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ABSTRACT
Multi-lingual software systems build on interconnected compo-
nents that are implemented in different programming languages.
The multi-lingual nature of such systems causes additional complex-
ity, for instance, when developers aim to identify what components
of a system use the same data. Organizations and developers typ-
ically aim to adhere to a specified system architecture to avoid
certain dependencies between multi-lingual components. However,
such dependencies may still be introduced and only resolved later
on. Thus, we refer to them as unintended dependencies: dependen-
cies that may exist, but are not wanted by the developers or organi-
zation. There has been little research on multi-lingual systems so
far, and dependencies within such systems have not been studied
explicitly. With this paper, we tackle this issue by contributing a cat-
alog of unintended software dependencies in multi-lingual systems.
We elicited it by interviewing 17 practitioners at ASML. We report
eight types of unintended dependencies, their causes, the resulting
problems, and how they can be resolved. Further, we connect our
findings to research on software smells and dependencies in mono-
lingual systems. Our contributions serve as recommendations for
practitioners on how to deal with unintended dependencies, as
supportive evidence for existing research, and as basis for new
techniques for managing dependencies in (multi-lingual) systems.
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• Software and its engineering → Layered systems; Software
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1 INTRODUCTION
In practice, more and more software systems involve components
implemented via different programming languages and their re-
spective technologies, which we refer to as multi-lingual (a.k.a.,
multi-language or cross-language) systems. Consequently, practi-
tioners can benefit from the pros of combining different languages,
such as reducing costs through reusing libraries implemented in a
different language, optimizing performance by using specific lan-
guages, or integrating legacy code that has not been re-engineered,
yet [3]. To manage the complexity of multi-lingual systems, de-
velopers divide them into components (or modules, subsystems,
libraries, services, etc.) that are ideally easier to maintain and adapt
to new requirements compared to monoliths [1]. In turn, to leverage
the functionalities offered by different components, dependencies
among these components must be established. Since components
written in different programming languages cannot simply access
each others’ code elements like variables or functions (we refer to
symbols), even more complexity is added by a separate interface
that exposes elements within such a dependency.

Unfortunately, in practice, dependencies between components
may not adhere to rules defined by the organization or developer
community that implements the multi-lingual system. That is, such
a system may involve unintended dependencies that reduce its mod-
ularity and are typically unexpected by developers. Conversely, this
may complicate program comprehension and cause misbehavior—
threatening the benefits of using components implemented in dif-
ferent languages [1, 9, 28, 31, 44, 45].

Identifying, managing, and improving dependencies in mono-
lingual systems has been researched extensively in the context of
software architecture, architecture smells, and packagemanagers [8,
18, 24, 34]. However, adapting such techniques for multi-lingual
systems is challenging, for instance, because the different coding
styles make it more challenging to identify whether the same data is
used by multiple components [21, 35]. To the best of our knowledge,
there is no mature tooling to solve the problem of identifying and
resolving unintended dependencies in multi-lingual systems. In fact,
research on the architecture and design of multi-lingual systems
has only recently gained more traction [2–4, 33]. Still, the existing
studies (cf. Section 3) have not investigated the notion of unintended
dependencies between the different components in a multi-lingual
system. Real-world insights into unintended dependencies based
on practitioners’ experiences are a valuable contribution to provide
a foundation for future research and help other developers.

In this paper, we contribute such insights by reporting the results
of interviews with 17 practitioners working on large multi-lingual
software systems at ASML. During these interviews, we asked
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the practitioners about their experiences with dependencies in the
multi-lingual systems they worked on, and which of these depen-
dencies they consider unintended for what reasons. We transcribed
the interviews and conducted a thematic analysis [7] to construct a
catalog of eight unintended dependencies, including their causes,
consequent problems, and resolution strategies. More detailed, we
contribute the following within this paper:

• We define a catalog of eight unintended dependencies be-
tween components in multi-lingual systems that the ASML
developers have experienced.

• We describe the causes, consequences, and resolution strate-
gies associated to these unintended dependencies based on
our interviewees’ expertise.

• We discuss the implications of our catalog for research and
practice, focusing on the commonalities and differences of
mono-lingual and multi-lingual systems.

We argue that these contributions are helpful to shed light into the
specifics of multi-lingual systems and unintended dependencies.
Our insights can help practitioners manage their systems and guide
researchers in designing novel techniques for identifying,managing,
and resolving dependencies in multi-lingual systems.

2 THE ASML CASE
ASML Holding B.V. is a Dutch multinational company with more
than 40,000 employees worldwide. The company holds more than
16,000 patents, generated a revenue of more than 21e billion in
2022, and is considered the most highly valued tech company in
Europe.1 As of 2022, the company is the largest supplier of lithog-
raphy machines needed for producing computer chips worldwide.
It is also the only supplier of extreme ultraviolet lithography pho-
tolithography machines needed for producing the most advanced
computer chips.

Software is a key part in ASML’s business, since software moni-
tors and manages the different components within chip-production
machines. To save development time and improve customer sat-
isfaction, meeting non-functional software requirements, such as
performance, scalability, reliability, and maintainability, is impor-
tant for ASML. However, with the rising complexity introduced by
a growing number of components written in different programming
languages (i.e., resulting in a multi-lingual system), meeting such
requirements becomes progressively challenging. In particular, the
introduction of unintended dependencies between components can
hinder software quality and maintainability of the whole multi-
lingual system. So, ASML requires an understanding of what its
unintended multi-lingual software dependencies are, as well as how
to detect and resolve these dependencies.

