(\sqrt{a-c_a})$ succeeds then a is non negative

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	000000	000000	000	00

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

• To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T (R^T R) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	000000	000000	000	00

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

- To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T (R^T R) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).
- The Cholesky decomposition computes such a matrix R:

$$\begin{split} &R := 0; \\ &\text{for } j \text{ from } 1 \text{ to } n \text{ do} \\ &\text{ for } i \text{ from } 1 \text{ to } j - 1 \text{ do} \\ &R_{i,j} := \left(A_{i,j} - \Sigma_{k=1}^{i-1} R_{k,i} R_{k,j}\right) / R_{i,i}; \\ &\text{ od} \\ &R_{j,j} := \sqrt{M_{j,j} - \Sigma_{k=1}^{j-1} R_{k,j}^2}; \\ &\text{ od} \end{split}$$

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	000000	000000	000	00

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

- To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T \left(R^T R \right) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).
- The Cholesky decomposition computes such a matrix R:

$$\begin{split} &R := 0; \\ &\text{for } j \text{ from } 1 \text{ to } n \text{ do} \\ &\text{ for } i \text{ from } 1 \text{ to } j - 1 \text{ do} \\ &R_{i,j} := \left(A_{i,j} - \Sigma_{k=1}^{i-1} R_{k,i} R_{k,j}\right) / R_{i,i} \\ &\text{ od} \\ &R_{j,j} := \sqrt{M_{j,j} - \Sigma_{k=1}^{j-1} R_{k,j}^2}; \\ &\text{ od} \end{split}$$

• With rounding errors $A \neq R^T R$

• but error is bounded and for some (tiny) $c_A \in \mathbb{R}$: if Cholesky succeeds on $A - c_A I$ then $A \succeq 0$.

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	0000000	000000	000	00

Proofs involving floating-point computations (3/3)

Example (Interval Arithmetic)

- Datatype: interval = pair of (computable) real numbers
- E.g., $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2, 4] [0, 1] := [2 1, 4 0] = [1, 4], with the enclosure property: $\forall x \in [2, 4], \ \forall y \in [0, 1], \ x y \in [1, 4]$.
- Tool for bounding the range of functions

Introduction	State of the art	Implementation	Numerical results	Conclusion
0000	0000000	000000	000	00

Proofs involving floating-point computations (3/3)

Example (Interval Arithmetic)

- Datatype: interval = pair of (computable) real numbers
- E.g., $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2, 4] [0, 1] := [2 1, 4 0] = [1, 4], with the enclosure property: $\forall x \in [2, 4], \forall y \in [0, 1], x y \in [1, 4]$.
- Tool for bounding the range of functions
- In practice, interval arithmetic can be efficiently implemented with floating-point arithmetic and directed roundings (towards $\pm \infty$).
- Thus floating-point computations (of interval bounds) can be used to prove numerical facts.

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		00
Motivations	5			

- Coq offers some computation capabilities
- \rightsquigarrow which can be used in proofs
 - Coq already offers efficient integers

Goal of this work

- Implement primitive computation in Coq with machine binary64 floats
- Instead of emulating floats with integers (about 1000x slower)

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		00
Agenda				

0

- 2 State of the art
- 3 Implementation
- 4 Numerical results

Introduction 00000	State of the art	Implementation 000000	Numerical results	Conclusion 00

Agenda

- 2 State of the art
 - 3 Implementation
 - 4 Numerical results
 - 5 Conclusion

000000 000000 000000	000	00

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

Introduction St	ate of the art	Implementation	Numerical results	Conclusion
00000 •0	000000	000000	000	00

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - $\bullet\,$ where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,\ldots) = \mathsf{true}.$
- We evaluate $f(c_1,\ldots)$.
- If the computation yields true:
 - This means that the type " $f(c_1, \ldots) = \text{true}$ " is convertible with the type "true = true".
 - So we conclude by using reflexivity and the convertibility rule.

