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Abstract—Forking is a common practice in open-source and
industrial software development, leading to the emergence of
complex fork ecosystems. Understanding the evolution and
relationships within such ecosystems is crucial for developers and
project managers to ensure that useful changes are merged back
into the original project or synchronized between forks. However,
understanding complex fork ecosystems with up to tens of
thousands of forks in different states (e.g., abandoned, co-evolving)
is challenging, with visualizations being a means to address this
challenge. In this paper, we investigate six visualizations designed
to provide key insights into the dynamics of fork ecosystems. We
started our work by analyzing GitHub community feedback on
the official Network Graph visualization for fork ecosystems and
categorized the fork-related tasks mentioned by developers in
237 comments. Then, we designed our visualization prototype
VisFork, which contains six different visualizations that serve
the three most frequently mentioned tasks. These visualizations
allow users to explore temporal patterns, commit classifications,
and collaboration dynamics across a fork ecosystem. Through
a user study involving 10 GitHub community participants and
seven students, we evaluated the usefulness of the visualizations.
The results demonstrate the potential of VisFork to provide
valuable insights into fork ecosystems, with positive feedback on
the visualizations, but also suggestions for further improvements.
Our work contributes to the development of user-centered tools
that help to understand the intricacies of fork-based development
and promote collaborative software-development practices.

Index Terms—Fork Ecosystems, Software Repositories, Visual-
izations, Variant-Rich Systems, Software Evolution

I. INTRODUCTION

Forking is the process of creating a copy of a repository and
using that copy to implement independent changes without
affecting the original repository; and without the need for
permission from the owner of that repository [8], [10]. Fork-
based development has become a primary means for extending
and evolving a system or for developing a variant of that system
in open-source communities as well as industry [15], [16], [18],
[21], [35], [42]. Due to the independence of forks, developers
can work in parallel on a project and maintain their own system
variants. So, forking enables collaboration within a team as well
as contributions from outside the team [12], [37]. Specifically, a
forked repository has its own history and any changes made in
the fork do not affect the original repository. Still, the fork de-
velopers can submit their changes back to the original repository
through a pull request, which allows the maintainers of the orig-

Fig. 1. An example for a Network Graph on GitHub.
https://github.com/wockid/Adafruit_Python_DHT/network

inal repository to review the changes and merge them into their
project [11], [12]. Note that branching allows to create copies of
a system within a repository, while forking creates a logically in-
dependent project that may never be merged back into its parent.

Despite the benefits, it is challenging to track the decen-
tralized development in forks, and the difficulty grows as the
number of forks increases [16], [18], [21], [29], [35], [39].
A larger number of forks (e.g., 49,400 for the Linux Kernel,
18,500 for the Marlin 3D printer firmware) results in a fork
ecosystem, a special type of a variant-rich system [17], [34],
and can cause severe problems. For instance, development and
testing efforts may be redundant, contributions get overlooked,
or it becomes impossible to fully understand the whole
ecosystem [5], [12], [29], [41], [42]. Visualizations are one
means to obtain a representation of the relationships between
forks, making it easier to analyze fork ecosystems and mitigate
the aforementioned problems.

The simplest way to visualize the history of one repository
is to display its evolution graph. For instance, developers can
use the command-line tool git log, which shows a list of
all commits made to the repository along with information
about the author, date, and commit message. Unfortunately, it
displays information in plain text—making it difficult to use
for repositories with many commits—and does not consider
forks. Thus, more advanced visualizations have been proposed
to provide a more comprehensive and user-friendly view of a
repository’s history and its potential fork ecosystem.

The most prominent of such visualizations may be GitHub’s
Network Graph,1 which shows the fork ecosystem of a
repository ordered by commits (bullets). As we display in

1https://docs.github.com/en/repositories/viewing-activity-and-data-for-
your-repository/understanding-connections-between-repositories
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Fig. 1, a Network Graph visualizes how a fork ecosystem
evolves along a timeline (top axis), when a fork is created
(outgoing arrows with new color), and when forks are merged
back into another (incoming arrows)—thereby indicating how
active a fork is. While the Network Graph has been acknowl-
edged for its basic visualizations, the GitHub community has
extensively discussed its limitations,2 emphasizing the need for
visualizations that allow for more in-depth insights into fork
ecosystems. Among the 237 replies (until February 14, 2023),
90 % of the discussants indicate that they use the Network
Graph at least once a day. The major usages (we provide a
more detailed analysis in Sec. IV-A) include

1) exploring fork histories and relations,
2) discovering the activity status of forks, and
3) identifying work in forks.

Using the Network Graph, developers can start discussions with
collaborators and make decisions about their projects. However,
they also note various limitations of the current visualization:

1) it shows only forks that are directly connected to the main
repository and not forks of forks;

2) it can be difficult to understand the relationships between
different forks and branches, especially if they have
complex naming conventions;

3) it does not allow users to filter or search for specific forks,
and thus is difficult to navigate; and

4) it does not show the differences between forks that are
actively maintained and those that are stale or abandoned.

Other concerns noted are related less to the actual visualization,
but more to performance improvements or minor features.

The active discussion and extensive feedback by the GitHub
community clearly indicate the practical need for improving
visualizations for fork ecosystems. In this paper, we advance
in this direction by implementing and comparing different
visualizations for tackling the above limitations. Specifically,
we have implemented a prototype, VisFork, with six different
visualizations that provide an overview of a fork ecosystem,
display deviations, visualize its evolution, and deliver insights
into the development within forks. We evaluated the feasibility
of our visualizations through a user study with 10 practitioners
who participated in the GitHub discussion and with seven
students. Our results indicate that the visualizations are helpful
for software developers, even though they also indicate potential
improvements for future work.

