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Abstract 

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling 
element bearing fault is presented here.  The SVM was fed from features that were extracted from of 
vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on 
rolling element bearings which were run in normal and with artificially faults induced conditions. The 
time-domain vibration signals were divided into 40 segments and simple features such as peaks in time 
domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. 
were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural 
Network (ANN) classifier and it was found that the performance of SVM classifier is superior to that of 
ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT) prior to 
feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT 
enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment 
results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-
processing the vibration signal with DWT improves the performance of SVM classifier.  

Keywords: Artificial Neural Network (ANN), Discreet Wavelet Transform (DWT), Fault Diagnosis, 
Rolling Element Bearing, Support Vector Machine (SVM). 

1. Introduction 

This Rolling element bearings are widely used in plant industry, propulsion systems and automobile. Bearings 
fault is the foremost cause of machinery breakdown as they are the most common machine element and they work 
under harsh operating conditions [1]. Proper functioning of machinery depends, to a great extent, on early detection 
of bearing faults. If not detected well in time, the bearing defect would causes malfunction that may even lead to 
catastrophic failure of the machinery. 

Rolling element bearings endure heavy loads under industrial operating conditions and structural faults; such as 
wear, pitting, or spall may occur after a long period of running [1]. Components that often fail in rolling element 
bearing are outer-race, inner-race and the ball. The conventional method of machinery fault detection is to look for 
peak at the characteristic defect frequency in the frequency spectrum [2]. However, it is not feasible to detect the 
bearing fault in traditional manner as the bearing defects generate a series of impact vibrations every time a running 
ball passes over the surfaces of the defects. The resultant vibration in time domain are characterized by sharp peaks 
and these impact vibrations distributes their energy over wide range of frequencies;  the bearing's defect frequency 
contains low energy [3] and hence can be easily masked by noise and other low frequency effects.  
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To overcome this problem, both time and frequency domain methods have been developed. They involve 
methods that usually involve indices sensitive to impulsive oscillations, such as peak level, rms value, crest factor, 
kurtosis and shock pulse etc.[1]. The passage of rolling element over the fault causes an impact due to sudden change 
of contact stresses. This excites one or more resonant frequencies of the bearing. Typically the resonant frequencies 
lie in the high frequency range (> 5 kHz) [3]. Accordingly, many techniques that employ high frequency vibrations 
in various ways have been developed for bearing fault detection [2].  However, all these techniques are not able to 
detect the bearing faults with high success especially when the defect is at incipient stage. In recent years soft 
computing has made great progress and has been applied effectively for machinery fault detection [4]. Various 
researchers have applied Artificial Neural Networks (ANN) for detection of rolling element faults [5] – [7]. SVM is 
another potent classification algorithm that has, also been employed by researchers for diagnosis of bearing fault [8]– 
[10]. As both of these algorithms have been used effectively for bearing fault detection hence a comparative study of 
ANN and SVM has been done in this paper to identify the best algorithm. 

 
Fig. 1. Schematic representation of Artificial Neural Network 

 The vibration signals from bearings are inherently non stationary and they can be analyzed very effectively 
by Discreet Wavelet Transform (DWT) that provides both time and frequency information [11].Wavelet transform 
also provides a multi resolution analysis of the signal, it gives good time resolution in high frequency range and good 
frequency resolution at low frequency which makes it ideal for bearing fault detection [12]. Due to these reasons 
DWT has been used in this paper.    

In the present work, the vibration signals were obtained from bearing in normal condition and bearings 
induced with faults. Features are obtained from vibration signals of bearing running in good and faulty conditions. 
These features are subsequently used as inputs to the ANN and SVM classifier to train these classifiers to distinguish 
features of good bearing and defective bearings. In the present approach, sets of normalized features are used so that 
even if the signals change in magnitude due to the change in speed or quality of sensor mounting, the diagnostic 
results are unaffected as long as the signal patterns remain unchanged. The effects of different types of features are 
presented in the paper. Effect of pre-processing by DWT on performance of the classifiers are studied and presented. 
The performance of classifier to identify different types of bearing faults is also presented in the paper.  Finally a 
procedure is described to correctly categorize the bearing conditions by using SVM and DWT. The procedure is 
illustrated using the vibration data of a rotating shaft-line with normal and defective bearings.   

