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a b s t r a c t

Context. Microservice architectures are an emergent service-oriented paradigm widely used in in-
dustry to develop and deploy scalable software systems. The underlying idea is to design highly
independent services that implement small units of functionality and can interact with each other
through lightweight interfaces.
Objective. Even though microservices are often used with success, their design and maintenance
pose novel challenges to software engineers. In particular, it is questionable whether the intended
independence of microservices can actually be achieved in practice.
Method. So, it is important to understand how and why microservices evolve during a system’s life-
cycle, for instance, to scope refactorings and improvements of a system’s architecture or to develop
supporting tools. To provide insights into how microservices evolve, we report a large-scale empirical
study on the (co-)evolution of microservices in 11 open-source systems, involving quantitative and
qualitative analyses of 7,319 commits.
Findings. Our quantitative results show that there are recurring patterns of (co-)evolution across all
systems, for instance, ‘‘shotgun surgery’’ commits and microservices that are largely independent,
evolve in tuples, or are evolved in almost all changes. We refine our results by analyzing service-
evolving commits qualitatively to explore the (in-)dependence of microservices and the causes for
their specific evolution.
Conclusion. The contributions in this article provide an understanding for practitioners and re-
searchers on how microservices evolve in what way, and how microservice-based systems may be
improved.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Microservices are a concept for designing service-oriented
oftware systems with a focus on small, independent, and re-
laceable units of functionality (Thönes, 2015; Newman, 2015;
amiliar, 2015). Ideally, due to a high degree of independence and
ight coupling, microservices can be freely combined and can sup-
ort various technologies (e.g., multiple databases, frameworks,
nd programming languages) within the same heterogeneous
rchitecture (Fowler, 2016; Yuan, 2019). Such properties promise
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benefits, such as software reuse, improved availability, or con-
tinuous delivery (Luz et al., 2018; Taibi et al., 2017), and have
led to various organizations successfully adopting microservices,
for instance, Netflix and Uber (Fowler, 2016; Vučković, 2020).
However, microservice-based systems are not feasible for every
organization, and the potential pitfalls (e.g., managing knowledge
about the various technologies and dependencies between mi-
croservices) may prevent a successful adoption (Vučković, 2020;
Viggiato et al., 2018).

Microservices have originated from industry, and only
recently researchers started to explore them (Joseph and Chan-
drasekaran, 2019). For instance, researchers have proposed
methodologies for migrating systems towards microservices
(Kecskemeti et al., 2016; Wolfart et al., 2021), developed tools for
benchmarking (Sriraman and Wenisch, 2018) and identifying
microservices (Carvalho et al., 2020; Assunção et al., 2021; As-

sunção et al., 2022), studied the pros and cons of microservices
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Vučković, 2020; Bogner et al., 2019; Viggiato et al., 2018), or
xplored relations to other research fields, such as product-line
ngineering (Assunção et al., 2020; Benni et al., 2020; Krüger
t al., 2022; Assunção et al., 2021). In such works, maintaining and
volving microservices has been identified as a highly important
hallenge. Specifically, the high independence of microservices
s intended to allow developers to separately evolve individual
icroservices. However, the technological heterogeneity and po-

ential design misconceptions have caused concerns regarding
his assumption—resulting in the perception of co-evolving mi-
roservices. For example, dependencies may be caused by the
dditional interfaces required to integrate heterogeneous tech-
ologies (e.g., breaking APIs (Zdun et al., 2020)), intertwined
icroservices that address similar functionality (e.g., not enough
eparation of concerns (Waseem et al., 2021)), or microservices
eavily building on each other (e.g., feature interactions (Benni
t al., 2020)). The consequent dependencies complicate the evolu-
ion and maintenance of microservice-based systems, which can
ause unnecessary costs, bugs, and design flaws (Bogner et al.,
019; Sampaio Jr. et al., 2017; Vučković, 2020).
In this article, we report an empirical study of how such de-

endencies manifest during the evolution of microservices, essen-
ially asking: How do microservices evolve? For this purpose, we
nalyzed 7,319 commits of 11 open-source microservice-based
ystems. Particularly, we distinguished between different types
f evolution (i.e., technological, services, miscellaneous) and re-
urring patterns (e.g., independent evolution, evolution in tuples)
ased on a quantitative analysis. The results of this analysis show
hat several microservices typically co-evolve with each other.
owever, we also observed that changes are commonly unrelated
o a system’s microservices that represent business logic (i.e., they
rimarily relate to technological or miscellaneous changes). To
nderstand the reasons for microservice co-evolution, we per-
ormed a qualitative analysis on a subset of the commits to
anually identify the respective causes.
In detail, we contribute to the following in this work:

• We report a quantitative analysis of how microservices
(co-)evolve, separating different types of evolution by iden-
tifying recurring patterns.

• We describe a qualitative analysis to understand why mi-
croservice (co-)evolve along the patterns identified.

• We discuss the implications of our findings on the estab-
lished notion of independent microservices.

• We publish our material in an open-access repository.1

Our insights help understand, assess, and potentially resolve un-
intended or expensive co-evolution of microservices, for instance,
by refactoring and improving a system’s architecture. Addition-
ally, our findings can help researchers understand the evolution
of microservice-based systems, which can guide the design of
new techniques for supporting developers.

The remainder of this article is structured as follows. In Sec-
tion 2, we describe the methodology we employed for our em-
pirical study. We present and discuss the results to our research
questions in Section 3. Then, we discuss threats to the validity
of our study in Section 4. In Section 5, we describe the related
work for this article. Finally, we conclude and present our lessons
learned in Section 6.

2. Methodology

To address our research goal of understanding microservice
evolution, we decided to conduct a multi-case study (Yin, 2018).

1 Submitted as supplementary material, will be put on Zenodo.
2

Thus, we analyzed, in a homogeneous way, a number of micro-
service-based systems to obtain in-depth insights, while also
improving on a single case study. In this section, we explain the
design of our study. We display an overview of our methodology
in Fig. 1.

2.1. Research questions

When studying microservice architectures, state-of-the-art re-
search focuses on aspects such as (i) migrating to microser-
vices (Kecskemeti et al., 2016; Wolfart et al., 2021), (ii) struc-
tural and dynamic dependencies (Esparrachiari et al., 2018), or
(iii) smells and patterns (Neri et al., 2019; Taibi et al., 2020).
In contrast, we explore the evolution of microservices in open-
source systems to understand whether and how these may co-
evolve, complementing such research. To execute our multi-case
study, we leveraged version-control data by analyzing commits
as well as atomic changes. For example, a commit can comprise
changes to multiple files, each of which we consider an individual
atomic change (see Section 2.3 for more details).

We used this data to tackle two research questions:

RQ1 How do microservice-based systems evolve?
First, we studied how microservices have evolved in our
11 open-source subject systems. To this end, we manually
labeled (cf. Section 2.4 for more detailed definitions) the
atomic changes of each system to distinguish whether the
evolution was technical (e.g., library updates), service-driven
(e.g., updates on a microservice’s functionality), or due to
something system specific that we classified as miscella-
neous (e.g., updating icons). Using a quantitative analysis, we
identified four recurring observations that help understand
and manage the evolution of microservices.