In more detail, we contribute the following in this paper:
• We present six visualizations for fork ecosystems that can

help developers facilitate their work.
• We describe and discuss the results of our user study,

providing insights into the feasibility of the visualizations.
• We publish our prototypical implementation VisFork in

an open-access repository for others to reuse.3

Overall, we contribute insights into how different visualizations
can help developers analyze fork ecosystems. We also highlight
potential research directions that can build on our contributions.

2https://github.com/orgs/community/discussions/40469
3https://zenodo.org/doi/10.5281/zenodo.10462693

II. RELATED WORK

Researchers have extensively studied fork ecosystems and
their evolution, covering various issues, such as redundant
development, fork integration, or feature identification [5], [8],
[10]–[12], [14], [16]–[18], [20], [21], [29], [31], [33]–[35],
[37], [39], [40], [42]. These works highlight the complexity
of fork ecosystems and motivate the need for corresponding
visualizations. Moreover, three existing literature reviews
provide overviews on visualizations for variant-rich systems [3],
[25], [27], with fork ecosystems representing a special type of
such systems. Based on these reviews and our knowledge, we
next summarize the closest works connected to our own.

A common way to visualize the changes in a fork is to
structure commits in the order in which they occur (e.g., as in
the GitHub Network Graph). Unfortunately, commits may have
unreliable descriptions and can contain large or independent
changes [1]. So, a graph of commits may not be very expressive
about the types and numbers of changes that occurred within
a fork. Aiming to tackle such problems, Ren et al. [30] have
proposed a web-based solution to visualize forks in a table.
They use natural language processing to extract keywords from
source code, comments, and commit messages. Then, a user
can search related forks of a GitHub repository, tag the forks
with labels, and get a simple overview based on the assigned
keywords. Such a visualization is useful for developers to
investigate whether a certain feature has been implemented to
avoid duplicated work or to explore trends over time across
forks. Similarly, Zhou et al. [40] summarize the work that has
been done within forks in tabular form, specifically aiming to
identify what features have been implemented. Unlike other
concepts like charts or graphs, regular tables do not provide an
intuitive visualization for identifying patterns and relationships
between forks. While we have been inspired by these works,
we integrate multiple visualizations and evaluate their value via
a user study, which has not been the focus of such prior works.

Biazzini and Baudry [2] present tooling for analyzing
commit histories of fork ecosystems on GitHub. To build their
visualizations, they create an “umbrella repository” that consists
of an original repository and all its forks. Then, they compute
dispersion metrics based on commits to quantify the degree
of dispersion between the forks and the original repository.
Biazzini and Baudry visualize the forks as a Chord diagram
generated via Circos [22], which can visualize multiple pieces
of information at once within a circular layout, for instance:
The order of elements (forks) indicates the creation time of
forks, the width of these elements the number of non-unique
commits in the fork, and colors represent forks with the same
number of commits. Using a Chord diagram, it is easy to
distinguish how a project is dispersed among forks at a high
level, which Biazzini and Baudry used to derive collaboration
models. However, this visualization is loaded with information
that may overwhelm a user, it focuses on metrics but not
in-depth insights, and it has not been evaluated empirically.
We complement this previous work by investigating different
visualizations and their feasibility for actual developers.

https://github.com/orgs/community/discussions/40469
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Duszynski et al. [6], [7] have proposed set-based comparisons
of software variants and forks. In particular, they define a
technique to construct a set model that contains sets at every
level of the system’s structure, from files to folders. Then, they
apply a comparison function to determine the content similarity
of the sets, which are then visualized. For instance, a structured
tree diagram can be used to show how much content forks
share based on color intensity. Alternatively, a tree-map set
diagram can visualize how many lines of code are core, shared,
or unique in each fork. While the visualizations of Biazzini
and Baudry as well as Duszynski et al. are improvements
on widely established visualizations like Venn diagrams, their
readability still suffers when comparing a larger number of
forks. As a result, the visualizations may be unsuitable for
developers to get an overview of all forks and they do not
shed light on the actual evolution or work performed. Our
contributions are complementary and provide novel insights
into visualizations, providing empirical insights into which
ones can help developers to analyze fork ecosystems.

III. GOAL AND RESEARCH OBJECTIVES

The goal of our work is to propose visualizations that facilitate
the analysis and understanding of fork ecosystems. Our moti-
vation stems from our own work on fork ecosystems [16]–[18],
[20], [21], [29], [33]–[35], related work on fork ecosystems (cf.
Sec. II), and practitioners’ experiences (cf. Sec. IV-A). Based
on such sources, we consider visualizations for fork ecosystems
key for exploring these, be it for research or practice.

To scope our work in this paper, we have defined three
Research Objectives (ROs) based on our motivation as follows:
RO1 Identify what properties of a fork ecosystem are

important for developers to visualize.
To design helpful visualizations, it is vital to learn
what properties of a fork ecosystem are important for
developers to learn about, and thus likely for researchers
to investigate. So, our first objective was to identify
the properties of fork ecosystems we would present
with our visualizations. Building on our findings (cf.
Sec. IV-A), we started to design our visualizations—and
other researchers can use these findings in the future.