Section 5 describes the experimental setup used in present research. How features are extracted for training the 
classifiers and how to the trained classifier is tested is explained in Section 6. Diagnosis of bearing condition using 
ANN and SVM classifiers are presented in Section 7 and 8 respectively. Section 9 explains the effect of pre-
processing the vibration signal by DWT on efficacy of the ANN and SVM classifiers. 

 

2. Artificial Neural Networks 

The Artificial neural networks (ANN) are simplified artificial models based on the biological learning p
rocess of the human brain [13]. ANNs have been used very extensively in recent years for different application
s such as prognosis, classification, function approximation, control filter, pattern recognition etc [14]. Various r
esearchers have used ANN for machinery fault detection [15]. The AANs have been successfully used for of b
earing fault detection by using them  as classifier to separate vibration signals of bearing in good condition and 
defective bearings[5] – [7]. The ANN is made up of a number of interconnected artificial processing nodes that are 
called neurons. The neurons are connected together in layers forming a network. A typical ANN is schematically 
illustrated in Fig. 1 [14]. There are three types of layers; namely input layer, hidden layer and output layer. The 
number of nodes within the input and output layers are dictated by the nature of the problem to be solved and the 
number of input and output variables needed to define the problem. The number of hidden layers and the nodes 
within each hidden layer is usually a trial and error process. 
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As illustrated in Fig. 2 each node in a layer (except the ones in the input layer) provides a threshold of a single 

value by summing up their input value pi with the corresponding weight value wi. Then the neuron’s net input value 
n is formed by adding up this weighted value (sum), with the bias term b. The bias is added to shift the sum relative 
to the origin. The net input value then goes into transfer function f, which produces the neuron output a. 

1
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       The transfer function f that transforms the weighted inputs into the output a is usually a non-linear function. 
The sigmoid (S-shaped) or logistic function is the most commonly used transfer function which restricts the nodes 
output between 0 and 1. 

 
Fig. 2. Processing of input by neuron 

 Simplest and most common type of ANN is the feed forward network [16]. This is a supervised method of 
learning mainly used to train multilayer neural networks. In supervised learning, a set of inputs are applied to the 
network, then the resultant outputs produced by the network are compared with that of the desired targets. If the 
network is provided with following set of examples for proper behavior: 

{p1,t1} , {p2,t2} , ……. , {pQ,tQ}, (2) 

where pQ is an input to network and tQ is corresponding target. The normalized mean square error (MSE) is 
calculated and propagated backwards via the network. Back propagation network (BPN) uses it to adjust the value of 
the weights on the neural connection in the multiple layers. This process is repeated until the MSE is reduced to an 
acceptably low value, which would be suitable to classify the test set correctly. The mean square error function F(x) 
at iteration k is given by: 

 2

k( x )  =  t kF a    (3) 

BPN uses steepest descent method to adjust the weights and biases. The adjusted weights and biases of mth 
layer at iteration k are estimated by: 
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(5) 

where α is learning rate and wi,j represents weights of connection between neuron i and neuron j. After the 
ANN is successfully trained, it should be ready to test data not seen previously. Various algorithms are available to 
implement back-propagation network most common amongst them is Levenberg-Marquardt algorithm [16] which 
has been used in this paper. 

 

3. Support Vector Machines (SVMs) 

ANNs have proven to be good classifiers but they require large number of samples for training, which is not 
always true in practice [17]. Support vector machines (SVMs) are based on statistical learning theory and they 
specialise for a smaller sample number. SVMs have better generalization than ANNs and guarantee the local and 
global optimal solution similar to that obtained by ANN [18]. In recent years, SVMs have been found to be 
remarkably effective in many real-world applications [19], [20]. As it is hard to obtain sufficient fault samples in 
practice, SVMs have been applied for machinery fault diagnosis by various researchers in recent times [21]. SVM 
has also been successfully used by various researches for detection of ball bearing faults [8]– [10]. 
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SVM is developed from the optimal separation plane under linearly separable condition. Its basic principle can be 
illustrated in two-dimensional way as Fig. 3 [22]. Fig.3 shows the classification of a series of points for two different 
classes of data, class A (circles) and class B (pentacles). The SVM tries to place a linear boundary H between the two 
classes and orients it in such way that the margin is maximized, namely, the distance between the boundary and the 
nearest data point in each class is maximal. The nearest data points are used to define the margin and are known as 
support vectors. Suppose there is a given training sample set G={(xi, yi), i=1...l }, each sample xiRd belongs to a 
class by y{+1, -1}. The boundary can be expressed as follows: 