ASML’s systems build on a layered architecture that includes, but
is not limited to, a presentation and an application layer. A system is
further decomposed into subsystems that integrate different compo-
nents, with each subsystem being the responsibility of a team. The
layering and decomposition are orthogonal structures, meaning
that a component of one subsystem can exist in the same layer of
another subsystem. Additionally, the components are written in dif-
ferent programming languages, which can be either Python, C, C++,
Java, Matlab, or Julia. A typical system at ASML involves millions
1https://www.bbc.com/news/business-64514573
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Figure 1: Concept of ASML’s DSL generating a bridge between
two components that are implemented in different program-
ming languages.

of Lines of Code (LOCs), and each subsystem comprises around
hundreds of thousands of LOCs. For instance, one concrete subsys-
tem of ASML’s system has 22 components that involve 867 C++
(234,814 LOCs), 337 C (119,426 LOCs), and 46 Python (11,189 LOCs)
files. Thus, most individual subsystems at ASML already represent
quite large multi-lingual software.

Within ASML’s multi-lingual systems, dependencies among com-
ponents are defined at two places. First, dependencies are defined in
a build scope definition file, which is used during the build process to
identify all dependencies of the selected components and integrate
those into the system. Second, the dependencies are defined via
a Domain-Specific Language (DSL) tailored for this purpose. This
DSL allows to specify an interface that describes what code symbols
(e.g., variables, functions, fields) are used by different components—
thereby establishing the actual dependency. Afterwards, the DSL is
used to automatically generate a “bridge” that exposes the function-
ality of a provider component written in a specific programming
language to a client component written in another language. We
sketch a conceptional overview of this process in Figure 1. Con-
ceptually, we could say that the DSL makes a dependency work
functionally by creating the bridge, whereas all dependencies are
defined in the build scope definition file to ensure the right com-
ponents are selected. Using this design, ASML can benefit from
using different programming languages, allowing its developers, for
instance, to build on Python for data-science focused components
and C or C++ for performance-critical components. Regarding the
depicted ASML subsystem, the DSL code involves 470 additional
files that include 41,787 LOCs.

To exemplify how the DSL and bridge work, let us assume a
client component written in Python and a provider component
written in C. Within the provider component, a developer may
have implemented a function f that they want to use in the client
component. For this purpose, they specify the input parameters
and return type of f as well as the programming languages of the
provider component (C) as an interface in the DSL. Now, the DSL
generates a new C file as the actual implementation of the interface
that allows to access the relevant symbols (i.e., f). The developer
defines the target languages (i.e., Python) for the bridge in the
makefile of the DSL. When running the build process, the DSL now
generates the actual bridge by creating a Python file that involves
a method with the same name as f, and which can be called by the
client component to access the C code in the bridge that provides f.
To ensure the mapping across the different programming languages,

https://www.bbc.com/news/business-64514573
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the generated files are named identically according to the scheme
providerComponent_interface_function.

3 RELATEDWORK AND RESEARCH GOAL
Next, we summarize the related work on software dependencies,
based on which we motivate the novel contributions of our work.

Anti-Patterns and Smells in Multi-Lingual Systems. Neitsch
et al. [33] have analyzed the build systems of five multi-lingual
open-source systems, identifying several patterns and anti-patterns.
For instance, the anti-pattern “Filename Collision” can cause run-
time errors because file systems may use case-sensitive or case-
insensitive file names. Similarly, Abidi et al. [3] elicited six anti-
patterns of multi-lingual systems from papers and gray literature
(e.g., developers’ blogs). The anti-pattern related most closely to
our research goal is “Excessive Inter-Language Communication,”
which refers to (unintended) situations in which components in dif-
ferent languages are excessively calling each other. Often, such anti-
patterns or otherwise “bad” pieces of software are also described
using the metaphors of code [27], design [5], or architecture [32]
smells [39]. Particularly architecture smells focus on dependencies
in software systems that are perceived as problematic, and thus are
often unintended. Architecture smells have been studied extensively
in the past, but primarily in the context of a single programming
language for which smells like “Cyclic Dependencies” have been
defined [6, 18, 38]. For multi-lingual systems, Abidi et al. [2, 4] have
further identified 12 code and 15 design smells. However, we are not
aware of papers focusing on architecture smells and dependencies
in multi-lingual systems. In summary, while there have been many
studies on design and dependency issues in software, multi-lingual
systems only recently gained attention and an in-depth understand-
ing of dependency issues in such systems is missing. Also, the
existing works in this area focus on open-source systems and re-
searchers’ own analyses of these, whereas we report on interviews
with practitioners working on large-scale industrial systems.

Program Analysis for Multi-Lingual Systems. Recently, sev-
eral researchers have proposed techniques that adapt static and
dynamic program analyses for multi-lingual systems, but integrat-
ing multiple languages in such techniques is challenging [21, 35].
For instance, different coding styles, varying naming conventions,
and ways to identify what symbols are used in the individual com-
ponents pose challenges. Most prominently, Pereira dos Reis et al.
[35] found that 83.1 % of the techniques for code-smell detection
cover only one programming language. A technique for inspect-
ing multi-lingual systems has been developed by GitHub, using
Abstract-Syntax Trees (ASTs) to match the symbols of different
programming languages [11]. However, the tool does not support
the detection of smells or unintended dependencies. Again, there
has been more extensive research for systems implemented in a
single language. For instance, Chuang et al. [10] have introduced
OPAL, a tool for inspecting and removing (unintended) dependen-
cies in Java programs. Other researchers have proposed techniques
for identifying, visualizing or refactoring dependencies or smells
within a software system [15, 16, 19, 37, 46]. However, we are not
aware of such research focusing on dependencies in multi-lingual
systems or being conducted in real-world industry settings.