RO2 Design visualizations that help developers and re-
searchers understand the identified properties.
Our primary goal for this work was to design helpful visu-
alizations, that is visualizations that facilitate the compre-
hension of fork ecosystems. For this purpose, we designed
a set of visualizations that are feasible for the properties
identified and we implemented a prototype (cf. Sec. IV-B).
For the benefit of practitioners and researchers, we share
our prototype in an open-access repository.3

RO3 Evaluate to what extent the visualizations help
understand fork ecosystems.
Lastly, we investigated to what extent our visualizations
help understand fork ecosystems. To tackle this objective,
we performed a user study with 10 experienced GitHub
community members and seven students (cf. Sec. V),
asking them to answer different questions, rate our

visualizations, and compare them against the GitHub
Network Graph. The participants’ responses underpin the
value of our visualizations, and sketch how to improve
them in the future to facilitate fork-based development.

Addressing these objectives provides helpful visualizations for
future research and for facilitating developers’ work on forks.

IV. VISUALIZING FORK ECOSYSTEMS

Next, we report our analysis of a discussion among GitHub
community members regarding GitHub’s Network Graph.
Based on this analysis, we identified design goals for our
visualizations, aiming to tackle the prevalent limitations of the
Network Graph that the developers perceive. Then, we proceed
with the details of our visualizations. Specifically, we discuss
each visualization we adopted, reason about their selection, and
explain how they help address the limitations we identified. In
the end, we describe our prototypical implementation, VisFork,
and report on the challenges we encountered during our work,
providing insights for other researchers and developers.

A. Defining Design Goals (RO1)

As we exemplify in Fig. 1 and Sec. I, GitHub offers a
visualization for fork ecosystems, the Network Graph. This
graph displays a timeline of commits including the 100 most
recently pushed forks. GitHub has also collected feedback
from its community members regarding the use of the Network
Graph, aiming to understand how these use the graph and what
could be improved. This feedback has been collected in the
form of unstructured text in an open discussion2 in which 237
comments have been posted by GitHub users.

We took this ideal opportunity to build on an elaborate dis-
cussion of a part of our target population (developers working
on fork ecosystems) on their demands for novel visualizations
(our research goal). To analyze the comments, the first author of
this paper manually inspected each comment following an open-
coding process. Specifically, the first author read each comment
and coded what properties of a fork ecosystem the developers
explore via the Network Graph as well as what additional
properties they would like to explore. For instance, a community
member mentioned that they hoped to “Check for any fork
that is more up-to-date than the original repo.” We coded this
comment to be about discovering the best/latest fork, since it
showed the intention to identify forks that are more up-to-date.
Note that a comment could involve various tasks, which is why
the numbers in Tbl. I do not add up to 237 (100 %). Through
this process, we obtained a list of properties that developers
investigate and would like to investigate using visualizations—
both of which a new visualization should aim to address. After
the coding, the first author performed an open-card sorting
to classify the individual codes into common categories. This
process and the consequent data were continuously checked
by two other authors during multiple discussions, improving
our understanding of what features the developers ask for and
how existing visualizations should be extended.

In Tbl. I, we provide an overview of our classification.
Most of the comments relate to exploring histories and



TABLE I
CLASSIFICATION OF THE 237 GITHUB COMMENTS.

mentioned
category task

# %

explore branch activity 90 38
explore fork activity 71 30
explore task assignment 52 22
explore commit activity 38 16

explore history
and relations

explore project structure/history 28 12

discover active forks 64 27
discover best/latest fork 26 11
discover inactive forks 20 8

discover forks’
status

discover outdated forks 12 5

identify hidden work 50 21
identify improvements/bug fixes 28 12
identify features 20 8

identify work in
forks

identify diverging directions 2 1

inspect fork dependencies 3 1inspect
dependencies inspect branch dependencies 2 1

relations, while inspecting dependencies has been mentioned
the least. Particularly, the developers use the Network Graph
to explore branch activity, indicating a frequent demand for
investigating the histories and relations of branches in their
projects. Interestingly, this category as well as discovering forks’
status and identifying work in forks are not only common use
cases and demands by developers, but also studied or identified
as problems in research [5], [14], [29], [31], [35], [40]. This
underpins that the research in this direction tackles a relevant
and important problem, and visualizations are a means to
help not only practitioners but researchers as well. Particularly,
besides explore branch and fork activity, the developers are
interested in discover active forks, explore task assignments,
and identify hidden work in other forks. While there seems
to be a common need for improving visualizations for the
first three categories in Tbl. I, inspect dependencies has rarely
been mentioned, indicating that this is not a primary property
developers want to explore via the Network Graph.

Based on such insights, we defined three Use Cases (UCs)
that guided the design of our visualizations and our evaluation:
UC1 A project manager, developer, or researcher wants to

explore the ratio of active forks in an ecosystem. Ac-
cording to our data, the developers are most often
interested in exploring the histories and relations in a fork
ecosystem, particularly in exploring fork activity as the
second most commonly mentioned task (71, 30 %). This
indicates a strong interest in gaining a general overview
understanding of fork activity in an ecosystem.

UC2 A project manager, developer, or researcher wants to
discover an active fork of an abandoned repository.
Besides exploring activity within an ecosystem, the
developers also need to discover the status of a specific
fork, with discovering an active fork (64, 27 %) being
the most common task in this category and third overall.
This indicates a need for visualizations that can speed up
the identification and analysis of active forks, particularly
if these were forked from now abandoned repositories
(i.e., outdated or inactive forks).