Q2 Why do microservice-based systems evolve in that way?
Second, we aimed to understand the causes for our observa-
tions. To this end, we used a qualitative analysis in which we
studied relevant commits (e.g., code changes, commit mes-
sages, issues, and pull-requests) and the systems’ documen-
tations (e.g., documented architectures). For instance, we
identified technical issues (e.g., dependencies between mi-
croservices) and development practices (e.g., tangled com-
mits) to cause some of our observations.

ased on our findings, we discuss implications for the evolu-
ion of microservice-based systems, and for the assumption of
ndependence between individual microservices.

.2. Subject systems

Since microservices are intended to represent the business
ogic of a system, there are not many architectures available
utside of industrial settings in which non-disclosure agreements
re required. In parallel, due to the popularity of the microser-
ice paradigm, searching for open-source projects ‘‘in the wild’’
eturns thousands of toy examples. To mitigate these problems of
electing suitable subject systems, we inspected all projects listed
n a curated GitHub list2 of microservice-based systems (Rahman
t al., 2019). This list is becoming a de facto standard in research
elated to analyzing open-source microservice architectures. Us-
ng such a curated list instead of mining open-source repositories
elped us restrict the list of relevant candidates to a manageable
ize. Moreover, evaluating whether a certain system is feasible
or inclusion is a time-consuming task (e.g., ensuring the domain
nd quality), which is why using a list of projects already known,

2 https://github.com/davidetaibi/Microservices_Project_List

https://github.com/davidetaibi/Microservices_Project_List
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Fig. 1. Overview of our multi-case study.

sed, and considered feasible by the community is more efficient
nd reliable.
Inspecting the list led to a total of 55 candidate systems for

ur study. The first and third authors independently reviewed
ach system and decided whether it was a feasible subject for our
tudy or not. Concretely, we defined the following three inclusion
riteria (ICs):

C1 The system’s developers must provide additional information
in the form of pull-requests, issues, and discussions to al-
low us to understand the specifics of the system’s evolution,
for instance, whether a change was performed to improve
the performance of a microservice or to update underlying
frameworks and technologies.

C2 The system must have a feasible size in terms of microser-
vices and commits to analyze evolution, excluding toy, ex-
emplary, or idealized best-practice examples (e.g., those with
only a single service). As each system uses different tech-
nologies and languages, this criterion cannot be quantified
in an absolute way. We relied on our own development
expertise to qualify whether a system could be manually ana-
lyzed in fewer than three working days, while still exhibiting
microservice evolution.

C3 The system must have received updates at least until 2018
to reflect on recent microservice evolution. Note that we
cloned the systems with all of their branches (which we also
analyzed) in the beginning of 2021.

he first and third authors agreed that 13 systems fulfilled our
riteria, while 23 did not.
Regarding 19 of the 55 systems, the two authors had oppos-

ng opinions (4) or were both unsure whether to include them
15), for instance, because the authors perceived the number of
3

commits as too small IC2 or the additional documentation as too
limited IC1. For these 19 cases, the second author performed an
independent review, which recommended the exclusion of all of
these cases. We derived a final decision for all 55 projects during
a discussion among the three authors in which especially the
second author justified why the 19 systems should be excluded.
Note again that those were the cases for which at least one of
the other two authors was tending towards exclusion already
(with one exception tending towards inclusion before), and we
agreed that the concerns were justified (e.g., that the additional
documentation did not provide information on the microservices,
but only on libraries or frameworks used).

In Table 1, we present the 13 systems we considered as poten-
tially feasible for our multi-case study. These were maintained for
a reasonable time (IC3), had a size that is comparable to systems
used in other empirical studies on microservices architectures
(IC2), and contain enough documentation to support the identi-
fication of the different services and infrastructure technologies
in the source code (IC1). We then continued with preparatory
analyses to gain a first understanding of the 13 systems.

During these preparatory analyses (i.e., commit labeling as we
describe in Section 2.4), we identified a few issues with two of
the systems:

• S04 is larger than all other systems (3917 commits; 113,418
atomic changes), and represents by itself 50% of the dataset.
This posed technical challenges (e.g., manually analyzing
all changes in spreadsheets) and would introduce either
imbalance or sampling bias into our dataset.

• S13 has been a multi-repository project in which each ser-
vice resides within an own repository, and thus was un-
suitable for our analysis workflow. Precisely, changes to
the microservices are split into the different repositories,
which means that the evolution looks completely indepen-
dent, even though it may not be (i.e., co-evolution is not
represented by atomic changes being tangled in commits
and requires extensive expert knowledge about the system
to identify).

In a consequent discussion of the labeling process, we decided to
exclude these two systems (we list them in Table 1 for complete-
ness and consistency). The rationale behind these two exclusions
differs. We excluded S13, because of its multi-repository structure
preventing the identification of any co-evolution in the version-
control system—making it unsuitable for our research method-
ology. In contrast, we excluded S04 to support a homogeneous
study of the systems. Analyzing such a system would require to
sample the change dataset to conduct a manual labeling with rea-
sonable effort. Doing so, we would have to also sample all other
systems following the same sampling methodology. As a result,
and after having consulted experts in research data management,
we preferred to provide a homogeneous and complete analysis of
the remaining 11 systems, instead of analyzing a sampled dataset.
It is also important to note that sampling can introduce bias when
datasets are unbalanced, which is the case in this study.

Finally, we continued with the 11 systems we summarize in
Table 1 into our actual study. We can see in Table 1 that the
systems are highly diverse regarding their sizes, programming
languages, number of contributors, and the number of commits
we could analyze; spanning a period from 2014 until early 2021.
Note that main languages refers to those programming languages
(excluding HTML, CSS, etc.) that had contributed to more than 5%
to a system according to GitHub’s statistics when we extracted
the data. Furthermore, we included only a single academic system
that provides a benchmark (S01), while the other systems have
been developed by industry—or at least by practitioners (i.e., the

repository is owned by a developer, not a company or institution).
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Table 1
Overview of the 11 subject systems we included in our multi-case study.
Id Origin Type Main languages ms loc cont Commits

# From Until Period

S01 Academia Benchmark Java 9 31,740 17 1,586 47e8fa7 a794fd0 2017-08-18–2021-02-16
https://github.com/DescartesResearch/TeaStore

S02 Industry Product Java 15 40,509 24 2,750 96a4296 8c875ee 2014-01-06–2021-02-12
https://github.com/sitewhere/sitewhere

S03 Industry Reference Java, JavaScript 9 14,228 17 265 f069222 b12d05b 2016-11-12–2021-02-28
https://github.com/spring-petclinic/spring-petclinic-microservices

S04 <dropped during commit labeling>
https://github.com/dotnet-architecture/eShopOnContainers

S05 Industry Reference Python, Go, C# 12 29,223 81 563 2fd4967 3a1850d 2018-06-13–2021-02-19
https://github.com/GoogleCloudPlatform/microservices-demo

S06 Industry Reference Shell (C#, Java, TypeScript) 8 42,174 28 555 b7e35ba cba9dcb 2017-10-19–2021-02-17
https://github.com/mspnp/microservices-reference-implementation

S07 Practitioner Reference Java, JavaScript 9 20,003 20 287 36179f0 fd5ee3c 2015-03-29–2021-01-19
https://github.com/sqshq/PiggyMetrics

S08 Practitioner Reference C# 10 92,132 14 291 d48abe8 e1266b8 2017-09-26–2021-02-13
https://github.com/EdwinVW/pitstop

S09 Practitioner Reference JavaScript, PHP, Java, Python, Shell 7 5,916 19 362 ae1a16f a8f89df 2018-01-10–2021-02-11
https://github.com/instana/robot-shop