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	000000	000000	000	00

Computing with Coq in practice

Three main reduction tactics are available:

1984: compute: reduction machine
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

method	speed	TCB size
compute	+	+
vm_compute	++	++
native_compute	+++	+++

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	00●0000	000000		00
		~		

Efficient arithmetic in Coq

1994: positive, N, Z \rightsquigarrow binary integers

2008: bigN, bigZ, bigQ \rightsquigarrow binary trees of 31-bit machine integers

- Reference implementation in Coq (using lists of bits)
- Optimization with processor integers in {vm,native}_compute
- Implicit assumption that both implementations match

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	00●0000	000000		00

Efficient arithmetic in Coq

1994: positive, N, Z \rightsquigarrow binary integers

2008: bigN, bigZ, bigQ \rightsquigarrow binary trees of 31-bit machine integers

- Reference implementation in Coq (using lists of bits)
- Optimization with processor integers in {vm,native}_compute
- Implicit assumption that both implementations match

2019: int \rightsquigarrow unsigned 63-bit machine integers + primitive computation

- Compact representation of integers in the kernel
- Efficient operations available for all reduction strategies
- Explicit axioms to specify the primitive operations

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	000●000	000000		00

Floating-Point Values

Definition

A floating-point format $\mathbb F$ is a subset of $\mathbb R.\ x\in\mathbb F$ when

 $x = m\beta^e$

for some m, $e \in \mathbb{Z}$, $|m| < \beta^p$ and $e_{\min} \le e \le e_{\max}$.

Introduction 00000	State of the art 000●000	Implementation 000000	Numerical results	Conclusion

Floating-Point Values

Definition

A floating-point format $\mathbb F$ is a subset of $\mathbb R.\ x\in\mathbb F$ when

 $x = m\beta^e$

for some m, $e \in \mathbb{Z}$, $|m| < \beta^p$ and $e_{\min} \le e \le e_{\max}$.

- m: mantissa of x
- β : radix of \mathbb{F} (2 in practice)
- p: precision of \mathbb{F}

- e: exponent of x
- e_{\min} : minimal exponent of $\mathbb F$
- e_{\max} : maximal exponent of $\mathbb F$

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): $eta=2$, $p=53$ and $e_{min}=-1074$
Binary representation:
sign exponent (11 bits) mantissa (52 bits)
$+$ Special values: $\pm\infty$ and NaNs (Not A Number, e.g., $0/0$ or $\sqrt{-1}$)

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): $\beta=2$, $p=53$ and $e_{min}=-1074$
Binary representation:
sign exponent (11 bits) mantissa (52 bits)
+ Special values: $\pm\infty$ and NaNs (Not A Number, e.g., $0/0$ or $\sqrt{-1}$)

Remarks

• two zeros: +0 and -0 $(1/+0 = +\infty$ whereas $1/-0 = -\infty)$

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): $\beta=2$, $p=53$ and $e_{min}=-1074$
Binary representation:
sign exponent (11 bits) mantissa (52 bits)
+ Special values: $\pm\infty$ and NaNs (Not A Number, e.g., $0/0$ or $\sqrt{-1}$)

Remarks

- two zeros: +0 and -0 $\left(1/+0=+\infty \text{ whereas } 1/-0=-\infty\right)$
- many NaNs (used to carry error messages)

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): $\beta=2$, $p=53$ and $e_{min}=-1074$
Binary representation:
sign exponent (11 bits) mantissa (52 bits)
+ Special values: $\pm\infty$ and NaNs (Not A Number, e.g., $0/0$ or $\sqrt{-1}$)

Remarks

- two zeros: +0 and -0 $\left(1/+0=+\infty$ whereas $1/-0=-\infty\right)$
- many NaNs (used to carry error messages)
- +0 = -0 but NaN \neq NaN (for all NaN)

Introduction 00000	State of the art 00000●0	Implementation 000000	Numerical results	Conclusion
Flocq				

Flocq is a Coq library formalizing floating-point arithmetic

- very generic formalization (multi-radix, multi-precision)
- linked with real numbers of the Coq standard library
- multiple models available
 - without overflow nor underflow
 - with underflow (either gradual or abrupt)
 - IEEE 754 binary format (used in Compcert)
- many classical results about roundings and specialized algorithms
- effective numerical computations

It is mainly developed by Sylvie Boldo and Guillaume Melquiond and available at http://flocq.gforge.inria.fr/

Introduction 00000	State of the art 000000●	Implementation 000000	Numerical results	Conclusion
CoqInterval				

CoqInterval is a Coq library formalizing interval arithmetic

- modular formalization involving Coq signatures and modules
- intervals with floating-point bounds
- radix-2 floating-point numbers (pairs of bigZ, no underflow/overflow)
- → *efficient* numerical computations
 - support of elementary functions such as exp, ln and atan...
 - tactics (interval, interval_intro) to automatically prove inequalities on real-valued expressions.