UC3 A project manager, developer, or researcher wants to
identify a hidden feature that has not been pushed to
the original repository. When exploring fork ecosystems,
developers are often interested in identifying hidden work
within forks (50, 21 %). This demand substantiates the
need for a visualization that aids in discovering and
integrating hidden features from forks.

Note that we focused on the most commonly mentioned, but
also different, categories and tasks that relate to forks (and not
branches) to specify these use cases for our visualizations.

B. Designing the Visualizations (RO2)

To design visualizations for our use cases, we first derived
what information would be needed for a user to actually
fulfill each use case (e.g., a fork’s status for UC2). Then, we
analyzed what visualizations could be feasible to display such
information. For this purpose, we studied literature reviews on
the matter [3], [25], [27] as well as similar related work (cf.
Sec. II), and summarized what visualizations have been used
for similar information. Afterwards, we adapted, combined, and
extended these visualizations to make them fit the use cases and
the developers’ demands we identified in Sec. IV-A. Finally,
we implemented, tested, and refined our prototype VisFork. We
want to note that we chose the six visualizations we ended up
with because we considered them to provide complementary,
valuable, and helpful insights into our use cases; yet a subset
of these, or additional or different visualizations may be even
better suited for the same purposes. So, our user study (cf.
Sec. V) has the goal of contributing evidence on which of
the visualizations are helpful for developers.

In Fig. 2, we display an overview of VisFork, which is an
integrated and interactive dashboard comprising six visualiza-
tions. We implemented our prototype using D3.js,4 a framework
for creating interactive and dynamic data visualizations. Also,
we integrated VisFork with the GitHub API to retrieve data
about forks. Next, we introduce the individual visualizations,
explaining their design and why we consider them relevant.
Date Range Slider. As the first element ( 1⃝ in Fig. 2), VisFork
presents a bar chart that displays the distribution of commits
over the queried time range. This interactive chart provides a
visual representation of the number of commits (i.e., changes)
in a fork ecosystem over time, serving as a date range slider
that users can adjust to specify what time period they want
to analyze. Bar charts are an excellent visualization for this
purpose, since they can clearly represent quantitative data
across different categories—in this case, the number of commits
over time. The x-axis of the bar chart represents the timeline,
spanning from the earliest to the latest commit in the queried
fork ecosystem. On the y-axis, VisFork represents the number
of commits, with the height of each bar corresponding to the
number of commits made during a specific time period. So,
the bar chart provides an immediate sense of the ecosystem’s
activity over time, highlighting periods of intense development
and periods of relative inactivity (UC1).

4https://d3js.org

https://d3js.org


Fig. 2. Overview screenshot of VisFork for a smaller, real-world fork ecosystem (author names are anonymized): 1⃝ date range slider; 2⃝ full commit timeline;
3⃝ commit detail list; 4⃝ word cloud; 5⃝ commit classification tab; and 6⃝ collaboration network history tab.

The bar chart has a brushing feature, allowing a user
to select a time range by clicking and dragging over the
desired bars. Once a time range is selected, the chart and all
subsequent visualizations update to reflect only the data within
this range. This feature enables users to focus their analysis
on periods of particular interest, providing a more tailored
view of the repository’s development history (UC1, UC2).
Commit Timeline. Next, VisFork provides a detailed view
on the fork’s commit histories ( 2⃝ in Fig. 2). More precisely,
we offer two views: a typical full view and a merged view.
Both views are inspired by well-established representations
for software evolution (e.g., GitHub’s network graph), and we
used a similar Sugiyama-style graph drawing for the layout.
The Sugiyama style, also known as layered graph drawing,
is particularly effective in representing nodes (commits) and
edges (connections between commits, and thus forks), while
minimizing crossings and clearly delineating levels or ranks
(time progression). Each lane in the graph corresponds to a
fork over a time period without diverging behavior, and each
node represents a commit to that fork. This layout provides a
clear, chronological view of the commit history, making it easy
for users to trace the forks’ evolution over time (UC1, UC2).

In Fig. 2, we show the full view, which displays all fetched
commits. This default visualization provides the well-known
and comprehensive overview of the commit history of the forks
similar to the Network Graph and other tools. This view allows
users to explore every commit made to a fork, providing a
complete picture of the development history (UC1, UC3). To
distinguish between forks, each fork is assigned a unique color.
Such a color-coding allows users to easily trace the commit
history of each fork on the timeline.

We added the merged view, which simplifies the timeline
by visually merging commits that have not been merged or
forked from another fork. Consequently, this view shows
only the nodes representing points of divergence. This
provides a clearer picture of the evolution in a fork ecosystem,
highlighting when forks are created and merged, removing
any other information (UC2, UC3). In Fig. 3, we display
an example for this merged view, which corresponds to the
example in Fig. 2. We use two notations to distinguish nodes
in the merged view: a circular node represents a single commit,
while a square node represents multiple combined commits.