S10 Practitioner Reference Go 4 405,290 2 94 4a713f4 c2a16d5 2017-08-14–2018-10-14
https://github.com/digota/digota

S11 Industry Reference JavaScript, Java 6 89,182 12 31 44bb648 e83dec0 2017-04-22–2018-12-10
https://github.com/microsoft/PartsUnlimitedMRPmicro

S12 Practitioner Reference Java 16 1,140 4 90 7f7974c d8c91ac 2016-04-26–2018-05-31
https://github.com/sczyh30/vertx-blueprint-microservice

S13 <dropped during commit labeling>
https://github.com/microservices-demo

(...): languages in nested repository; ms: number of microservices; loc: lines of code; cont: number of contributors.
t
c

One of the systems (S02) is a real-world product of an orga-
nization, while most systems serve as reference systems. Thus,
they provide a reference architecture for demonstrating how to
implement certain systems (e.g., web-shops) based on microser-
vice technologies. While potentially not ideal (i.e., they do not
represent actual products, but these are rarely available), these
systems have been developed by practitioners and are intended
to guide the development of microservice-based systems.

Most systems are small to medium-sized in terms of lines
f code (between ≈1000 and ≈400,000) as well as microser-
ices (between four to 16). However, if we identify problems
ith co-evolution already for such smaller and more manage-
ble systems, we argue that it is likely that similar patterns
ccur for large systems with hundreds or thousands of developers
nd microservices. Consequently, we argue that these systems
re suitable for our multi-case study. Additionally, the selected
ystems also involve authority projects (the academic and two
eference systems), namely by the Descartes group (S01), Google
S05), and Microsoft (S11). Overall, we argue that our subject sys-
ems represent a diverse and appropriate sample to understand
he evolution of real microservice-based systems.

.3. Formalizing changes

Version-control systems are designed to record and track the
ifferent versions of a given piece of software. Several formalisms
xist to model how such versions are reified and managed (Con-
adi and Westfechtel, 1998; Hindle and German, 2005; Ananieva
t al., 2020, 2022a,b). Industrial systems like CVS,3 SVN,4 or
it5 follow an operational description method, by documenting

3 https://savannah.nongnu.org/projects/cvs
4 https://subversion.apache.org/
5 https://git-scm.com/
4

their internal structure (Chacon and Straub, 2014). Other systems
like Mercurial,6 Darcs,7 or more recently Pijul,8 provide a fully-
fledged formal representation. The most known one is the patch
theory popularized by Darcs (Jacobson, 2009). In this model, soft-
ware is considered as a sequence of patches, applied sequentially
to build a given version. Denoting Rn a given revision of a software
and P = [p1, . . . , pn] the sequence of patches recorded to build
it, we can rebuild any intermediate release Ri of Rn by applying
a sub-sequence of P (with i < n). This ability is essential when
mining software history, as it gives access to each step used to
develop the system.

A common point to all of these models is that they support
the extraction of information regarding how a given software was
written. We rely on Git, which is one of the most commonly used
version-control systems at the time of writing. So, for the sake
of conciseness, we rely on Git vocabulary9 only. It is important
to note that these concepts can be translated to any version-
control systems. Using Git, developers have access to versioning
operations at the file system level, such as adding or removing
files from the versioning history. They can assemble all their
changes (e.g., a new file was added, an old file was deleted, or
some modification were made to an already versioned file) in a
commit, which records a consistent set of atomic changes into the
version-control system, in a transactional way. In a nutshell, a
commit Cn records the status of the system at a given time tn,
storing all the changes made to the system between tn−1 and tn.

As a consequence, from a descriptive point of view, we can
consider a change as a pair (file,modifier), where file is a reference
o a given file (e.g., a path) and modifier is one of the modifi-
ation type recognized by the version-control system (e.g., add,

6 https://www.mercurial-scm.org/
7 http://darcs.net/
8 https://pijul.org/
9 https://git-scm.com/docs/gitglossary

https://github.com/DescartesResearch/TeaStore/commit/47e8fa776f50666f96b1d5250e745227feb182d9
https://github.com/DescartesResearch/TeaStore/commit/a794fd0356994d310397f7ce5b518abb5b573710
https://github.com/DescartesResearch/TeaStore
https://github.com/sitewhere/sitewhere/commit/96a4296bb8f746c715ab3c9491074ad7d5fa4a65
https://github.com/sitewhere/sitewhere/commit/8c875eedb1a25a33108987f02b508ebd77aa54f0
https://github.com/sitewhere/sitewhere
https://github.com/spring-petclinic/spring-petclinic-microservices/commit/f069222d887b6b2d38eb43bda5e45dd78552f996
https://github.com/spring-petclinic/spring-petclinic-microservices/commit/b12d05b080e9333d862ebc6e2361cdd22b5a87e4
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/GoogleCloudPlatform/microservices-demo/commit/2fd49670a7ba3e513f016722d3bdd67b8befc7bb
https://github.com/GoogleCloudPlatform/microservices-demo/commit/3a1850d65f8ca9dfd361f741791c9b7506226827
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/mspnp/microservices-reference-implementation/commit/b7e35bad4ae9a01bec060a4ae2cf390342d8d9c3
https://github.com/mspnp/microservices-reference-implementation/commit/cba9dcb66ff7d8d34fac2ffd724d6cbb7185aad2
https://github.com/mspnp/microservices-reference-implementation
https://github.com/sqshq/PiggyMetrics/commit/36179f0387594b78a434bb50a6ddc168bc466910
https://github.com/sqshq/PiggyMetrics/commit/fd5ee3c555ea9cd6067eacf3f2a3e8b85fe4fe77
https://github.com/sqshq/PiggyMetrics
https://github.com/EdwinVW/pitstop/commit/d48abe8ae06bd7bd1516be4e2b336525075ed044
https://github.com/EdwinVW/pitstop/commit/e1266b892442db980679317737693990d79a0ecf
https://github.com/EdwinVW/pitstop
https://github.com/instana/robot-shop/commit/ae1a16f94c05831f720e17af87ffde6d8e96bed2
https://github.com/instana/robot-shop/commit/a8f89df7dd6813d66d45671858af704ceff2be28
https://github.com/instana/robot-shop
https://github.com/digota/digota/commit/4a713f4bdda5d73e0cc5851b8351e5fbdafe4213
https://github.com/digota/digota/commit/c2a16d57bfe0fd0d6f3a7b9a71122668a24c1e6c
https://github.com/digota/digota
https://github.com/microsoft/PartsUnlimitedMRPmicro/commit/44bb648535a0db4e7c960f2e95ec61176e469a74
https://github.com/microsoft/PartsUnlimitedMRPmicro/commit/e83dec0243c9d212a498ba2e84172a45c6280f03
https://github.com/microsoft/PartsUnlimitedMRPmicro
https://github.com/sczyh30/vertx-blueprint-microservice/commit/7f7974cdc677d61b28a420bed7acfbf6c12cd3b7
https://github.com/sczyh30/vertx-blueprint-microservice/commit/d8c91acc4f33021dd7eb7160b5268009d4f66493
https://github.com/sczyh30/vertx-blueprint-microservice
https://github.com/microservices-demo
https://savannah.nongnu.org/projects/cvs
https://subversion.apache.org/
https://git-scm.com/
https://www.mercurial-scm.org/
http://darcs.net/
https://pijul.org/
https://git-scm.com/docs/gitglossary
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elete, or modify). A commit C is defined as a triple binding
ogether an unordered collection of independent and atomic
hanges {c1, . . . , cn}, an author, and a timestamp. Formal mod-
ls like the patch theory also include operational semantics to
ormalize how changes are applied to concretely build a piece of
oftware. However, considering that this article is about observ-
ng which changes were made while developing microservices,
e stay at the description level.