It is mainly developed by Guillaume Melquiond and available at http://coq-interval.gforge.inria.fr/

Introduction 00000	State of the art 0000000	Implementation	Numerical results	Conclusion 00
Agenda				

1 Introduction

2 State of the art

Implementation

4 Numerical results

5 Conclusion

Introduction 00000	State of the art 0000000	Implementation •00000	Numerical results	Conclusion
Workflow				

- **1** Define a minimal working interface for the IEEE 754 binary64 format.
- Oefine a fully-specified spec w.r.t. a minimal excerpt of Flocq.
- Prepare a compatibility layer that could later be added to Flocq.
- Implementation for compute, vm_compute and native_compute, at the OCaml and C levels.
- S Run some benchmarks.

Introduction 00000	State of the art 0000000	Implementation 00000	Numerical results	Conclusion 00
Interface (1	./4)			
Require Imp	ort Floats.			
(* contains	*)			
Parameter f Parameter o Parameter a	loat : Set. pp : float -> f bs : float -> f	float. float.		
Variant flo FEq F Variant flo PNormal PInf	at_comparison Lt FGt FNo at_class : Set NNormal Pa NInf NaN.	: Set := tComparable. := Subn NSubn	PZero NZero	

Parameter compare : float \rightarrow float \rightarrow float_comparison. **Parameter** classify : float \rightarrow float_class.

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		00
Interface (2	/4)			

Parameters mul add sub div : float \rightarrow float \rightarrow float. **Parameter** sqrt : float -> float. (* The value is rounded if necessary. *) Parameter of int63 : Int63.int → float. (* If input inside [0.5; 1.) then return its mantissa. *) Parameter normfr mantissa : float → Int63.int. Definition shift := (2101)%int63. (* = 2*emax + prec *) (* frshiftexp f = (m, e))s.t. $m \in [0.5, 1)$ and $f = m * 2^{(e-shift)} *)$ Parameter frshiftexp : float → float * Int63.int. (* ldshiftexp f e = f * 2^(e-shift) *) Parameter ldshiftexp : float → Int63.int → float. Parameter next_up : float → float. Parameter next_down : float -> float.

Introduction 00000	State of the art 0000000	Implementation 000000	Numerical results	Conclusion
Interface (3	/4)			

Computes but useless for proofs, we need a specification

```
Variant spec float :=
  | S754 zero (s : bool)
  | S754_infinity (s : bool)
  | S754 nan
  | S754_finite (s : bool) (m : positive) (e : Z).
Definition SFopp x :=
  match x with
  | S754_zero sx \Rightarrow S754_zero (negb sx)
  | S754 infinity sx \Rightarrow S754 infinity (negb sx)
  | S754 nan ⇒ S754 nan
  | S754 finite sx mx ex ⇒ S754 finite (negb sx) mx ex
  end.
(* ... (mostly borrowed from Flocq) *)
```

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	○○○○●○		00
Interface (4	1/4)			

```
And axioms to link everything
```

```
Definition Prim2SF : float → spec_float.
Definition SF2Prim : spec_float → float.
```

```
Axiom opp_spec :
   forall x, Prim2SF (-x)%float = SFopp (Prim2SF x).
Axiom mul_spec :
   forall x y, Prim2SF (x * y)%float
        = SF64mul (Prim2SF x) (Prim2SF y).
(* ... *)
```

Not yet implemented:

- roundToIntegral : mode → float → float
- convertToIntegral : mode → float → int

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	○○○○○●		00
Pitfalls				

NaNs their *payload* is hardware-dependent \rightarrow this could easily lead to a proof of False Comparison do not use IEEE 754 comparison for Leibniz equality (equates +0 and -0 whereas $\frac{1}{+0} = +\infty$ and $\frac{1}{-0} = -\infty$) Primitive int63 are *unsigned* \rightarrow requires some care with signed exponents OCaml floats are *boxed* \rightarrow take care of garbage collector in vm_compute (and unboxed float arrays!)