0x b     (6) 

 
Fig. 3. Classification of data by SVM 

 
where ω is a weight vector and b is a bias. So the following decision function can be used to classify any data point 
in either class A or B: 

   sgnf x x b  
 (7) 

The optimal hyperplane separating the data can be obtained as a solution to the following constrained 
optimization problem: 
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Introducing the Lagrange multipliers 0,i   the optimization problem can be rewritten as: 
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The decision function can be obtained as follows 
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If the linear boundary in the input space s is not enough to separate into two classes properly, it is possible to 
create a hyperplane that allows linear separation in the higher dimension. In SVM, it is achieved by using a 
transformation Φ(x) that maps the data from input space to feature space. If a kernel function: 

     ,K x y x y  
 (13) 

is introduced to perform the transformation, the basic form of SVM can be obtained 
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Among the kernel functions in common use are linear functions, polynomials functions, radial basis functions 
multi layered perceptron and sigmoid functions. 
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4. DWT and Multi-resolution analysis  

4.1 Discreet Wavelet Transform 

DWT have found wide applications in various types of machinery fault diagnosis [23], owing to its ability to treat 
the transient signals by generating time and frequency representation [11] and also due its capability to give multi 
resolution analysis [12]. Recently, wavelet transform has been applied for rolling element bearing fault diagnosis 
[24]-[25]. The wavelet transform is a tool that cuts up data, functions or operators into different frequency 
components, and then studies each component with solution matched to its scale. The use of wavelet transform is 
appropriate to analyze non-stationary signal since it gives the information about the signal both in frequency and 
time domains [28]. Let x(t) be the signal. The continuous wavelet transform (CWT) of x(t) is defined as: 

 ψ τ,sW τ,s (t)  ψ (t)dtx






 
 

(15) 

where  *
,s t  is conjugate of  ,s t , that is the scaled and shifted version of the transforming function, 

called a “mother wavelet”, which is defined as: 
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The transformed signal is a function of τ and s, the translation and scale parameters respectively. The mother 
wavelet is a prototype for generating the other wavelet (window) functions. The scale parameter performs scaling 
operation on the mother wavelet. Each scale represents a frequency band. The term translation corresponds to time 
information in the transform domain; it shifts the wavelet along the time axis to capture the time information 
contained in the signal. The DWT is derived from discretization of  W ,s   given by: 
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An efficient way to implement this scheme was developed by Mallat [29]. The basic working of DWT algorithm 
is illustrated in Fig.4. The DWT is performed by process of decomposition in which the discreet signal x is 
convolved with a low pass filter L and a high pass filter H, resulting in two vectors A and D. The vectors A and D are 
down sampled to obtain cA1 called approximate coefficient and cD1 called detail coefficient. In down sampling the 
odd indexed elements of filtered signals are omitted so that the numbers of coefficients produced in decomposition 
are equal to the number of elements in the discreet signal x(t). 

 

Fig. 4. Decomposition of wavelet Transform  

4.2 Multi-Resolution Analysis 

The decomposition process can be repeated using approximate coefficients cA to obtain DWT coefficients at 
different levels (scale) as per the desired resolution. The process is schematically depicted in Fig. 5. 

 
Fig. 5. Decomposition of signal at different levels by wavelet 
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5. Experimental setup 

The test rig shown in Fig. 6 was composed of a variable speed AC motor driving a shaft rotor assembly through 
flexible couplers;  shafts were rested on two ball bearings. A rotor was used for balancing. The bearings under 
analysis (type MB 204) were placed at load end side for ease of replacement. The load on the system can be adjusted 
by a manually adjustable magnetic brake, which was driven via a belt drive. Vibration signals were acquired by 
accelerometer stud mounted on the bearing housing. The faults were artificially introduced to the bearings. The types 
of faults included a defective outer-race, a defective inner-race, and a defective roller. 