.4. Commit labeling

Before our actual case analyses, the first and third authors
ndependently labeled the commits Ci of each system by labeling
ach atomic change {ci1 , . . . , cin} stored in these commits. For
his purpose, they manually analyzed commit messages, code
hanges, as well as all associated documentation (e.g., pull re-
uests or issues) to understand the evolution of each system. This
tep was essential to understand the architecture of all systems
e studied in this work, and to enable us to discriminate the
ature of each change made to the system in a comprehensive
ay. After this manual analysis, both authors derived regular
xpressions (examples in quotations, see also our repository) to
emi-automatically distinguish three types of atomic changes
ased on file types, code changes, and commit messages.
We remark that these types of changes reflect on the state-

f-practice distinguishing between technical and business-driven
i.e., service) changes:

echnical (T) changes represent changes to the technologies that
enable the development of the actual microservices, for in-
stance, to underlying frameworks, libraries, or the architec-
ture. Consequently, such changes are not directly related
to the (functional) business logic of microservices. This
type of change includes changes related to the deployment
environment (e.g., Docker, Kubernetes), the build process
(e.g., update to the continuous integration pipeline), or
dependencies (e.g., changing a dependency in a Maven
descriptor). For example, after a manual analysis of the
technologies used in a given system, we could capture its
architectural changes by looking for specific configuration
files. Specifically, we used ‘‘config’’ as keyword in combi-
nation with ‘‘.*\.xml$|.*\.properties$|.*\.config$|.*\.json$’’ as
regular expression for file types.

ervice (S) changes are concerned with evolving the business
logic of the system, and not the underlying technology. We
tailored the respective labels and expressions individually
to each system we analyzed based on manually identi-
fied boundaries (i.e., using the system’s documentation) of
each bounded context that defines a microservice inside a
certain system. All the analyzed systems follow the good
practice of isolating services into modules (e.g., package
or maven modules in Java, modules in Go and Python)
that are reflected as directories at the file system level.
Our manual analysis here was to identify which sub-parts
of these directories where containing the business code,
and to capture such information into a regular expression.
For example, in a system where the customers pack-
age contains all the business logic related to business-
driven customer management as Java classes, we tracked
the evolution of the services with the following regular
expression: ‘‘.*\.customers.*\.java$’’.

iscellaneous (M) changes are associated to file types that are
highly specific to the system and not concerned with tech-
nical or service changes, such as updating icons or pub-
lishing a static web user interface. For example, the user
 s

5

interface layer of a system using the Java Server Face
technology (where web pages are implemented as Java
classes) can be tracked using the following regular expres-
sion when such a component is stored in a package named
web_ui: ‘‘.*\.web_ui.*\.java$’’

ote that we derived the respective expressions for each system
ndividually (since each system used different architectures and
echnologies), and manually validated the automatic classifica-
ion. Each expression (see Fig. 2 for an example overview) is a
ore specific description of a change’s purpose, and we relied
n an open-coding-like process to derive the expressions from
he investigated artifacts. Through this step, for each system, we
btained a label for each unique atomic change ci. The labeling

process ensures that only one label is associated to each atomic
change, and that all changes are labeled inside a given system
to ensure consistency. In a functional way, we rely on a function
label(ci) = T |S|M .

After labeling all changes, the two authors cross-validated
whether the regular expressions of each system were reason-
able by manually comparing the other authors’ expressions to
a sample of labeled commits and the atomic changes therein of
the respective systems. The inspection did not reveal unfeasible
or wrongly assigned labels. As commits are defined as sets of
atomic changes, a given commit can contain changes of different
nature (i.e., with different label). Since all changes are labeled,
a commit has at least one (it is uniform, all changes are of the
same nature) and up to three labels. The labels associated to
a given commits are the union of the labels associated to each
of its atomic changes. As a result, the label(s) associated to a
given commit C1 are the powerset of S, T ,M (excluding the empty
set): labels(Ci) ∈ {{T }, {S}, {M}, {T , S}, {T ,M}, {S,M}, {T , S,M}}.
n summary, we can investigate atomic changes (i.e., individual
ode changes) and their tangling in commits (i.e., a set of atomic
hanges that have been submitted together) when analyzing the
volution of microservices.

.5. Case analyses

To address our research questions, in a first step, we per-
ormed descriptive (e.g., descriptive statistics) and exploratory
e.g., plotting microservice co-evolution) analyses of the labeled
ommits and atomic changes to obtain an overall understanding
f the systems’ evolution. In particular, we investigated the distri-
utions of change types across our dataset, in each of the systems,
nd regarding their (co-)evolution (see Fig. 7 for visualizations we
sed). Based on this analysis, we obtained a deeper understanding
f the microservice evolution in our subject systems, which we
sed to observe trends. Each of these trends represents observa-
ions we made multiple times in our dataset. For instance, some
icroservices evolve almost always independently, while others
lmost exclusively co-evolve.
In a second step, we aimed to understand the causes for

he recurring observations. For instance, we found that most
co-)evolution in our subject systems has been caused by tech-
ical changes. To focus on actual microservice evolution (i.e., the
usiness logic of the systems), we extended our analysis and fo-
used only on this type of change. For this purpose, we re-visited
ach system’s documentation (e.g., wiki pages, pull-requests,
iscussions, and readme) and architecture (e.g., reverse engi-
eered class diagrams, models in the documentation) to identify
icroservices defined by the developers using an open-coding-

ike process (i.e., we collected services the developers explicitly
amed in the documentation and causes for each service change,
uch as performance issues or bugs, reported in commit mes-
ages or other documentation). Then, we assigned each service
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Fig. 2. Labels assigned to the atomic changes of S03, highlighting for the type of change (technical, service, miscellaneous). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
hange to its corresponding microservice by mapping the identi-
ied names to pull requests, commit messages, code comments,
r the actual source code and by considering whether the evolved
ode or files belong to a specific service. Using this mapping,
e created UpSet plots (Lex et al., 2014) to visualize the co-
volution of the microservices (cf. Fig. 9 for an example). Based
n the documentation, our plots, and the source code, we refined
ur previous observations. In particular, we discussed the manu-
lly elicited causes for service changes we identified during our
nalysis to understand why the recurring observations occur.

. Findings & discussion

In this section, we describe our observations on microservice
volution and aggregate them into findings (Fi). We then dis-
uss possible causes for these findings based on the insights we
btained while analyzing the evolution histories of the systems
anually. Building on the first step of our case analysis (cf.
ection 2.5), we focus on the quantitative analysis of our data,
iming to understand coarse-grained evolution trends (e.g., what
ype of changes are the main drivers of evolution and how they
o-evolve). Then, based on removing the technical noise and
ncorporating more of our qualitative analysis during the second
tep, we describe more fine-grained observations regarding the
volution of actual microservices. Note again that we relied on
tomic changes or commits during our analysis, depending on
he respective goals (e.g., we considered commits to investigate
he tangling of service atomic changes). For simplicity, we use
uples to express a certain combination of atomic changes, for
nstance, <t,s,_> refers to technical (t) and service (s) changes
(e.g., when comparing them or investigating their tangling in
commits) and excludes (_) miscellaneous (m) changes.