Research Goal. ASML has defined a layered architecture and de-
sign rules regarding the dependencies between components to
ensure its systems’ quality. For instance, the components of a layer
A may be allowed to call components of another layer B, but not
vice versa. So, any call from a component in layer B to a component
from layer A would be considered an unintended dependency, since
it would not break the system but does not match ASML’s design
rules. When inspecting the related work, we neither identified an
existing technique that supports detecting and analyzing depen-
dencies in ASML’s multi-lingual systems; nor a study that provides
an understanding of (unintended) dependencies or architecture
smells relevant to multi-lingual systems. Consequently, we decided
to study unintended dependencies at ASML to provide a catalog
and empirical data on such dependencies. To guide our study, we
defined three research questions (RQs):
RQ1 What are types of unintended dependencies for themulti-lingual

systems of ASML?
So far, unintended dependencies have primarily been ad-
dressed as architecture smells in mono-lingual systems.While
we assumed and found that the unintended dependencies in
multi-lingual systems are highly similar to smells or design
rules for mono-lingual systems, corresponding evidence and
details on the specifics of multi-lingual systems are missing.
We tackle this gap by eliciting a catalog of eight unintended
dependencies from interviews with practitioners at ASML.

RQ2 What are causes and consequences of the unintended dependen-
cies in multi-lingual systems?
We further investigated why dependencies may still be in-
troduced despite being unintended. Moreover, we elicited
whether there are specific challenges or consequences for
which a particular type of unintended dependency should be
avoided. Thereby, we provide a better understanding on the
problems attached to each unintended dependency.

RQ3 How are the unintended dependencies in multi-lingual systems
resolved by developers?
The overarching idea with which we started was to develop
techniques for identifying and removing unintended depen-
dencies to improve the quality of a software system. As a
step towards this direction, we further elicited how the inter-
viewed practitioners resolve unintended dependencies. So, we
provide advice on how to manage and deal with unintended
dependencies in real-world multi-lingual systems.

By answering these research questions, we contribute insights into
developers’ perceptions about unintended dependencies in multi-
lingual systems. Our insights provide supportive evidence for exist-
ing research on software quality, extend it with new insights, and
serve as a starting point to develop new tools.

4 STUDY DESIGN
To answer our research questions, we conducted an exploratory
field study using semi-structured interviews. This research strategy
allows us to generate knowledge from a realistic context, at the
cost of limited precision and generalizability [41]. Consequently,
our results are a stepping stone towards creating a body of knowl-
edge on unintended dependencies in multi-lingual systems. We
conducted our interviews within ASML following the guidelines by
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Strandberg [42]. The interviews have been approved by ASML and
adhere to the research integrity process at Eindhoven University
of Technology (TU/e). In particular, we submitted our interview
design and an ethical review form for evaluation, both of which
were approved by the university’s Ethical Review Board. Next, we
describe the design of the interviews, how we analyzed the data,
how we recruited participants, and the participants’ demographics.

4.1 Interview Design
We designed and conducted our interviews during a collabora-
tion between ASML and TU/e in which we analyzed dependencies
in ASML’s multi-lingual systems. During this collaboration, we
learned that particularly unintended dependencies are of interest
to ASML to ensure its systems’ quality. To obtain a better under-
standing of such dependencies, we defined the described research
goal and research questions, which guided the design of our semi-
structured interviews. During the actual design, we employed an
incremental and iterative process: In the beginning, the first au-
thor of this paper proposed a number of questions relevant for
understanding unintended dependencies. Then, we collaboratively
refined and extended these questions among all authors, reflecting
on our experiences and following the guidelines by Strandberg [42]
to ensure a useful design. For external validation, we conducted
two pilot interviews with volunteers at ASML, based on which we
adjusted the questions and conduct of the interviews. Finally, a
data steward and the Ethics Review Board at TU/e reviewed our
interview design regarding, for instance, the collection of personal
data, the storing of data, and the consent form.

In Table 1, we provide an overview of the questions we asked
during our interviews and their mapping to our research questions.
Note that we updated the wording of two questions (Q4, Q10) to
make these clearer for this paper. Specifically, we added the texts
in square brackets, which were previously an “it” (Q4) or missing
(Q10) and were both not needed within the overall structure of our
interviews because the questions referred to concrete examples pre-
viously provided by our interviewees. First, we aimed to capture the
concept of unintended dependencies (Q1–3) from the perspectives
of our interviewees and ASML to tackle RQ1. Building on these
definitions and concrete examples the interviewees identified, we
aimed to elaborate on the causes and consequences (Q4–7) of the
unintended dependencies to answer RQ2. Lastly, we investigated
how these dependencies could be resolved (Q6–10) to address RQ3.
Since these questions were only guiding our semi-structured inter-
views, we sometimes deviated into more details, depending on the
experiences of our interviewees.

Regarding the consent form, we provided general information
about the purpose of our study, its objectives, its methodology, the
risks involved, as well as that only anonymized and aggregated
results will be shared with ASML or in a publication. To guaran-
tee the integrity of our participants, we stipulated a discussion on
consent and withdrawal based on the consent form prior to the
conduct of each interview. We conducted the interviews online
using Microsoft Teams. This allowed the interviewees to be within
a chosen comfortable setup that also ensures anonymity. Moreover,
the online setup allowed us to let Microsoft Teams automatically

create transcripts without the need for recording or manually tran-
scribing the interviews. To ensure the transcripts’ quality, the first
author as the interviewer took notes during the interviews and
manually corrected the transcripts directly after each meeting (e.g.,
fixing rare words that were wrongly transcribed). We stored the
transcripts only in one personal SURFDrive,2 a secure Dutch cloud
storage for education and research.