 

Fig. 6. Experimental setup. 

The shaft was made to rotate at 25 Hz and vibration signals were collected at sampling rate of 51.2 KSa/s. The 
numbers of samples collected were 102400 for duration of 2 s. Following four signals were collected: 

1. Bearing in normal condition,  
2. Bearing with Outer Race fault (ORF),  
3. Bearing with Inner Race fault (IRF), and  
4. Bearing with Roller fault (BF). 

 

6. Features and Creation of Training/Test Vectors 

6.1 Feature Selection 

Each signal of 102400 samples was divided in 40 non overlapping bins of 2560 samples (yi). Ten features were 
extracted from these 40 bins as follows: 

 
Feature 1-5  - First five highest peaks  
Feature 6     - Highest peak of power spectral density (PSD). 
Feature 7     - Standard deviation σ. 
Feature 8     - Skewness γ3 (third central moment). 
Feature 9     - Kurtosis γ4 (fourth central moment). 
Feature 10   - Sixth central moment γ6. 

 
The features 6–10 were extracted using: 
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where  iE y  is the mean value and E is represents the expected value of the function. These features 

extracted from vibration signals with or without the bearing fault were used for training the ANN and SVM classifier 
for diagnosis of the bearing condition and testing these classifiers post training. Figure 7 displays all ten features 
extracted from bearing having outer race fault (ORF), inner race fault (IRF) and ball fault (BF) is plotted against 
features extracted from rolling element bearing in good condition. It can be seen from Fig. 7 that there is a good 
separation between features obtained from defective bearings and features obtained from bearing in good condition. 
Hence these features are good features for classifying the good and bad bearings using the SVM and ANN classifier. 
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Fig. 7.  Features of acquired Vibration signals, ______ defective, _ _ _ _ normal 
 

Table 1: Effect of bearing fault type on identification of machine condition 

Case Input 
signals 

ANN SVM 

Training 
success 

Test 
success 

Training 
success 

Test 
success 

1 ORF 
48/48 

(100%) 
74/96 

(77.1%) 
48/48 

(100%) 
77/96 

(80.2%) 

2 IRF 45/48 
(93.8%) 

74/96 
(77.1%) 

48/48 
(100%) 

83/96 
(86.5%) 

3 BF 45/48 
(100%) 

85/96 
(88.5%) 

48/48 
(100%) 

82/96 
(85.4%) 

4 ORF, 
IRF 

93/96 
(96.9%) 

73/96 
(76 %) 

96/96 
(100%) 

84/96 
(87.5%) 

5 ORF, 
BF 

96/96 
(100%) 

89/96 
(92.7%) 

96/96 
(100%) 

85/96 
(88.5%) 

6 IRF, 
BF 

93/96 
(96.9%) 

78/96 
(81.3%) 

96/96 
(100%) 

88/96 
(91.7%) 

7 
ORF, 

IRF,BF 
141/144 
(97.9%) 

81/96 
(84.4%) 

144/144 
(100 %) 

90/96 
(93.8%) 

 

6.2 Creation of training and test vectors 

The vibration signal 1–4 each with 102400 samples were divided into 40 bins each having length of 2560 
samples. The lengths of bins were selected so that each would contain sufficient number (>5) of impacts caused by 
passing of the rolling element over the fault. Out of these bins 24 bins were used for training the ANN and SVM 
classifier. The remaining 16 bins which have not been seen by the ANN and SVM classifier were used for testing. 
The training sets were created by features extracted from defective signal bins and normal bearing signal bins 
alternately. Thus three sets of 48 training vectors outer race fault (ORF), inner race fault (IRF) and ball fault (BF), 
were created for outer race fault, inner race fault and ball fault respectively. Similarly three sets of 32 test vectors 
were also created. As there were 10 features, therefore a training matrix of 10X144 and test matrix of size 10X96 
were created.  The diagnostic capability of ANN and SVM classifiers for different faults were also studied by 
adding/omitting the training sets of respective signal. The numbers of features were also varied to measure their 
effect. 
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Table 2: Effect of Input features on identification of bearing conditions 
SV