Lastly, the commit timeline has two more features. First,
it allows to quickly inspect a commit by hovering over the



Fig. 3. Example for the merged view.

respective node. An overlay box displays the metadata of the
commit, including the owner, the repository name, the branch
name, the commit ID, and the submission time. This feature
allows users to gain a peek at each commit without leaving
the visualization (UC3). In addition, when a user clicks on a
node, they are redirected to the corresponding commit page
on GitHub, so that they can access all details of the commit.
Second, a brushing feature allows a user to select specific nodes
for further analysis. By clicking and dragging over the desired
nodes, a user can select a subset of the commits. Once these
nodes are selected, detailed visualizations on these commits
are displayed in the following visualizations. This interactive
feature enables users to focus on commits of particular interest.
Commit Detail List. After the commit timeline, VisFork
presents a commit detail list in the form of a table ( 3⃝ in Fig. 2).
This table is inspired by related work [30], [40] and provides a
structured overview of the detailed, multi-dimensional commit
data of the nodes selected in the commit timeline. Tables
are a well-established and comprehensible visualization for
displaying such information in a structured format. Each row
in the table represents a single commit, while each column
represents a different attribute of the commit.

The table includes five columns, each providing a specific
piece of information about a commit. First, the column
Owner/Repo lists the owner and the name of the repository.
Second, the column Author shows the author of the commit.
Third, the column Commit Date displays the date and time when
the commit was made. Fourth, the column Commit Message
provides the message associated with a commit, which ideally
includes a brief description of the changes made in the commit.
Finally, the column URL includes a hyperlink to the commit
page on GitHub. The tabular layout allows users to easily
analyze these attributes for different commits, aiding in the
identification of patterns and anomalies (UC3). We provide a
button below this table to allow a user to dig into the details
of the selected nodes based on the following visualizations.
Word Cloud. Using a word cloud ( 4⃝ in Fig. 2), we aim to
provide a high-level overview of the work done within the
selected nodes (UC3). After a user clicks on Peek into selected
nodes, VisFork shows a popup that displays a word cloud
generated from the commit messages of the selected nodes.
We show an example in Fig. 4. To generate the word cloud,
we first extract all words from the commit messages of the
selected nodes. Then, we count the frequency of each word,
discarding common stop words, such as “the” or “and.”

Fig. 4. Example for a computed word cloud.

Word clouds are particularly effective for text analysis,
because they visually represent the frequency of words in
a given text. In this case, we summarize the selected commit
messages to shed light into what the respective developers have
implemented. The more frequently a word occurs in the commit
messages, the larger it appears in the word cloud, allowing a
user to quickly grasp the most common themes associated with
the selected commits. Additionally to scaling sizes, the word
cloud also uses colors to represent the part of speech of each
word. For example, verbs are represented in orange, while nouns
are represented in blue. By associating colors with specific parts
of speech, a user can quickly gain insights into the focus of the
respective development activities. For instance, the colors can
help identify whether there are more discussions about bug fixes
(verbs) or documentation improvements (nouns). In summary,
the Word Cloud provides a quick and intuitive overview of the
work done in the selected nodes, making it an effective tool
to analyze commit messages. By using size to represent word
frequencies and color to represent parts of speech, the word
cloud offers a multi-dimensional view on the commit messages.
Commit Classification. Swanson [36] has proposed three
categories to classify software-maintenance activities that are
often reused in research [13], [19], [24], [28], [38]:
Adaptive Changes modify the software to new environments

or requirements, for instance, via dependency updates,
compatibility improvements, feature additions, or migra-
tions to a new operating system.

Corrective changes fix errors or bugs in the software, for
instance, by addressing a bug report.

Perfective Commits improve the performance or maintain-
ability of a system, for example, via performance im-
provements, documentation clarifications, or refactoring.

Classifying commits into these categories can provide valuable
insights into the development processes exhibited within a fork
ecosystem (UC2, UC3). For example, a high proportion of
corrective commits may indicate issues with software quality,
while a high proportion of adaptive commits may suggest a
rapidly changing environment or requirements. In other words,
understanding the distribution of commit types can help users
identify areas a fork focused on as well as potential issues in
the development processes.

Deep learning models have been explored to classify com-
mits into the three categories [9], [24], [26], [32], but the
nature of natural-language commit messages challenges their



Fig. 5. Example for the commit classification tab.

performance. We therefore adopt a simple model instead: we
match commit messages against stemmed core terms provided
by Choshen and Amit [4]—which can also be executed faster.
Some example core terms are:
Adaptive: configure, extend, support, enable
Corrective: bug, fix, fail, defect, error
Perfective: document, readme, refactor, typo, style

If a commit message matches core terms from multiple
categories, we assign the category with the most matches
(and the first one in case of a draw). Conversely, if we find
no match, we categorize a commit as unknown. As a concrete
example, a commit message reading “Fixed shortcuts and
update documentation for HistoryWindowController.” matches
two core terms: “fix” and “documentation”. Since both matches
occur once and “fix” occurs first, the commit would be
categorized as a corrective commit.

Using this model, we avoid performance overheads and
can execute the commit classification on-demand. Also, this
classification is hidden in a separate tab by default, but is
easily activated by clicking on the tab. Upon clicking, the
tab expands to display a Sankey diagram like the one we
display in Fig. 5. A Sankey diagram is particularly useful
for visualizing the distribution of a quantity (commits) across
different categories (adaptive, corrective, and perfective). On
the left side of the Sankey diagram, we display the forks and
on the right side we classify their commits. The width of each
flow in the diagram is proportional to the quantity it represents
(i.e., the number of commits), allowing users to quickly grasp
the relative proportion of each type of commit and understand
what a fork was created for (e.g., feature fork, bug-fixing fork).
Collaboration Network History. The last visualization we
have designed is a graph to depict the evolving relationships
between contributors and forks over time ( 6⃝ in Fig. 2). In
fact, this graph is a dynamic representation that highlights how
contributions and collaborations change as the fork ecosystem
evolves. Graphs are well-suited for depicting these relationships,
since they use nodes to represent entities and edges to represent
relationships. In our collaboration network history, each node
represents a contributor or fork, and each edge represents a

Fig. 6. Example for a collaboration network history (anonymized).

contribution to a fork. Moreover, graphs are flexible and can
easily accommodate changes in the data. This is particularly
important in our case, in which the relationships between
contributors and forks change over time. As new contributions
are made or new forks are created, new nodes and edges must be
added to the graph, evolving the graph along the fork ecosystem.
This allows users to easily see who contributed to which forks
and how these relationships evolve over time (UC2).