4.2 Data Analysis
To analyze the interview transcripts, we performed a thematic anal-
ysis as “a method for identifying, analyzing[,] and reporting pat-
terns (themes) within data” following the guidelines by Braun and
Clarke [7]. The customary first step in this analysis is to use coding
techniques to associate sections of the transcripts with codes that
are then used to identify themes. For this purpose, the first author
employed open coding (also called inductive coding) using AT-
LAS.ti3 to manually extract codes from the transcripts [12]. During
open coding, codes are elicited from the study sources themselves
without defining them from preexisting knowledge or a theory in
advance. We chose this method due to the lack of related work
and the exploratory nature of our study. In more detail, we com-
bined two types of coding subcategories: in-vivo and descriptive
coding. With in-vivo coding, we extracted labels from the tran-
scribed words of the interviewees [30], while we used descriptive
coding to summarize the contents of text fragments into labels [17].
The remaining authors checked the assignments of codes to quotes
and resolved any varying opinions through collaborative discus-
sions. After coding all transcripts, we segregated the codes into
groups based on recurring patterns and themes following a card-
sorting methodology [47]. We exemplify non-confidential codes
and themes in our codebook within our discussion (cf. Section 6).

4.3 Recruitment
To conduct our interviews, we aimed to recruit domain experts
working in software development at ASML. For this purpose, the
first author started to invite ASML employees who were proposed
by the third author or who were identified as experts by the first au-
thor during his time at ASML. After this convenience sampling, we
aimed to mitigate biases and increase diversity by inviting employ-
ees from different teams at ASML based on snowball sampling (i.e.,
referrals of our interviewees) [43]. We invited participants via an
internal messaging app of ASML, also stating that the participation
would be confidential and voluntary (i.e., not participating or drop-
ping out was possible without any consequences). In the end, we
stopped conducting more interviews when we reached saturation
across multiple interviews, meaning that the newly collected data
did not reveal new insights into unintended dependencies [22].

4.4 Participants’ Demographics
Overall, we invited 39 ASML employees from six different software-
development teams across four departments. Of these, 17 agreed
to and participated in an interview (43.6 % participation rate). Our
participants represent four different roles at ASML, namely

2https://www.surf.nl
3https://atlasti.com
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Table 1: Overview of our interview questions.

ID interview question RQ

Q1 What do you consider an unintended dependency at the symbol level, between components? RQ1
Q2 Does ASML have a standard definition of what an unintended dependency at the symbol level, between components is? If so, which one? RQ1
Q3 Have you encountered unintended dependencies within ASML? If so, can you explain or possibly draw the situation? RQ1
Q4 Does [an unintended dependency] still exist in projects you have worked on? If so, why does it still exist? RQ2
Q5 Are there benefits to resolving this type of unintended dependencies between components? If so, which ones? RQ2
Q6 What do you think are the challenges regarding detecting unintended dependencies at the symbol level, between components? RQ2 & RQ3
Q7 Are there challenges related to resolving this type of unintended dependencies between components? If so, which ones? RQ2 & RQ3
Q8 How do you detect unintended dependencies at the symbol level, between components? RQ3
Q9 Are there guidelines within ASML to remove unintended dependencies at the symbol level, between components? RQ3
Q10 Do you know a possible solution to the situation [of a specific unintended dependency]? If not, how was the situation removed? RQ3

software engineers (11) who focus on implementingASML’s sys-
tems, and thus its dependencies;

software architects (4) who are responsible for designing the
overall structure of the systems, and thus define its dependencies;

test architects (2) who ensure a system’s quality and reliability
by designing tests, which includes testing dependencies; and

Scrum master (1) who is in charge of coordinating a whole devel-
opment team.

Note that one participant is both a software engineer and a test
architect, which is why the total number of roles is 18. Four of our
participants had 0–5, seven 5–10, five 10–15, and two more than 15
years of experience in software engineering. Since our interviewees
span various teams (and consequently subsystems), departments,
as well as roles and have varying extents of experience, we argue
that our results provide representative insights into unintended
dependencies in multi-lingual systems at ASML.

5 UNINTENDED DEPENDENCIES CATALOG
In this section, we present the results of our study. In particular, we
provide a comprehensive catalog of the eight unintended dependen-
cies in multi-lingual systems we synthesized from the interviews.
For each of these unintended dependencies, we provide a short def-
inition (RQ1), summarize its causes and consequences (RQ2), and
describe resolution strategies used by our interviewees (RQ3). The
number after each dependency name indicates the number of tran-
scripts fromwhich we extracted information about this dependency.
We order the catalog by the number of occurrences as an indication
of a dependency’s frequency and alphabetical afterwards.