M
 Test success 

(Max. 96) 
68  54 76 50 59 55 87 75 80 95 89 89 90 

Training success 
(Max. 144) 

129 85 123 94 106 106 141 144 144 144 144 144 144 

A
N

N
 Test success 

(Max. 96) 
64 48 73 39 42 91 91 64 80 94 75 84 81 

Training success 
(Max. 144) 

125 72* 122 124 123* 116 140 142 143 142 141 138 141 

 

Input features 1-5 6 7 8 9 10 6,7,8, 
9,10 

1-5,7, 
8,9,10 

1-
5,6,8, 
9,10 

1-5,6,7, 
9,10 

1-5,6,7, 
8,10 

1-
5,6,7, 
8,9 

1-5, 
6,7, 
8,9,10 

Case 8 9  10 11 12 13 14 15 16 17 18 19 7 
 

7. Diagnosis of Bearing Condition using ANN 

7.1 Effects of Bearing Defect Type 

Table1 shows the results of training and testing the diagnostic capability of the ANN for different input vectors 
representing different type of bearing faults individually as well as in groups. All ten features were used to study the 
roles of the bearing defect type. Good training success (93.8 – 100%) was achieved in all cases studied. However the 
test success varied from 76 – 92.7%. The results of case  1 – 3 indicates that ANN is able to classify correctly for all 
type of  bearing defects even if it is trained with features of only one type of defect (along  with  features  of   
normal bearing). This indicates to similar nature of impact vibrations produced by different kind of bearing faults. 
Although 100% training success was achieved when ANN was input with ORF and BF signals; the test success was 
higher when trained with BF. Results of case 4-6 clearly shows that that the contribution of ball fault signal is most 
significant for identification of bearing condition as both test and train success was lower (case 4) when features 
from BF signal was omitted. Case 7 gave best performance when all types of bearing defects were used to train the 
network.  

 

7.2 Effects of Bearing Defect Type 

Table 2 shows the relative importance of signal features for identification of machine condition. For cases 8-19, 
all three input signals ORF, IRF and BF were used for training. The table presents results using all ten features, 
namely, the first five highest peaks, highest peak of PSD, standard deviation (σ), skewness (γ3), kurtosis (γ4) and 
sixth central moment (γ6) either alone or in combination. In cases 8–13, the ANN was trained with only one feature, 
the contribution of feature 10 i.e. sixth central moment (γ6) was found most significant as it gave best test success of 
94.8 % (91/96) the success with training set was also high (80.6%). In cases 9 and 12 i.e. when network was trained 
with only peak of PSD (feature 6) and kurtosis (γ4) (feature 9) the performance goal could not be reached. However, 

these features were still retained as using them in combination with other features gave good results. Low test results 
were obtained in case 15 and 18 when feature 6 and 9 were omitted. The use of central moments of order more than 
six did not have any significant effect on the diagnosis results. The third central moment γ3 was found to be not a 
good feature as poor test success of only 40.6 % was obtained when the network was with only γ3(case 11). Further, 
good test (97.9 %) and training success (98.6 %) was obtained in case 17 when γ3 was omitted. In case 19 the 
training and test success were even better then case 7 which made use of all features. It is thus proposed that all 
features except feature 8 (γ3) should be used to train the ANN. 