Just as the commit classification, we have designed the
collaboration network history to be available on-demand.
Initially, this visualization is hidden within a tab, too. After
clicking on the tab, it unfolds and displays the visualization,
for which we show an example in Fig. 6. We can see that
the graph is centered around forks (in green), with nodes
representing contributors (in gray) and edges their contributions
to the different forks. A key feature is the date slider that
allows a user to view the state of the collaboration network at
any day of its history. Also, if a user presses the button Play,
the date will increase automatically to show how the network
evolves. This visualization provides insights into how the fork
ecosystem and its community evolved, allowing to understand
temporal dynamics of collaboration in the fork ecosystem.

V. USER STUDY (RO3)

We evaluated whether our visualizations were reasonable by
conducting a user study with two groups of participants: GitHub
Community members (Sec. V-A) and students (Sec. V-B). To
design the user studies, questions, and tasks, the first author
proposed an initial version that all other authors tested and re-
viewed via pilot runs. After multiple iterations and refinements,
we finalized a version of the user study that captured the most
relevant parts while limiting the time required by participants
to complete it. The whole user study was reviewed by a Data
Steward specialized in software engineering and received ap-
proval from the Ethics Review Board of Eindhoven University
of Technology. All participants had to sign a consent form and
could stop at any point without consequences, and we share
their anonymous responses in a persistent open-access reposi-
tory.5 In the following, we describe the details of our user study.

5https://doi.org/10.5281/zenodo.8199719

https://doi.org/10.5281/zenodo.8199719


A. GitHub Community Participants

To gather insights on the practical feasibility of our visualiza-
tions, we identified a pool of potential participants from the 237
GitHub users whose comments we analyzed (cf. Sec. IV-A).
Specifically, we manually reviewed their public GitHub profiles
and identified 92 users who shared their email addresses
publicly. Note that we invited only GitHub users that engaged
on the topic (i.e., participated in the discussion) and that
shared their e-mail publicly for contacting, to avoid spamming
uninterested developers. We sent one mail (no reminders) to
each of the 92 users, motivating our study and inviting them
to test our prototype. Involving practitioners engaged with the
topic in our study improves our confidence that their feedback
is based on extensive experiences and honesty. Due to their
experience, we did not define concrete tasks, but asked the
GitHub users to explore our prototype (e.g., using provided
data containing a small sample of eight forks with 5,684
commits spanning three years or an own fork ecosystem) and
to subsequently complete an anonymous survey.

Our survey included background questions about a partici-
pant’s experiences with version control systems and fork-based
development, how many forks they would be interested to
visualize, as well as what properties they would like to analyze.
Then, we asked them whether they used our prototype to
explore any of our use cases. If they did, we provided two
6-point Likert scales (strongly disagree – strongly agree) for
each use case: (Q1) whether VisFork provides the data needed
to fulfill the use case and (Q2) whether the user considers
VisFork easier to use than the GitHub Network Graph (as a
known baseline). Then, we asked each user to rate VisFork
in general (5-star scale), grade the individual visualizations
(5-point Likert scales, poor – excellent), and indicate whether
they would recommend the tool to others (0 - not at all likely –
1 - extremely likely). Finally, any user could provide additional
feedback and specify whether they would like to receive the
results of our work. Please note that the GitHub users could
skip any use case category in the survey if it did not apply to
their typical work, which is why the numbers in our results
do not always add up to 100 %.
Results. We received feedback from 10 GitHub community
members, which is a response rate of approximately 11%.
Most (80%) participants have between 10 to 20 years of
experience with version control systems and more than five
years of experience using forking (70%). Moreover, the
participants indicated a strong interest in discovering the
vitality and maintenance status of forks within ecosystems,
with a particular focus on identifying those that are actively
maintained versus transient or once-off forks. Other interests
involve understanding the nature of changes, distinguishing bot
activities, and seeing how as well as why forks evolve. Their
extensive experience and interest in understanding properties
related to our use cases underpin that the GitHub community
members are well-acquainted to provide valuable feedback on
VisFork. On the left side of Fig. 7, we display the participants’
responses on the utility of VisFork (Q1) and how it compares

to the GitHub Network Graph (Q2) for each use case (UCi). So,
each bar represents a statement about VisFork, and the segments
in each bar denote the proportion of the participants’ agreement.

UC1: Exploring fork histories and relationships. Eight partic-
ipants used VisFork to explore fork histories and relationships,
leading to somewhat mixed views on the capabilities of our
visualizations. When assessing the tool’s ability to provide
the necessary data to explore fork histories and relationships,
five of the eight participants agreed with its usefulness, but
the rest expressed (strong) disagreements. In contrast, more
(six) participants acknowledged that VisFork is easier to use
than GitHub’s Network Graph. The negative feedback mostly
focuses on implementation details, such as a lack of features
to show or hide specific forks.