5.1 Upwards Dependency (9)
Within a layered architecture, components are typically located in
a specific layer to improve the separation of concerns, with each
layer representing a certain role and responsibility in the system.
Typically, requests in the system are expected to travel from higher
layers to lower layers, and data should move the other way around
from lower-layer components to higher-layer components [36]. In
fact, lower-layer components should not be concerned with the
processed data of components on a higher layer. Nine interviewees
described upwards dependencies as unintended, since they reverse
the flow of requests and potentially data. We display a concep-
tual example for such a dependency in Figure 2a, in which the
component “hardware driver” acts as client by requesting symbols

from the component “controller,” which is on a higher layer. Please
note that we merge this type of dependency from two kinds of
descriptions by our interviewees: Most described this case from
the perspective of the functionality (“upwards-functionality depen-
dency”), whereas others considered the perspective of data flow
(“downwards data flow dependency”). We merge these two cases,
because they represent the same dependency on a conceptual level,
specifically a lower-layer component requesting and receiving sym-
bols (functionality, data) from a higher-layer component.
Causes and Consequences. Upwards dependencies can arise if a
new functionality is introduced at a higher layer and found useful
for a lower layer. Instead of restructuring the system, it is faster and
less expensive to introduce an upwards dependency—even though
it is not intended to exist. Similarly, during refactoring, a large com-
ponent located at a higher layer may be partitioned into smaller
ones that are relocated into lower layers. This process is error-prone
and can lead to upwards dependencies if some of the relocated com-
ponents still depend on the ones remaining in the higher layer. If
downwards data flow is involved, the main cause for upwards de-
pendencies is technical debt; developers opting for an easy solution
that is detrimental to the system’s design to meet a deadline [20].
Moreover, reversing the data flow is used as a workaround in cases
in which unidirectional data flow becomes complex due to compo-
nents requiring information at different times while executing the
system. Finally, a component may not sufficiently abstract and hide
its data, exposing the data to lower-layer components. Upwards
dependencies can negatively impact the complexity and maintain-
ability of a system. Also, they can lead to unexpected behavior,
since requests and data are moving into their reverse directions.
For instance, this can introduce serious semantic errors due to a
loss of control if different unintended components can modify data
or call any functionality. If upwards dependencies are not handled,
they can easily lead to cyclic dependencies (cf. Section 5.2).
Resolution Strategies. Our interviewees stated that this type of
unintended dependencies can be resolved by reorganizing function-
alities. For instance, the functionality causing the dependency can
be extracted and relocated into another component. Where to locate
the functionality (e.g., a lower-layer component, new component
with different programming language) depends on the design princi-
ples employed and the programming languages of the components.
Another solution is to introduce a duplicate of the functionality,
but code duplication is typically considered problematic, too [23].
In parallel, our participants noted that they struggled to resolve
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upwards dependencies that are solely connected to data flow, which
implies multi-lingual, inter-component data-flow analyses may be
an interesting research direction.

5.2 Cyclic Dependency (7)
A cyclic dependency is a well-known architecture smell [18, 32,
38] that occurs if two or more components depend on each other
directly or indirectly, creating a loop among them. We display
such a situation in Figure 2b, in which the cycle is introduced by
component C calling component A even though component A is
already calling component C via component B. Note that a cyclic
dependency may be introduced due to an upward-functionality
dependency (cf. Section 5.1) if the components span different layers.
However, as in our example in Figure 2b, the components may also
be located in the same layer. In this case, the cyclic dependency
does not involve an upwards dependency.
Causes and Consequences. Cyclic dependencies are often caused
by the complexity of large (multi-lingual) software systems and a
sub-optimal separation of concerns. Particularly legacy systems and
components that grow and evolve are prone to cyclic dependencies.
As a result, the maintainability of components and systems de-
creases further, because changes in one component typically cause
ripple effects that require changes in other components, too. Finally,
cyclic dependencies may introduce serious runtime problems like
deadlocks, making the system unreliable.
Resolution Strategies. Essentially, cyclic dependencies can be
resolved the same way as upward-functionality dependencies (cf.
Section 5.1). So, functionality must be relocated to get rid of this
unintended dependency. As for upward-functionality dependencies,
the multi-lingual nature of a system may restrain the options for
relocating individual functionalities compared to a mono-lingual
system. For instance, a functionality may not be transferable to
another programming language, even if that language would be
better suited (e.g., more performant), because this would introduce
further indirections with consequent (unintended) dependencies.

5.3 God-Component Dependency (6)
God components are conceptually identical to the well-known god-
class or long-class smell [27]. A god component is large and highly
coupled internally, exhibiting many unrelated or uncategorized
functionalities (cf. Figure 2c). Due to the lack of separation of con-
cerns, god components cause many unintended and illogical depen-
dencies with other components.
Causes and Consequences. God components and their many de-
pendencies often arise from legacy code that has not been updated
or was written before design patterns and clear reference architec-
tures were used. They can also emerge if deadlines must be met,
emphasizing fast delivery over maintaining the architecture of the
system. The many and illogical dependencies associated with a god
component make it difficult to understand, maintain, analyze, and
extend the god and all depending components—problems further
challenged by different programming languages being involved.
Resolution Strategies. Unfortunately, splitting up god compo-
nents to reduce the number of dependencies is challenging, expen-
sive, and may cause new unintended dependencies. In particular,

our interviewees experienced that a god component is hard to
split up incrementally, which may cause even more problems com-
pared to a complete rework. Moreover, god components typically
require developers to investigate many different components that
are involved in the dependencies and more source code (potentially
in different programming languages) compared to other types of
unintended dependencies.