3.1. Coarse-grained evolution

To obtain a first understanding of how microservice-based
systems evolve, we consider individual (i.e., each system individ-

ually) and global (i.e., across all systems) evolution trends in our

6

Table 2
Coarse-grained evolution trends of atomic changes.
System t s m Trend

S01 41.74% 37.59% 20,67% –
S02 14.09% 84.73% 1.19% s
S03 32.25% 18.41% 49.34% m
S05 58.50% 41.27% 0.23% t
S06 55.74% 38.93% 5.33% t
S07 48.17% 31.73% 20.10% t
S08 76.75% 20.81% 2.44% t
S09 63.42% 23.70% 12.87% t
S10 40.27% 23.15% 36.58% –
S11 57.58% 7.66% 34.76% t
S12 51.60% 31.65% 16.76% t

t: technical, s: service, m: miscellaneous.

11 subject systems. In detail, we observe these trends in terms of
what the primary type of changes is in each subject system. For
this analysis, we focus on the amount of atomic changes to each
system’s artifacts (e.g., modifications of configurations or libraries
represent technical atomic changes).

Observations. RQ1 At first, we compared the distributions of
labels we assigned to each atomic change within each system in
our dataset. In Table 2, we summarize for each subject system the
amount (in per cent) of each type of change: technical, service,
and miscellaneous. For each system, we defined that it is driven
by a certain evolution trend based on the type of change that
accounts for the highest amount of atomic changes. Note that
we consider a system to follow a certain trend only if the pre-
dominant type of change occurs at least 15% more often than the
next type of change (typically, it is much more, e.g., 61.35% for
S08). These 15% serve as a sanity check to discard small majorities
(e.g., 4.15% for S01) and increase our confidence in the trend,
since we cannot conduct a statistical test for this purpose. Out
of the 11 systems, and despite the claim of microservices being
‘‘business-oriented’’ (i.e., they should be primary concerns of evo-
lution), we only observed a single service-driven evolution trend
(S02). In contrast, we can see seven technical-driven (S05, S06,
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Fig. 3. Labels assigned to the atomic changes of S01, highlighting for the type of change (technical, service, miscellaneous). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
07, S08, S09, S11, S12) and one miscellaneous-driven evolution
rends (S03). Two of the systems do not exhibit a certain trend
S01, S10), since the difference between at least two types of
hanges is less than 5% in both (i.e., <t,s,_> and <t,_,m>,
espectively).

In Fig. 2, we display a bar chart with the amount of atomic
hanges in S03 together with their more fine-grained expressions.
e can see that miscellaneous changes are predominant, primar-

ly driven by changes to the web user interface (WEB_UI). For
this case, we considered the user interface to represent miscella-
neous changes, since it has been implemented as an independent
application instead of a reusable microservice, and thus it is
system-specific. The evolution of this user interface contributes to
around 46% of the changes in the system (3,963 atomic changes).

For two systems, namely S01 (cf. Fig. 3) and S10 (cf. Fig. 4),
we found no type of change that clearly outperforms the other
two. Regarding S01, we can see a tie between technical and
service atomic changes, while for S10 the tie is between technical
and miscellaneous atomic changes. Note that both ties involve
the technical type of change. In the same direction, technical
atomic changes are predominant in seven systems and occur
more often than service atomic changes in all but one system
(S02). As we can see in Fig. 3, technical atomic changes include
building (BUILD), deploying (DEPL), configuring (CONFIG), and
testing (TESTS) a system, as well as setting up its environment
(ENG, LIBS). Interestingly, our more detailed analysis revealed
that even S02 with 16 microservices may not be as dominantly
service-driven as it seems. In fact, many of the service atomic
changes represent refactorings, because S02 seems to have been
involved in a large re-engineering.

In Fig. 5, we display box-plots to compare between the three
types of changes across all of our subject systems. We can see
that, on average, more than half of all atomic changes in our
dataset represent technical changes. Changes to the actual busi-
ness logic (i.e., microservices) or system specifics (i.e., miscella-
neous) each occur in less than 25% of the atomic changes. More-
over, we can see that miscellaneous changes vary the most, while
service changes are comparably constant across the systems (with
S02 being a drastic outlier).
7

Fig. 4. Labels assigned to the atomic changes of S10, highlighting for the type of
change (technical, service, miscellaneous). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Out of the 11 systems, only one exhibits a service-driven
evolution trend, while technical atomic changes represent the
majority of evolution across all systems.

F1: Evolution is Rarely Service-Driven

Discussion. RQ2 The fact that technical atomic changes are
predominant in the life-cycle of our subject systems (seven out of
11 trends) is caused by the distributed and heterogeneous nature
of microservice-based systems (Soldani et al., 2018; Dragoni et al.,
2017). For this reason, microservice-based systems involve many
technical components, for instance, to support communication
(e.g., commits with a focus on implementing or changing prox-
ies), deployment (e.g., atomic changes in Docker files), or to
improve a system’s security (e.g., changes related to authentica-
tion and cryptography mechanisms). In the seven systems driven
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Fig. 5. Distribution of atomic changes across all systems.

y technical changes, a common trend is that a large amount of
hanges is related to deployment (e.g., Dockerfiles, deployment
cripts) and configuration (e.g., properties or JSON file containing
onfiguration options for service registry, database, or external
roviders). For instance, this represents up to 40% of all the
hanges involved in S11. Two outlier projects (S07, S12) exhibit
significant amount of changes in their build system (a mix of
akefiles and Maven configurations), which we can explain due

o these systems relying on external dependencies for concerns,
uch as load-balancing, API gateway exposition, and circuit break-
ng. A tremendous effort is spent in these projects to keep up
o date with the release cycle of such external libraries. Interest-
ngly, none of these two projects is using automatic tooling like
ependabot10 to keep track of such dependencies.
Other systems that exhibit miscellaneous-driven trends (e.g.,

03) differ from this trend, due to their mono-repository culture
hat integrates microservices with other applications (i.e., web
ser interface). Consequently, the version history is unbalanced
owards miscellaneous changes. S01 is particularly interesting to
bserve, since its technical dependency heavily relies on mod-
fying the build configuration as well as its environment. This
ystem does not exhibit a technical trend, because it is ‘‘polluted’’
y the inclusion of the web user interface in the system. It is
nteresting to notice that the objective of the developers of S01
o develop a reference infrastructure that is highly configurable
or research purpose is reflected in its change history.

Summary. It is most interesting that our observations con-
tradict the proclaimed service-driven development and evolu-
tion of microservice-based systems. Instead, the evolution of our
microservice-based systems is primarily technical-driven RQ1.
his implies that developers’ efforts are not focused on devel-
ping the actual microservices, but go primarily into technical
hanges. Since such technical changes are often related to updates
n underlying technologies RQ2, further automation to propagate
nd manage updates (e.g., to avoid breaking API changes) would
e helpful. In fact, the many technical changes we identified even
or such smaller systems indicate that the technologies used for
ombining heterogeneous microservice architectures are not yet
ature enough for maintaining microservices and require further

esearch as well as developer support. Then, developers could pay
ess attention to technical changes and instead could focus on
eveloping the actual microservices.