 
 

Fig. 8. SVM training results (a) With polynomial kernel (b) With RBF kernel 
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Fig. 9. Effect of DWT details at various levels 

 
Fig. 10.  ANN classification success 

8. Diagnosis of Bearing Condition using SVM classifiers 

The SVM classifiers was designed for same training and test vectors as used for ANN. Various kernel functions 
such as Linear, Quadratic, Multilayer Perceptron, Gaussian Radial Basis Function (RBF) and Polynomial kernels 
were used for all 19 cases. The Linear, Quadratic and Multi layer perceptron kernels could not achieve convergence 
in many cases and training was stopped after maximum number of iterations (200000) was reached. The RBF and 
polynomial kernels achieved convergence in all 19 cases. Fig. 8 presents the training, test and combined (test + train) 
success achieved by Polynomial and RBF kernel functions. The Fig. 8 presents the results by accumulating all 19 
cases. The results are presented in percentages combining all 19 cases thus total 2304 training and 1824 test vectors 
were presented to the SVMs. Fig. 8 (a) presents the sccess achieved by polynomial kernal with respect to the order of 
polynomial. The order of polynomial for polynomial kernel was varied from 2 to 10 to find out the most optimum 
order. High combined (i.e. test plus training) success;  more than 80 % was achieved when order of polynomial was 
set between 3 to 6. The test and train success decreased as order of polynomial was decreased below 3. When the 
order was increased beyond 3 the SVM started to over fit;  the training percentage continued to increase whereas 
the test success percentage fell. The 4th order of polynomial showed good balance of train and test success. 

Fig. 8 (b) presents the sccess achieved by RBF kernal with respect to the different values of sigma parameter. The 
penalty parameter C was kept equal to 1. In case of training with RBF kernel the RBF sigma (σ) was varied from 0.1 
to 5 to select the most optimum scaling factor. The test and train percentage increased as sigma was decreased from 5 
to 2.5. However, the SVM started to over fit as the sigma was decreased below 2.5. The cumulative percentages in 
case of RBF kernel was slightly lower as compared to the polynomial kernel. Hence SVM classifier with polynomial 
kernel of the order of 4 was thus selected for remaineder of this paper. 

Three methods were tried to find the separating hyperplane namely Quadratic Programming, Least-Squares and 
Sequential Minimal Optimization method. The Sequential Minimal Optimization method was selected as it gave best 
results amongst the three choices. The test and training results for 19 cases using SVM with 4th order polynomial 
kernel are presented at Table 1 and 2. It is evident from results that more accurate classification of bearing condition 
is achieved by using SVM classifiers as compared to ANN. Both the training as well as the test successes were 
higher in case of SVM classifier as compared to ANN for 18 out of total 19 cases (case 13 was only exception). In 
case 10 and 11 the train success was lower than that achieved by ANN but success with test vectors were higher. 

Another significant aspect of using SVM classifiers is the speed of training. The time taken for SVM to train is 
far less in comparison to the time taken by the ANN. Maximum time taken by the SVM classifier to train was 4.6 sec 
(case 13).  Amongst all cases the ANN achieved fastest training in case 1 where it took 12 sec to train the network. 
Thus even the slowest case of SVM was much faster than ANN. It is proposed that the SVM classifiers be used for 
bearing condition classification. 
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9. Effects of Pre-processing with Discreet Wavelet Transform 

The effectiveness of pre-processing the acquired vibration signals by DWT is discussed in this section. Instead of 
using the raw signal as was the case in previous sections, the vibration signals were pre-processed with DWT using 
Daubechies wavelet of order 44 (Db44) at level 6 to obtain the low frequency approximate at level six (A6) and the 
high frequency detail signals at level 1 to 6 (D1-D6). Frequency range of details were in the descending order, i.e. D1 
had highest frequency content (12-25.6 kHz), and D6 had the lowest frequency content (0.3–1.2 kHz) whereas 
frequency content of D2 ranged from 4.6 – 10 kHz. The test and train vectors were created out of these details (D1 - 
D6) instead the raw signal. The selection of features and creation of training/test vectors were done as per section VI. 

Fig. 9 shows the results of using various details (D1 – D6) by the SVM classifier. Total 2304 training and 1824 
test vectors created (by accumulating all 19 cases) for each detail and were presented to the SVM classifier. Fig. 9 
shows the training, test and combined (training + test) success percentages achieved. High test and training success 
was achieved when details D1 and D2 were used, indicating the influence of the bearing defect in high frequency 
range > 5 kHz (as reported by Tandon [3]). The performance of components D3 – D6 outside this frequency range 
were not very satisfactory.  Best results were obtained when D1 was used to extract features, in this case the 
cumulative (case 1 – 19) training success was 94.3% and test success was 80 %. The Fig. 10 presents (case wise) the 
combined (training plus test) success obtained by ANN when the network was input with raw signal and with signals 
pre-processed with DWT (using level 1 details D1). Pre-processing with DWT has improved the success (combined) 
of classifying the bearing condition in 17 cases out of total 19 cases. The maximum increase was in case 9 where 
combined success increased from 120 (50%) to 170(70.8%). By pre-processing with DWT the success reduced in 
only two case i.e. case 12 and case 13.  