5.4 Component Configuration Dependency (2)
A component configuration is a set of constants and settings used
to define the interaction between the software of a system, the
hardware on which it is deployed, and the network that it uses.
According to ASML’s architecture, such settings are specified in
the bridge that allows components to interact with each other. A
component configuration dependencymanifests when a component
depends on the configuration settings of another component as a
reusemechanism. However, the configuration is usually component-
specific and reusing it can cause unexpected behavior. For instance,
in Figure 2d component B uses the configuration of component A. If
the hardware onwhich the two are deployed is different, component
B may not behave as envisioned.
Causes and Consequences.Managing a single set of configura-
tions and not multiple can be handy. Consequently, developers are
tempted to depend on the configurations established in existing
components, especially if such configurations use similar resources
to the ones of their component. Also, a lack of understanding re-
garding the architecture of the system can lead to the believe that
configuration settings for two components are identical. However,
this may not be the case and any change in a configuration may
silently impact other components, thereby breaking functionalities.
Resolution Strategies. The simplest solution for this unintended
dependency is to define an own configuration for each component.
An even cleaner solution would be to implement some form of con-
figuration inheritance or templates that allow to reuse configura-
tions while also adapting them. Still, according to our interviewees,
raising the awareness of developers about this problem and about
current practice are the main challenges for avoiding or resolving
this unintended dependency.

5.5 Implicit Dependency (2)
An implicit dependency connects two components without being
specified in the build scope definition file. Such implicit dependen-
cies are unintended, since they have never been specified. As we
exemplify in Figure 2e, implicit dependencies occur due to transi-
tive dependencies between components (brought all together by
explicit dependencies), reflection, or inheritance in the execution
environment of a system [34].
Causes andConsequences. Functions that can be accessed through
implicit dependencies are made available to developers by language
workbenches and language features, such as code completion and
inheritance. In such cases, no action by the developers is required to
make the functionality available within a component, and thus the
explicit dependency definition is not needed. Still, any change to a
provided symbol or to a factor that enables the implicit dependency
in a component may result in unexpected behavior.
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Figure 2: Examples of the eight unintended dependencies in our catalog, marked with red arrows and labels.

Resolution Strategies. Detecting implicit dependencies in multi-
lingual systems currently requires a manual analysis, which is
costly, time intensive, and error-prone. While some assistance
through static code analysis is available, more mature techniques
are needed in industry. Additionally, tracing between externally
used functionality and explicit dependencies may be useful as a
baseline to detect implicit dependencies. Otherwise, developers
need to manually identify and specify implicit dependencies be-
tween multi-lingual components.

5.6 Obsolete Dependency (2)
An obsolete dependency (cf. Figure 2f) is a dependency that is:

dated: a new release of the component is available;
inactive: the maintenance of a component as a whole has stopped

or the project has been abandoned, or;
deprecated: the developers of the component discourage others

to use the dependency.

In any case, the dependency has become obsolete and should be
removed from the system.

Causes and Consequences. Removing dependencies may result
in breaking changes if the client component still requires the re-
quested functionality or data and has not been updated accordingly.
Thus, it may be easier and more reliable to simply keep obsolete de-
pendencies until the developers are sure that these are not relevant
within the system anymore. The lack of tools and support when it
comes to anticipating such scenarios increases the uncertainty and
stagnates maintenance. Moreover, a lack of complete or maintained
documentation can also play a role [25, 26], since it hinders knowl-
edge acquisition to proceed with removing obsolete dependencies
and re-engineering the impacted components. Consequently, the
client component may incur technical debt (costs incurred due to
postponing fixes or needed code changes [14]) and technical lag
(lag between the expected dependency release and its used version
in the client component [20]).

Resolution Strategies. To cope with an obsolete dependency, ei-
ther the client or the provider component must be changed. Chang-
ing the provider can be done by updating the current functionality
or providing alternative functionalities that can replace deprecated
ones. Changing the client means that the dependency is upgraded
to a newer version of the provider component (fighting technical
lag), migrated to an active provider component, or the deprecated
functionality is replaced by a different one within the same provider
component. Knowing when to perform any of these changes or
their impact in terms of security vulnerabilities, breaking changes,
or bugs in multi-lingual systems are the most critical challenges
mentioned by our interviewees.

5.7 Production-Test Dependency (2)
A production-test dependency occurs when production compo-
nents depend on functionalities provided by testing components (cf.
Figure 2g). While promoting code reuse and avoiding duplication
are well-established design principles, dependencies from code in
production to code in testing components should not be established.
Specifically, testing code should rely on production code to test its
behavior and reliability, but not the other way around.
Causes and Consequences. This unintended dependency usually
occurs when functionality required to test the production code
is introduced in the system’s tests. Logically, such functionality
may be useful in the production code, too. For instance, one of our
interviewees mentioned the implementation of additional code to
calibrate printing facilities of a machine during testing. Later, the
production code started to depend on this functionality, aiming to
reuse the code and avoid code duplication. However, this decision
undermined the separation of concerns in the system design, in-
volved unexpected code into the production system, and required
that testing code would be managed as production code.
Resolution Strategies. A simple way to resolve this unintended
dependency is to extract the valued functionality from the testing
component and move it into a production component, which may
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involve changing the programming language of the code. This way,
the code can be reused without introducing code duplication. So, the
developers can safeguard that the system is designed as intended.

5.8 Unused Dependency (2)
Unused dependencies refer to cases in which a dependency be-
tween two components is explicitly defined, but the symbols of the
provider component are not actively used in the client component
(cf. Figure 2h). For instance, a client component may request a vari-
able, but then never use this variable within its implementation.
Too many unused dependencies easily result in so-called bloated
dependencies, dependencies that are compiled together with the
client component’s code by a build tool but that are not required at
compilation or runtime [40].
Causes and Consequences. Similarly to obsolete dependencies
(cf. Section 5.6), software engineers could be afraid to break func-
tionality that is currently in place because they are not sure if they
can safely remove an unused dependency. Software maintenance
activities like refactoring or planning the introduction of a new
dependency can also cause an unintended dependency. Another
cause are developers removing the provider component’s uses, but
forgetting to remove the specification of the dependency (i.e., in the
DSL and build scope definition file). As a result, software develop-
ers may be unaware of the consequent change, which can remain
unnoticed in the client component’s code.
Resolution Strategies. The main challenge for removing unused
dependencies lingers in accurately identifying such dependencies
in multi-lingual components. This can be performed automatically
via tooling that verifies whether there are any provider component
uses in the client component’s code (besides the import statements).
It can also be done by providing detection support via the pro-
gramming language itself, which is the case for Go: Go generates
a compilation error when unused dependencies are imported [13].
Luckily, after an unintended dependency is identified, its removal
from the import statements and other specification files is trivial.