.2. Coarse-grained co-evolution

In the previous section, we considered atomic changes to
nveil fundamental evolution trends. Next, we focus on commits

10 https://github.com/dependabot
8

and the types of atomic changes they comprise to understand the
co-evolution of change types. To this end, we distinguish sets of
commits based on the tuples of our change types. For instance, a
commit classified as <_,s,m> is a commit that contains atomic
changes related to the service and the miscellaneous type. Note
that we classified a few commits as comprising none of the three
types of changes (<_,_,_>), for instance, merges, initial commits,
or other version-control specifics that are not relevant for our
study.

Observations. RQ1 We display the different tuples of types
of changes and the ratios with which they occur across our
subject systems in Fig. 6. Again, we can see that most evolu-
tion relates to technical changes, and commits with only tech-
nical atomic changes (<t,_,_>) are predominant; representing
more than half of all commits. All other tuples (except for the
empty one) are more similar, contributing to roughly between
2% and 15% of the commits on average. We can also see that
service atomic changes are more often part of commits with
multiple change types (<t,s,_>, <_,s,m>, <t,s,m>) than an
independent commit (<_,s,_>).

Reinforcing F1, commits containing only technical atomic
changes occur far more often than all other possible combi-
nations. For some systems, up to 70% of the commits only
involve purely technical atomic changes, which do not modify
any microservices.

F2: Technical Burden Drives Evolution

Discussion. RQ2 The overwhelming amount of technical-only
ommits is surprising in the context of microservice architectures,
n which business-oriented development is promoted. This en-
orces F1, showing that even if technical changes are an important
art of the architectural history, they are primarily contributed
tandalone. For example, we can study commit 58141511 from
01. This commit is a good example of a technical set of atomic
hanges, specifically adding new libraries, modifying the config-
ration files to refer to the new libraries, and updating the build
rtifact with the new information—while, at the same time, mak-
ng a very small modification to a servlet involved in a business
ervice to change how the business logic handles a parameter. In
he same system, commit bc1f66a12 represents service-driven
volution for the persistence, authentication, and web interface
hat has to include a technical dimension by modifying a con-
iguration file named aop.xml to support the evolution of the
ersistence service. From a broader point of view, we can ex-
lain this discrepancy with the interleaving of technical concerns
nside a system, where modifying one artifact (e.g., container
etworking) can impact others (e.g., distributed logging). Conse-
uently, any change in a system often causes additional technical
hanges to handle the diversity of existing artifacts (e.g., to up-
ate dependencies, interactions, or interfaces between them).
y investigating the version-control history, we found that this
s due to developers apparently not distinguishing the types of
hanges. Thus, even though microservices are often advocated to
e business-oriented, their evolution is heavily entangled with
ther concerns; preventing developers to focus on the actual
usiness concerns. Similar results have been found in related
tudies, which indicate that despite their benefits, microservices
ead to huge technical complexity (Wang et al., 2021; Bogner
t al., 2021).

11 https://github.com/DescartesResearch/TeaStore/commit/
581415134b2e76f12153751fcda02ade8c4dd451
12 https://github.com/DescartesResearch/TeaStore/commit/
bc1f66a0002f1d6027456cadfdb3e07888680044

https://github.com/dependabot
https://github.com/DescartesResearch/TeaStore/commit/581415134b2e76f12153751fcda02ade8c4dd451
https://github.com/DescartesResearch/TeaStore/commit/581415134b2e76f12153751fcda02ade8c4dd451
https://github.com/DescartesResearch/TeaStore/commit/bc1f66a0002f1d6027456cadfdb3e07888680044
https://github.com/DescartesResearch/TeaStore/commit/bc1f66a0002f1d6027456cadfdb3e07888680044
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Fig. 6. Tuples of (co-)evolution at commit level.

Summary. Our observations contradict the advocated business
orientation that microservice-based systems would allow for.
In contrast, we found that the evolution of microservice-based
systems is heavily driven by technical(-only) changes RQ1. As
a result, developers seem to be almost always concerned with
technicalities of their systems, which asks for better tool support
to help them focus on the actual microservices. As the primary
cause for this issue, we identified the heavy tangling of technical
concerns with all other concerns of a microservice-based system,
which seems to stem form a conflict between aiming for inde-
pendent – yet interacting, diverse, and depending – microservices
that can build on various technologies RQ2.

3.3. Coarse-grained evolution over time

Until now, we investigated the total amounts of changes oc-
curring in our subject systems. However, we did not yet analyze
whether the identified trends and observations change over time
(i.e., in a system’s life-cycle). For this purpose, we now study to
what extent each type of atomic changes occurs during each sys-
tem’s evolution. We present a corresponding overview in Fig. 7,
showing the ratios of changes over the period of time covered
by our analysis. Please note that these plots do not represent the
total amount of changes in a period, but only their distribution
(i.e., at different points in time the 100% may represent 10 or 100
commits). Similarly, we remark that S12 seems to be completely
stable for a long period, but this is caused by a single commit to
a branch roughly one year after the last previous commit.

Observation. RQ1 We can observe two primary trends in Fig. 7.
First, for most systems, service atomic changes occur more fre-
quently in earlier phases of their life-cycle (i.e., S01, S03, S06, S07,
S08, and S10). In some systems, service atomic changes even con-
stitute the main type of changes at this point in time. This softens
our previous observations that evolution is not driven by business
concerns. Instead, the business logic seems to drive the initial
development of most systems. A prime example for the evolution
shift over time is S06 (cf. Fig. 7(e)). Early on, service atomic
change contribute to roughly 45% of all changes, with a decline
through the middle of the life-cycle, until all atomic changes be-
come purely technical. In between, miscellaneous atomic changes
occur.

Second, the other systems (i.e., S02, S05, S09, S11, and S12)
show a more stable distribution of the types of changes over
their whole life-cycle—with some exhibiting interesting outliers
(e.g., S11). For instance, we can see for S09 (cf. Fig. 7(h)) that
the amount of service atomic changes starts small, expands, col-
lapses, and expands again. Consequently, there is quite some
variation in the extent of service evolution throughout the sys-
tem’s life-cycle. Interestingly, S11 (cf. Fig. 7(j)) starts with almost
9

no service atomic changes, which only occur in the second half
of the system’s life-cycle before completely diminishing again.
These observations could be explained with developers starting
by setting up the technical environment before implementing
the actual microservices and typical differences in a system’s
life-cycle.

We can observe two different trends of evolution: (i) a ‘‘de-
creasing’’ amount of service changes over a system’s life-cycle,
and (ii) an almost ‘‘stable’’ distribution of all change types across
a system’s life-cycle.

F3: Evolution Changes Over Time

Discussion. RQ2 Typically, microservices are advocated as
a concept to align business logic and system implementation.
Hence, we expected that the business logic would play an impor-
tant role in the development and evolution of microservice-based
systems. Based on our detailed analysis, the more ‘‘stable’’ trend
is sometimes close to this expectation: The developers find a
routine in terms of development, working in increments that
add business logic and update the underlying technology to
support the incremental advancement. Abstracting our previous
observations that most changes are related to technical concerns,
this evolution trend is similar to the advocated assumption and
indicates a constant activity in developing business logic.