Pre-processing with DWT also improves the classification of bearing condition by the SVM classifiers. Fig 11 
presents the combined (training + test) success achieved by the SVM classifier when input with features extracted 
from raw signal and from pre-processed signal (D1). The combined success increased in 14 out of 19 cases. The 
maximum increase was in case 9, whereas four cases i.e.12 – 14, 17 and 18 showed decrease. Another significant 
effect of pre-processing the vibration signal with DWT was on the number of iterations (epochs) performed by the 
ANN and SVM classifier to train. Table 3 presents the number of iterations performed by ANN and SVM classifier 
to train when they were input with features extracted from raw signal and with signal pre-processed with DWT. 
When ANN was input with DWT processed signal the number of iterations required for training had reduced 
considerably for all cases except for case 8 and cases 12, 13 (where the training had stopped at 15000 epochs without 
reaching the performance goal). There has been more than 50% reduction (in training time) in six cases and 
maximum reduction was in case 10 where the number of epochs required for training reduced by about 90 %.  

Similarly when SVM was fed with features of signal preprocessed with DWT there is a reduction in number of 
iterations performed in training. The reduction was observed in 13 out of 19 cases. The number of training iterations 
had increased in cases 14 – 19 where the SVM classifier was fed with one feature less. However, when all ten 
features were fed (case 7) the number of iterations reduced by about 82 %. 

Table 3: Number of iterations performed during training 
 ANN SVM 

Case Raw 
Signal 

D1 Raw Signal D1 

1 12 9 128 58 
2 18 14 365 88 
3 33 16 789 204 
4 27 13 532 71 
5 32 20 647 113 
6 27 25 506 159 
7 32 27 550 101 
8 106 152 6555 4433 
9 15000* 3578 2614 158 

10 2275 154 64 133 
11 6760 4675 494 108 
12 15000 * 15000 * 1567 142 
13 11930 15000 * 6668 146 
14 56 26 857 23536 
15 64 32 6523 17429 
16 37 32 821 49833 
17 45 27 1154 36153 
18 40 42 1023 26232 
19 44 24 537 51587 

*  Training was terminated at maximum number of epochs 
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Fig. 11.  SVM classification success 

10. Conclusion 

A method is presented to identify bearing condition by using simple features such as five highest peaks and 
statistical central moments of time domain vibration signal together with peak of Power Spectral Density. It is shown 
that using these simple features the bearing condition can be correctly classified with high accuracy with the help of 
ANN or SVM classifiers. 19 different cases were created to test the efficacy of ANN and SVM classifier in different 
conditions and it was found   that   SVM classifier performs better than ANN in almost all cases. Preprocessing 
with DWT improves the performance of both ANN and SVM classifiers. The test and train success increased in most 
cases when features extracted from details at level 1 (D1) were used to train ANN and SVM classifier. The DWT 
preprocessing also significantly lowers the number of iterations (epochs) required to train the ANN and SVM 
classifiers.   

In practice it is difficult to obtain vibration signatures arising out of all kinds of bearing faults such as outer race 
fault, inner race fault or ball fault. In proposed method the vibration signals from any one type of bearing fault is 
sufficient to diagnose the bearing condition that may have other type of defect. It is perhaps because the proposed 
method does not attempt to make use of bearing defect frequency or time domain features; it focuses upon the peaky 
nature of impact vibrations by using highest peaks and statistical features such as central moments. 

The present procedure is used to classify the status of the machine in the form of normal or faulty bearings. There 
is a scope for its extension to identify fault types and severity levels. Since the SVM classifier training is quite fast, 
training and test may be done on-line. These issues are subjects for further study. 
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