 $\times 87$ registers \rightarrow double roundings (particularly with OCaml on 32 bits)

Introduction 00000	State of the art	Implementation 00000●	Numerical results	Conclusion 00
Pitfalls				

NaNs their *payload* is hardware-dependent \rightsquigarrow this could easily lead to a proof of False Comparison do not use IEEE 754 comparison for Leibniz equality (equates +0 and -0 whereas $\frac{1}{+0} = +\infty$ and $\frac{1}{-0} = -\infty$) Primitive int63 are *unsigned* \rightsquigarrow requires some care with signed exponents OCaml floats are *boxed* \rightsquigarrow take care of garbage collector in vm_compute (and unboxed float arrays!)

x87 registers \rightsquigarrow double roundings (particularly with OCaml on 32 bits) Parsing and pretty-printing

- easy solution: hexadecimal (e.g., 0xap-3)
- \bullet ugly and unreadable for humans \rightsquigarrow decimal (e.g., 1.25)
- indeed, using 17 digits guarantees $parse \circ print$ to be the identity over binary64 (despite parse not injective)
- decimal notations available in Coq 8.10

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		00
A				

Agenda

- 2 State of the art
- 3 Implementation
- 4 Numerical results

5 Conclusion

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		00
Benchmark	s (1/3)			

[Demo]

• Measure the elapsed time with/without primitive floats for a reflexive proof tactic "posdef_check".

edup
9.8x
1.1x
0.5x
1.3x
1.4x
2.0x
2.5x
2.1x

• We'd also like to measure the speed-up so obtained on the individual arithmetic operations!

Bertholon, Martin-Dorel, Roux

Primitive Floats in Coq

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

Benchmarks (2/3) – vm_compute

Op	Source	Emulated floats CPU times $(Op \times 2 - Op)$	Op time	Primitive floats CPU times (Op×1001–Op)	Op time	Speedup
add add add add add	mat200 mat250 mat300 mat350 mat400	$\begin{array}{r} 10.783 {\pm} 0.9\% - 8.381 {\pm} 2.8\% \\ 21.463 {\pm} 1.7\% - 16.405 {\pm} 1.5\% \\ 37.430 {\pm} 1.4\% - 28.630 {\pm} 1.4\% \\ 59.420 {\pm} 0.8\% - 45.945 {\pm} 2.9\% \\ 87.783 {\pm} 0.9\% - 66.173 {\pm} 1.7\% \end{array}$	2.403s 5.058s 8.799s 13.475s 21.610s	$\begin{array}{l} 15.718{\pm}0.5\% & - \ 0.446{\pm}1.1\% \\ 30.622{\pm}0.6\% & - \ 0.818{\pm}0.6\% \\ 53.122{\pm}2.4\% & - \ 1.400{\pm}0.5\% \\ 84.194{\pm}0.8\% & - \ 2.190{\pm}0.5\% \\ 127.562{\pm}8.5\% & - \ 3.214{\pm}0.3\% \end{array}$	0.015s 0.030s 0.052s 0.082s 0.124s	157.3× 169.7× 170.1× 164.3× 173.8×
mul mul mul mul	mat200 mat250 mat300 mat350 mat400	$\begin{array}{l} 12.212{\pm}1.4\% & -8.381{\pm}2.8\% \\ 24.517{\pm}1.4\% & -16.405{\pm}1.5\% \\ 42.844{\pm}1.7\% & -28.630{\pm}1.4\% \\ 68.228{\pm}1.5\% & -45.945{\pm}2.9\% \\ 99.722{\pm}1.5\% & -66.173{\pm}1.7\% \end{array}$	3.831s 8.112s 14.214s 22.283s 33.549s	$\begin{array}{c} 16.096{\pm}3.0\% - 0.446{\pm}1.1\%\\ 31.118{\pm}3.7\% - 0.818{\pm}0.6\%\\ 53.249{\pm}0.8\% - 1.400{\pm}0.5\%\\ 84.332{\pm}0.7\% - 2.190{\pm}0.5\%\\ 125.742{\pm}0.8\% - 3.214{\pm}0.3\%\\ \end{array}$	0.016s 0.030s 0.052s 0.082s 0.123s	244.8x 267.7x 274.1x 271.3x 273.8x

Table: Computation time for individual operations obtained by subtracting the CPU time of a normal execution from that of a modified execution where the specified operation is computed twice (resp. 1001 times). Each timing is measured 5 times. The table indicates the corresponding average and relative error among the 5 samples (using $vm_compute$).