UC2: Discover forks’ states. Six participants used VisFork to
explore forks’ states and four gave positive ratings for both the
tool’s ability to provide the necessary data and its usefulness
compared to GitHub’s Network Graph. One participant, while
giving moderately positive ratings, expressed a desire for more
details in the visualization to shed light into which forks are
actively merging changes from the original repository (i.e.,
keeping their forks up-to-date) and which are not. Among
the two disagreements, one encountered technical issues with
VisFork; the other found it impossible to explore forks’ states
in their own repository. We suspect that when the users query
fork data ordered by stargazers (the default), the fetched forks
(those with most stars) may not be actively maintained, leading
to limited data. By enabling an advanced query and fetching
the data ordered by date, this can be mitigated.

UC3: Identify work in forks. Six participants used VisFork to
identify work in forks. Four of them agreed that our prototype
was able to provide the necessary data and five preferred it
over the GitHub Network Graph. The word cloud appears to
be a focal point for improvements. One participant mentioned
that the word cloud does not effectively summarize major
contributions, and another said it was not helpful, suggesting
that the word cloud contained too much noisy information.
Summary. Overall, the feedback of the GitHub community
members for our prototype was positive, with certain features
being appreciated, especially the commit history. However,
the participants also raised criticism regarding VisFork’s
functionalities in specific scenarios, such as the word cloud
and classification based on commit messages. Some other
concerns were mainly related to the layout and performance of
the prototype, which are issues for engineering improvements.
Nevertheless, the visualizations themselves seem to be effective
based on the participants’ feedback. The feedback also under-
pins the importance of a user-centric design and iterative testing.
Addressing the highlighted concerns and continuously engaging
with the user community can guide future enhancements to
our work, but it seems to already make a valuable contribution
for GitHub users keen on understanding fork ecosystems.

B. Student Participants

To strengthen our evaluation, we conducted a second user study
for which we recruited three master students (invitation sent to
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Fig. 7. Survey responses on VisFork from GitHub community members (left) and students (right). Note that the GitHub community members could decide not
to answer a question, which is why the sums are not equal for all questions.

a course not connected to any author) and four PhD ones (not
working with any author) in the field of software engineering.
We asked them to complete the following tasks (matching our
use cases), in this order, on our sample fork ecosystem; once
using our prototype and once using the GitHub Network Graph:
UC1 For the example repository, how many active forks

(commits submitted actively) did you identify?
UC2 The example repository “GreyAsteroid/open-in-mpv”

was abandoned but some of the forks are still active
(commits submitted actively). Please select any active
forks you found.

UC3 There are new features in the fork “xjbeta/iina-danmaku”
but never merged back to the original repository. Could
you name any new features you found?

We integrated these tasks into our previous survey (the
one sent to the GitHub community members), which we
further modified slightly for the students by removing some
background questions.
Results. While all student participants had some experience
with version control systems, two of them did not have any
experience with using forks. For this reason, we first introduced
them to the topic of fork ecosystems. On the right side of Fig. 7,
we display the survey responses on the usability of VisFork and
how it compares to the GitHub Network Graph. Note that the
ratings between both groups of participants can be compared,
since we asked the same questions, but that the way in which
each group engaged with the respective tasks differs slightly
(i.e., open exploration versus concrete tasks).

UC1: Exploring fork histories and relationships. The student
participants were asked to identify the number of active forks
(i.e., those to which developers still commit) for the example
ecosystem. Five of them provided a reasonable answer, while
one misunderstood the question and simply counted recent com-
mits. All participants agree that VisFork provides the necessary
data and slightly agree that the prototype facilitates identifying
active forks compared to the GitHub Network Graph. One
student pointed out that our prototype offers better navigation,
while GitHub’s Network Graph has a more intuitive layout.

UC2: Discover forks’ states. Second, we asked the student
participants to select all active forks of the example repos-
itory. Based on the different definitions of an active fork,
the participants gave various answers, but some forks were
frequently selected. So despite small differences, there seems
to be a common understanding among the students about what

constitutes an active fork. The frequently selected forks exhibit
clear indicators of activity, such as recent commits or pull
requests. Six participants were positive about our prototype,
and five preferred it over GitHub’s Network Graph.

UC3: Identify work in forks. Lastly, we asked the student
participants to name any new features in a specific fork that
have not been merged back to the original repository. Some
participants started by checking the commit classification
and identified that the fork was an adaptive version of the
original repository. When identifying the new features, the
participants were able to extract at least one feature from the
word cloud. However, their perception about VisFork helping
identify hidden work in forks is more or less split.
Summary. Those student participants less familiar with fork
ecosystems sometimes had difficulty understanding certain
visualizations. Consequently, there is a need to enhance the user
guidance of our visualizations using instructions and detailed
legends. Despite some implementation-related criticisms, the
visualizations of VisFork were well-received, showing their
potential to offer insights into the dynamics and relationships of
forks. In particular, we noted that the student participants used
every visualization for the use cases for which we considered
them most valuable.

VI. DISCUSSION

Next, we discuss the effectiveness of our visualizations, our
research objectives, and threats to the validity of our work.