On the contrary, and predominant in our subject systems,
the ‘‘decrease’’ trend does not align to the expectation, since
service changes constitute less and less of a system’s evolution.
Instead, the systems are primarily maintained and updated on
a technical level, which may be a bias of observing some open-
source systems that serve as reference architectures. In such
cases, the initial effort may go into developing the showcase and
reference architecture, until only dependencies and libraries are
updated. That S02 (cf. Fig. 7(b)) as a real-world product exhibits
the ‘‘stable’’ evolution trend would support this assumption, but
the data again seems skewed due to the large re-engineering in
this system. It is interesting future work to explore which of these
evolution trends characterizes what type of microservice-based
system (e.g., showcase versus real product), whether the trends
depend only on user requests (e.g., the reference architectures
may be forked and evolved independently by users), or imply a
certain workflow implemented by the developers.

Summary. The novel observations in this section somewhat
soften the previous observations we obtained, indicating that
there are two recurring evolution trends: a ‘‘decrease’’ in service
atomic changes and a ‘‘stable’’ distribution of all types of changes
RQ1. It is unclear which of these trends is valuable or represen-
tative for what types of systems. Building on our understanding
of the systems, we speculate that these trends depend on the
purpose of and interest in a system RQ2, but to what extent this
is the case and what best practices may be relevant in each trend
is an opportunity for future research.

3.4. Microservice co-evolution

To focus on the co-evolution of microservices themselves, we
next analyzed the subset of atomic changes that are related to
the business logic of a system. For this purpose, we filtered all
atomic changes to only involve those labeled as service. Then, we
considered two (or more) microservices as co-evolving if atomic
changes to both were part of the same commit. Visualizing the
resulting co-evolution sets of a complete evolution history using
Venn diagrams would be incomprehensible, due to the large
number of intersections. So, we relied on the more structured
alternative representation of UpSet plots (Lex et al., 2014) used
in biology research to study genomics.
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As an example, consider the UpSet plot in Fig. 8. Each line
epresents one microservice, with the total number of commits
nvolving that microservice on the left. For instance, the line
heckout indicates that 48 commits involved atomic changes

to that microservice. Each column represents a subset of that
service set, highlighting the intersection between microservices
(i.e., atomic changes to these microservices occur in the same
commits) as well as how often these occur. For instance, the first
column displays that the microservice cart occurs 28 times on
ts own in a commit without any other microservice. In con-
rast, the last column shows that one commit involved atomic
hanges to seven (out of 11) different microservices (i.e., a ‘‘shot-
un surgery’’ commit).
Observations. RQ1 Investigating the UpSet plots for all sys-

ems, we identified two classes of systems:

1. those in which microservices evolve primarily indepen-
dently from each other, and
10
2. those in which microservices primarily co-evolve.

e display examples for these two classes in Fig. 8 and Fig. 9,
espectively. A common point we observed for all systems is
hat the co-evolution plots have a long-tailed distribution: What-
ver the actual co-evolution pattern, commits with co-evolving
ervices occur always—even if not frequent.
On the left side of the distributions, we can observe whether

ome microservices co-evolve frequently. For example, S05 (see
ig. 8) has a subset of three regularly (13 commits) co-evolving
icroservices: shipping, product_catalog, and checkout.
oreover, these microservices are involved in much more co-
volution with the other microservices, too. Overall, they evolve
ess often independently than in combination with other
icroservices—namely, shipping alone occurs only in eight

commits, which are fewer commits than the three-service sub-
set we exemplified alone. Additionally, email has never been
evolved independently. Finally, we can see that the core mi-
croservices of S05 (checkout, shipping, product_catalog,
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ecommendation, cart) evolve the most. Since these represent
typical functionalities of a web-shop, this observation supports
the idea that microservices reflect the business logic of a system
if we remove technical and miscellaneous changes.

In Fig. 9, we display S06, in which microservices are evolved
much more independently. We can see that seven out of eight
microservices evolve primarily alone, contributing to the ma-
jority of commits (113 of 139). Still, delivery (last line) is
not only the microservice with the most independent evolution
(42 commits), but also the one with the most co-evolution (23
commits). It is only missing from two co-evolution commits for
the whole history of S06, and it co-evolves with every other mi-
croservice. Nonetheless, the evolution in this system is primarily
independent, particularly compared to other systems (e.g., S05).

Even when focusing only on business logic, microservices do
rarely evolve in isolation.

F4: Microservice Co-Evolution is the Norm
11
Discussion. RQ2 Microservices emphasize the idea of loose
oupling and lightweight interfaces. Some books dedicate entire
hapters to such concerns (Newman, 2015), but based on our
tudy results, we doubt that the envisioned independence of mi-
roservices can be achieved in real-world systems. For instance,
onsider the service delivery from S06 (cf. Fig. 9). During our
etailed analysis, we found that this is a fundamental microser-
ice for the system (an e-shop)—but even though the developers
imed to evolve it independently (42 commits), it also co-evolves
ith all other microservices. We found that refactorings to shared
PIs are a primary cause for this situation. Arguably, such co-
volution patterns will occur even more frequently if we consider
ystems with many more microservices.
An interesting situation occurs when a new feature is in-

roduced into a system, resulting in changes to multiple mi-
roservices to support the feature. For example, commit d08a58
f S05 introduces a reliable process for ordering. Thereby, it
equires changes to product catalog, shipping, and check-

out. According to the design philosophy of microservices, such

https://github.com/GoogleCloudPlatform/microservices-demo/commit/d08a58cc21bfca0fac95890df35af847f88daae2
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ross-cutting features should not exist in microservices. Instead,
hey should be designed within one or as a new, individual
icroservice. However, in S05, there is no microservice dedicated

o ordering goods from the e-shop, which is why changes to
ultiple microservices are needed. While it may seem counter-

ntuitive that this microservice does not exist in an e-shop, we
ound that it can be easily explained by the way microservice APIs
re used. Introducing a microservice for ordering would cause a
entral bottleneck, which would hamper the scalability and lead
o static coupling between microservices through API calls. Thus,
he developers decided to introduce the cross-cutting feature
nstead of creating a new microservice—resulting in co-evolution
nd hidden (but implicit) coupling.
Summary. We observed that even in such systems in which

microservices are evolved somewhat independently, co-evolution
occurs RQ1. There are differences in the degree of co-evolution,
but it seems an emergent problem how to manage or resolve
the co-evolution between subsets of microservices (e.g., ‘‘shot-
gun surgery’’ commits). Inspecting the causes, we found that
intentional design decisions about a system’s architecture can
cause co-evolution, for instance, when introducing cross-cutting
features RQ2. Reflecting on all of our observations, we argue that
the independence of microservices is challenging to achieve in
practice, and we require tool support to facilitate developers’
tasks.

4. Threats to validity

In the following, we present the internal and external threats
to validity that may bias our findings.

Internal Validity. Since we performed a large-scale analysis
(i.e., 99,804 atomic changes by hundreds of developers), it was
not possible to involve the original developers to validate the
labeling. So, there may be wrongly labeled changes in our dataset,
for instance, because we are missing specific domain knowledge.
We aimed to mitigate this threat by cross-checking our labels and
using regular expressions, also ensuring that they were compara-
ble between the systems. Moreover, the large number of changes
we analyzed means that our results are less error-prone to such
faults.

We considered commits and the involved files to represent
a system’s (co-)evolution. As we found when aiming to label
and analyze the systems (cf. Section 2.2), this does prevent us
from analyzing certain projects, for instance, those employing a
multi-repository philosophy. Moreover, developers may misuse
commits and commit policies can vary between projects in a
way that is not immediately explicit when analyzing open-source
projects. Both issues threaten our results, since we could not
consider all commits and cannot be absolutely sure that they are
all reliable. Still, studying software evolution based on commits
is an established research method, and this threat is mitigated
by the fact that we considered systems that should have legit
version-control histories (e.g., by Microsoft and Google). The data
for such systems is similar to the remaining ones, increasing our
confidence in our results. By analyzing 11 systems from the state-
of-practice, extracted from a curated list of projects known for
their intrinsic quality, we believe that we mitigated this threat as
good as we can.