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000	000	00

Benchmarks (3/3) – native_compute

Op	Source	Emulated floats CPU times $(Op \times 2 - Op)$	Op time	Primitive floats CPU times (Op×1001–Op)	Op time	Speedup
add add add add add	mat200 mat250 mat300 mat350 mat400	$\begin{array}{l} 2.243{\pm}1.4\%-1.780{\pm}1.7\%\\ 4.486{\pm}4.2\%-3.411{\pm}3.1\%\\ 7.249{\pm}1.2\%-5.825{\pm}4.6\%\\ 11.664{\pm}3.8\%-9.275{\pm}3.5\%\\ 17.073{\pm}2.9\%-13.142{\pm}0.9\%\\ \end{array}$	0.463s 1.075s 1.424s 2.389s 3.930s	$\begin{array}{l} 17.681{\pm}1.4\% \ -\ 0.221{\pm}0.9\% \\ 34.290{\pm}0.7\% \ -\ 0.368{\pm}1.5\% \\ 59.565{\pm}2.5\% \ -\ 0.553{\pm}0.9\% \\ 93.818{\pm}1.1\% \ -\ 0.816{\pm}0.8\% \\ 141.973{\pm}2.6\% \ -\ 1.184{\pm}0.9\% \end{array}$	0.017s 0.034s 0.059s 0.093s 0.141s	26.5x 31.7x 24.1x 25.7x 27.9x
mul mul mul mul	mat200 mat250 mat300 mat350 mat400	$\begin{array}{l} 2.478{\pm}1.5\%-1.780{\pm}1.7\%\\ 4.824{\pm}2.4\%-3.411{\pm}3.1\%\\ 8.413{\pm}2.4\%-5.825{\pm}4.6\%\\ 13.211{\pm}2.4\%-9.275{\pm}3.5\%\\ 19.269{\pm}1.5\%-13.142{\pm}0.9\% \end{array}$	0.698s 1.412s 2.588s 3.937s 6.127s	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.018s 0.035s 0.060s 0.096s 0.137s	39.7× 40.6× 43.1× 40.8× 44.6×

Table: Computation time for individual operations obtained by subtracting the CPU time of a normal execution from that of a modified execution where the specified operation is computed twice (resp. 1001 times). Each timing is measured 5 times. The table indicates the corresponding average and relative error among the 5 samples (using native_compute).

Introduction 00000	State of the art 0000000	Implementation 000000	Numerical results	Conclusion
Δ Ι				

Agenda

- 2 State of the art
- 3 Implementation
- Numerical results

Bertholon, Martin-Dorel, Roux

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		●O
Concluding	remarks			

Wrap-up

- Implementing machine-efficient floats in Coq's low-level layers
- Focus on binary64 and on portability (IEEE 754, no NaN payloads...)
- Builds on the methodology of primitive integers (\sim 2x / 31-bit retro.)
- Speedup of at least 150x for addition, 250x for multiplication

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		●○

Concluding remarks

Wrap-up

- Implementing machine-efficient floats in Coq's low-level layers
- Focus on binary64 and on portability (IEEE 754, no NaN payloads...)
- Builds on the methodology of primitive integers (${\sim}2x$ / 31-bit retro.)
- Speedup of at least 150x for addition, 250x for multiplication

Discussion and perspectives

- on-going pull request https://github.com/coq/coq/pull/9867
- investigate if next_{up,down} could be emulated (and at which cost)
- nice applications (interval arithmetic with Coq.Interval, other ideas?)

Introduction	State of the art	Implementation	Numerical results	Conclusion
00000	0000000	000000		O
Thank you!				

Questions

https://github.com/coq/coq/pull/9867