A. Effectiveness

We evaluated the effectiveness of our prototype, VisFork, by
eliciting feedback from two groups of participants: GitHub
community members and student participants. The GitHub
community members had extensive experience with the GitHub
Network Graph, ensuring that they were familiar with forking.
Across both groups, most participants found VisFork to be
effective in providing the necessary data to explore fork
histories and relationships for the different use cases. They
particularly appreciated the commit history, which allowed
them to gain insights into the temporal dynamics of a fork
ecosystem. In terms of understanding forks’ states, VisFork was
generally viewed positively, helping users locate active forks
based on criteria like recent commits. Some participants desired
deeper insights into forks that regularly merge changes from the
original repository. For identifying work in forks, the commit
classification was beneficial in discerning different types of



commits. However, the word cloud feature got mixed feedback,
due to its perceived noisiness in conveying key contributions.

The negative feedback for our prototype connects primarily
to its implementation, indicating future improvements. Despite
such criticism, we note that the underlying visualizations have
been well-received and effective. So we argue that, while
engineering challenges remain, our work contributes valuable
insights on what visualizations are useful, and can be expanded
in future research. For instance, the commit history allows users
to gain insights into the temporal dynamics of fork ecosystems.
Similarly, the commit classification proved useful in identifying
different types of commits, offering valuable information
about the nature of changes in a fork. An improved keyword
scraping algorithm, such as analyzing commit messages
along with code changes instead of solely relying on commit
messages [23], [24], may improve the word cloud.

The student participants engaged with VisFork and the
GitHub Network Graph to complete specific tasks related to
fork exploration. While some of them were able to successfully
identify active forks and extract features from the word
cloud, others faced challenges in understanding the exact task
requirements. We observed that users with less experience with
fork ecosystems sometimes found it difficult to understand
some visualizations. Interestingly, the challenges increased
when investigating forks in more and more detail (i.e., UC3),
implying that there is a need for even better and simpler
visualizations. In fact, most participants highlighted potential
improvements of the implementation, but reinforced the validity
and usefulness of the visualizations in VisFork, especially
when compared to the GitHub Network Graph. By improving
technicalities and refining the visualizations, VisFork has the
potential to become a powerful and indispensable tool for
GitHub users seeking deeper insights into fork ecosystems.

B. Research Objectives

To help developers understand the evolution of fork ecosystems
(RO1), detailed fork histories and relationships should be
visualized, indicating the various states of forks. Visualizing
commit histories is vital, as it provides insights into timelines
and relationships between commits. Furthermore, a history
of collaboration networks can illuminate patterns between
contributors and forks. It is crucial to have mechanisms for
classifying commits, potentially utilizing advanced models, as
well as multi-dimensional visual aids like Sankey diagrams and
word clouds to facilitate pattern recognition and trend analysis
for commit messages and activities.

As we discussed in Sec. IV, VisFork provides an overview
of fork histories, relationships, and states (RO2). The commit
history offers a detailed look into the chronological sequence of
commits, showing the relationships between them and helping
to track the evolution of forks over time. Meanwhile, the col-
laboration network history highlights the dynamic interactions
between contributors and forks. In addition, multi-dimensional
visual aids like Sankey diagrams allow to effectively categorize
commits, while word clouds summarize and highlight patterns

in commit messages. This, in turn, allows users to identify
variations and unique characteristics within different forks.

The results of our user studies indicate that VisFork provides
more detailed and interactive visualizations than the existing
official tool, GitHub’s Network Graph (RO3). GitHub users and
students appreciated VisFork’s commit history visualization for
tracking fork evolution, and its collaboration network history for
understanding interactions. While there were areas for improve-
ment, especially in the implementation of specific features, the
underlying visualizations of VisFork were largely seen as effec-
tive in providing insight into fork ecosystems. Most importantly,
both groups were positive about our visualizations, had com-
parable agreement regarding their feasibility for our use cases,
welcomed our work, and had many suggestions for future work.

C. Threats to Validity

The external validity of our work is threatened by the limited
number of participants in our study. However, we involved
practitioners interested in the topic as experts (GitHub com-
munity members) and aimed to further mitigate this threat by
involving independent students—with both groups contributing
similar feedback. Also, the external validity is threatened since
we provided comparably little example data for our study. This
data does not capture the full complexity of real-world fork
ecosystems and does not allow us to reason on our work’s
scalability. These properties were not within the scope of this
paper, but we aimed to mitigate them by allowing the GitHub
community members to explore their own projects, with some
of them indicating to have done so.

Lastly, we acknowledge that the design and perceived
usefulness of any visualization depends on personal preferences
and characteristics (e.g., color blindness). So, the internal
validity of our work is threatened since we elicited opinions
only and did not conduct a controlled experiment to collect
quantifiable data. However, conducting controlled experiments
on visualizations is very challenging and remains prone to
subjective perceptions. We argue that our user study with dif-
ferent populations represents a feasible approach to understand
how the visualizations can help developers in practice.

VII. CONCLUSION

In this paper, we presented visualizations for gaining insights
into fork ecosystems, which we implemented in our prototype
VisFork. To evaluate these visualizations, we conducted user
studies with GitHub community members and graduate students.
The user studies demonstrated that the visualizations can
effectively support users in understanding fork ecosystems. Still,
we also identified areas for improvement, particularly regarding
technicalities and information cleansing. Overall, VisFork is
a promising advancement on visualizing and comprehending
the relationships within fork ecosystems. By integrating the
user feedback, VisFork can become a valuable resource for
developers and researchers who wish to gain a thorough
understanding of fork histories, relationships, and work patterns.
For this purpose, we plan to contact GitHub to see whether
we can integrate and expand our work into the platform itself.
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