6 DISCUSSION
We now reflect on our catalog by first answering our research ques-
tions before discussing the unintended dependencies’ properties,
connections to existing research, and implications. We also under-
pin our discussion with anonymous quotations (italic in quotes)
for which we display example codes (bold in square brackets) we
assigned during our thematic analysis (cf. Section 4.2).

6.1 Answering the Research Questions
RQ1: Types of Unintended Dependencies.Overall, we identified
eight different types of unintended dependencies for the multi-
lingual systems at ASML (cf. Section 5). As we already assumed,
most of these types are similar or identical to architecture and
code smells in mono-lingual systems (e.g., cyclic dependency) or
represent violations of general software-design recommendations
(e.g., upwards dependency). In contrast, we noticed that the multi-
lingual nature of ASML’s systems adds additional complexity to
these dependencies and challenges particularly their resolution. So,
we argue that our catalog contributes a complementary overview
of unintended dependencies in software systems that expands on

the related work. We discuss the differences between mono-lingual
and multi-lingual systems regarding the unintended dependencies
we identified in more detail within Section 6.2.
RQ2: Causes and Consequences.We found different causes for
which unintended dependencies are introduced in a system. Most
prominently, some functionality that developers want to reuse
is available in some component, but establishing the respective
dependency violates a design rule. However, re-engineering the
functionality into an own or fitting component requires additional
time, is expensive, is error prone, and may require a language
change. As a consequence, re-engineering components is often not
of immediate interest for management or the developers, who first
focus on delivering a working production system. In particular, they
risk to introduce an unintended dependency to meet a deadline:

“I think you will not find any software developer or architect
that is fine with these dependencies. I think we all want to solve
them, and I think that’s something we all have in common. [...]
But then if you look at the amount of other features that we have
to implement for each delivery and with the tight deadlines that
we have, the first things to go are these kind of improvement
actions.” [codes: cause]

One interviewee summarized why unintended dependencies exist:

“That’s why for me, it’s not really unintended. It was intended
taking the risk and those things are still there.”

[codes: cause]

Moreover, while the unintended dependencies may violate specified
design rules, they are not by default causing a system to misbehave
or cause an error:

“Trust me, the current code is working with its violations. [...]
I’m in software, tell me what is wrong with this. I know there
is a rule that is being violated, but so what, why is it wrong?
Apparently it is not so bad, because for four years it was there
[...]” [codes: consequence]

Consequently, it is not of utmost importance for most developers to
immediately resolve such dependencies, until they actually cause
misbehavior or the negative consequences of complicating program
comprehension and maintenance accumulate too much (i.e., tech-
nical debt [29]). In summary, the causes and consequences of un-
intended dependencies are comparable to those of software smells.
RQ3: Resolution Strategies.Most of the unintended dependencies
we identified for multi-lingual systems require the developers to
restructure the system architecture, moving functionalities between
components, layers, and even subsystems. While this is similar
to mono-lingual systems, we found that the resolution strategies
typically are more complicated. In particular, moving functionalities
between programming languages is more complicated than if they
could simply be reused as they are. The developers have to rewrite
the code in such cases, which can be very cumbersome due to
specifics of the languages and the technical environment:

“[...] as far as I remember if you have dependencies in a C++
[component] you cannot use the external component without
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having it defined in the build scope definition. And the build
scope definition is being passed, the whole repo is being passed
[...] In Python you can import also the dependencies that you
don’t have in this build scope definition, and this is a bit more
tricky, then someone manually need[s] to notice it. I believe we
don’t have [an] automated way to find it [...]”

[codes: detect, build scope, multi-technology]

Additionally, the functionality may have been implemented in a
certain language to fulfill a specific requirement (e.g., performance),
so moving to another language may not be ideal. Such factors also
connect to budgeting, since resolving unintended dependencies
between languages is often very expensive and while ASML aims
to resolve them, the costs are sometimes too high:

“[...] so we have one cyclic dependency which is between two
classes. One in C and second in C++. This situation is a little
bit connected to how our components are built, with different
languages. This component was in the past one component that
was written in C, and then we extracted part of it, and then it
became C++ and C. Then we have some dependencies like cyclic
between them, because one depended on the other, and vice versa.
Which is now really hard to change as we cannot change this
code that is written in C, because when we want to change it,
it will require us to make some bigger changes [which] takes
too much time. When we estimated it, this was 100 story points
and no one would give us that amount of budget for fixing one
cyclic dependency, at least not for now.”

[codes: god, cyclic, multi-technology, resolution]

To summarize, it seems more challenging in multi-lingual systems
to decide when and how to resolve unintended dependencies, be-
cause there are additional factors developers have to consider.