External Validity. The main threat to the validity of our study
is whether the initial corpus of systems we analyzed is represen-
tative. We mitigated this risk by starting from a curated list of
55 systems and using a rigorous selection process to select 11
feasible ones. As a result, we cover a diverse set of microservice-
based systems, including authority and productive systems. Still,
we considered only open-source systems (due to availability)
with a smaller number of microservices and primarily reference
12
architectures. So, our results may not be fully transferable into
practice—but parts of our results align to experience reports and
related research (cf. Section 5), which increases our confidence.

Like any empirical study relying on repository mining, our
study relies on commits as atomic units for version control, which
are the only source of information available at large scale. The im-
mediate threat is that the commit history is not immutable, and
thus follows the Napoleon principle: ‘‘History is a set of lies agreed
upon.’’ In our case, such lies can be squash operations (which
quash commits into a single one) or git commands employed
ith a --force argument. There is no way to identify such cases,
ince the history only contains the resulting commit graph and
ot the way it was build. We mitigated this risk by looking at
i) the way developers were integrating merge requests in the
ain project and (ii) the commit frequency in each system’s main

epository. Based on this information, we believe that the history
f the 11 projects are viable for our study, since they exhibit
egular commit frequency and no signs for squashing policies.

Finally, we focused on single-repository systems only, because
dentifying co-evolution of changes requires that the changes
re committed at the same time. This leads to a validity threat,
ince we did not consider multi-repository projects. Still, it is
ot possible to investigate such projects using our methodology.
hat being said, we did not define multi-repository projects as an
xclusion criterion, and we only had one multi-repository project
n our 13 candidates. So, we argue that the exclusion of (one)
ulti-repository systems does not threaten our results.

. Related work

Microservice principles advocate for an evolutionary design,
ince they are supposed to be independent and autonomous
Lewis and Fowler, 2014; Balalaie et al., 2018). However, sim-
lar to any architectural style, the concrete implementation of
icroservices can be of arbitrary quality (Bogner et al., 2021).
hat is, the design of microservices is a fundamental aspect of
heir evolvability (Haselbock et al., 2018). For example, wrongly
efining microservice boundaries and responsibilities can cause
ifferent anti-patterns (Martin, 2002; Taibi et al., 2020), such as
he ones we discussed. Despite this, very few research has focused
n the evolution, maintenance, or technical debt of microser-
ice (Bogner et al., 2021). This reinforces the need for studies like
he one we have presented in this article.

Esparrachiari et al. (2018) discuss dependency management
s a crucial activity for microservice-based systems. In contrast
o our study, the authors focus on dependencies to third-party
oftware and services. Similarly, Neri et al. (2019) conducted a
ulti-vocal review on design principles, architectural smells, and

efactorings for microservices. Again, the authors are concerned
ith dependencies, but only in the context of multiple microser-
ices in one container contradicting advocated design principles.
ur study complements such works with a focus on dependencies
mong the microservices within the same system. In a recent
tudy Taibi et al. (2020), present a taxonomy of 20 microser-
ice anti-patterns based on an extensive mixed-methods study
nvolving an industry survey, a literature review, and interviews.
our of those anti-patterns are related to dependencies, namely
i) cyclic dependencies due to cyclic chain calls, (ii) miss-scoped
icroservices, (iii) shared libraries, and (iv) shared persistence.
e observed and discussed similar problems in our study, com-
lementing such research with empirical evidence. Lastly, Bogner
t al. (2017, 2019, 2021) conducted different empirical studies
o understand the maintenance and evolution of microserivces.
or instance, the authors performed a gray literature review
nd interviews with practitioners to identify challenges in as-
uring the evolvability of microservices. Their research highlights
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he need for providing specialized techniques, tools, and metrics
o developers to manage microservices and their dependencies.
owever, Bogner et al. have not investigated the actual evolution
f microservices, which is a gap our study fills—emphasizing
imilar problems, but with more in-depth insights into how and
hy real microservice-based systems evolve.
A recent literature survey (Tran et al., 2020) summarizes the

iverse research that has been conducted on the (co-)evolution
n service-oriented architectures in general. The authors find that
arious types of changes have been defined (e.g., deep versus
hallow), and that tool support is required to help developers
eeping services compatible. Similarly, we argue that developers
equire further tool support to facilitate the technical evolu-
ion of microservice-based systems and allow them to focus on
co-)evolving the actual microservices. Moreover, Tran et al. dis-
uss how the literature they surveyed relates to microservices,
ndicating that managing co-evolution of microservices is likely
hallenging developers even more due to the heterogeneous na-
ure and complexity of such systems. Our article provides empir-
cal data that underpins this hypothesis, and thus highlights the
eed for further investigating (co-)evolution and its management
n microservice-based systems—which exhibit different proper-
ies than other service-oriented architectures (e.g., loose coupling
f small services).

. Conclusion

As a consequence of large organizations (e.g., Netflix and Uber)
dopting them, microservices have gained a lot of attention in
oth industry and research in recent years. In the literature, we
an find many pieces of work that provide recommendations on
ow to design microservice-based systems from scratch, however
he (co-)evolution of microservices has rarely been discussed.
lso, there is a lack of evidence whether the intended indepen-
ence of microservices, which is proclaimed by existing design
ecommendations, can actually be achieved in practice. To fill
hese gaps, we reported a large-scale empirical study on the (co-
evolution of microservices in 11 open-source systems, covering
history of 7,319 commits. Based on our analysis, we presented
nd discussed four key findings:

F1 Technical changes drive the evolution of microservices
more than the actual business logic.

F2 Even when changes are related to business logic, they are
mostly intertwined with technical changes.

F3 The evolution of microservice-based systems can vary heav-
ily over time, and it is unclear which trends represent best
practices.

F4 Even when focusing on business logic alone, isolated mi-
croservices are an illusion.

ur insights can guide practitioners when evolving their mi-
roservices and researchers in designing new techniques for man-
ging microservice evolution.
By deriving these findings through our study, we learned

wo key lessons. First, while business logic is essential when
efining microservice, the business logic’s role fades over time
nd is often subsumed by technicalities to keep up with the
ace of software dependencies and technological updates. The
osts of such technical maintenance must be investigated in an
ndustrial context rather than an open-source one. Second, the
o-evolution of microservices is something that is not taken into
ccount by classical architecture smells for microservices. This
s an important problem in terms of the architectural designs,
ince microservices are supposed to be independent by design.
e believe that further studying what types of smells exist in
icroservice-based systems (e.g., disposable co-evolution) and
13
how to identify them as soon as possible by leveraging version
histories is an urgent research direction to support software
developers.

As future work, we plan to validate our findings with practi-
tioners by replicating our study in industry and conducting other
confirmatory studies (e.g., surveys). Furthermore, there is a need
for tool support to identify and monitor undesired co-evolution of
microservices, and to improve the independence of microservices
(e.g., using specialized refactorings). Finally, we need to under-
stand what impact certain microservice smells exhibit in practice
to identify what problems they can cause.
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