6.2 Mono-Lingual Versus Multi-Lingual Systems
Reflecting on the answers to our researcher questions, our findings
suggest that unintended dependencies in multi-lingual systems do
not differ dramatically from the ones reported for mono-lingual
systems. For instance, cyclic dependencies, god-component depen-
dencies, unused dependencies, and implicit dependencies are well-
known software smells [6, 18, 34, 38]. In fact, after analyzing our
catalog, we argue that we could transfer all unintended dependen-
cies easily to mono-lingual systems. However, by addressing RQ3,
we noticed additional challenges when it comes to detecting and re-
solving these dependencies in multi-lingual systems, which deserve
further investigation form the research community.
Detecting Unintended Dependencies. For detecting unintended
dependencies in mono-lingual systems, diverse static and dynamic
analysis techniques (e.g., using data-flow analysis, control-flow
graphs, dependency graphs) have been proposed in research [16, 19,
38]. However, applying these techniques to industrial multi-lingual
systems and building the underlying data structures needed is not
trivial. In particular, providing a framework that, among others,
manages multi-lingual dependencies, includes configuration set-
tings, covers multiple components in different languages, provides
a multi-lingual representation of the analysis results, and scales to
large real-world systems, is crucial but also challenging for detect-
ing unintended dependencies in multi-lingual systems. Compared

to mono-lingual systems, it is particularly interesting to properly
represent multi-lingual dependencies similar to established meta-
data files, such as Makefiles (C++) or requirements files (Python). It
is an interesting research direction to explore how to provide these
representations and analyses for multi-lingual systems.

ASML has tackled these problems by building its internal DSL,
the build scope definition file, as well as a tool that runs checks
on dependencies within the build system. This tool diagnoses the
dependencies of the components within a system and pops up after
a build has finished. To make the tool work and detect dependen-
cies, ASML uses an allow-list containing a list of components that
can depend on each other. The list itself is based on ASML’s ref-
erence architecture. However, this can also cause problems, since
any dependency that is not defined in this allow-list will be flagged
by the tool. In turn, software architects need to manually keep the
list up-to-date, which is an error-prone and challenging endeavor.
Unfortunately, designing and implementing automation to keep all
dependencies between the different tools synchronized, while also
ensuring unintended dependencies are either not allowed or only
accepted under exceptional cases is a challenging problem. More-
over, if they experience any problems, the developers need to follow
a reactive strategy to cope with these issues rather than anticipating
the impact of the introduced changes on the system’s design via
automated analyses. Lastly, more abstract analyses including the
detection of the extracted unintended dependencies have not been
incorporated into the tool. It would be of great benefit to ASML and
similar software companies to develop frameworks and techniques
that automate or at least facilitate the management and analyses of
such properties of multi-lingual systems.

Resolving Unintended Dependencies. As we discussed in Sec-
tion 6.1, deciding when and how to resolve multi-lingual depen-
dencies is challenging and expensive—raising new problems com-
pared to mono-lingual systems. We argue that this is one of the
key differences regarding dependencies in mono-lingual and multi-
lingual systems. For example, resolving upwards or cyclic depen-
dencies must take into account that the involved components may
be in different programming languages. Then, the functionality
causing a dependency cannot always be relocated freely without
re-implementing it in another language, which may have other
drawbacks like performance bottlenecks or needing to relocate
additional components that had a dependency to that component.
Balancing the pros and cons of the resolution strategies is more
complicated in multi-lingual systems compared to mono-lingual
ones. Consequently, further research on the different resolution
strategies for unintended dependencies in multi-lingual would be
highly beneficial, including the definition of resolution patterns,
corresponding automation, and analyses to assess the pros and cons
depending on relevant non-functional requirements.

6.3 Benefits of Resolving the Dependencies
Unintended dependencies are violations of recommendations and
rarely breaking a system. As such, they are still used if time is scarce
and sometimes live for a long time within a system. Consequently,
as for many types of smells, the question arises why to resolve
such dependencies considering the high costs and challenges in
the context multi-lingual systems? During our interviews, we were
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able to collect various benefits based on our interviewees’ experi-
ences, which support that resolving such dependencies and smells
is beneficial in the long run. For instance, avoiding unintended
dependencies leads to a more robust system, meaning that it is less
prone to breaking changes and becomes more reliable:

“Well, the benefits would be that it would be more robust, the
system in general. Because if you don’t depend on a lot of things,
basically the things that you can break are mathematically
limited. [...]” [codes: benefit, robustness]

Other interviewees mentioned that code with fewer unintended
dependencies is easier to comprehend, maintain, and test:

“[...] it will make our code simpler and then make it easier to
maintain. Also, this will make it easier to test, because when
we have cyclic dependencies one class is relying on another, so I
imagine that creating a proper unit test for that will be hard.”

[codes: benefit, comprehension, maintenance, test]

Another interviewee emphasized these points particularly with
respect to testing and avoiding runtime errors like deadlocks:

“Your components are better testable in isolation. So you can
quickly test your changes and therefore develop your components
more quickly. It gives [a] better understanding of the system.
If the dependencies are few, then it’s easier to also oversee the
context, or even the system as a whole of how it is supposed to
work. If everything is top down then there are no deadlocks or
surprise behaviors in your system. And it will favor your locality
of change. [...] I think it’s easier to change also your component
in a backwards compatible way, so you can make safe changes.
Without rippling it out throughout the system.”

[codes: benefit, test, deadlock, safety]

The reasons for such benefits are logical. A system becomes more
modular, less tangled, and its components have a clear task:

“For sure. You have better control over the system. It doesn’t
become a spaghetti system. Yeah the behavior is easier to un-
derstand on a top level. The flow of the information is easier
to understand. The system is better functionally [split]. Also
you don’t have really responsibility [split] between the different
parts of the system. You have everything in a one place, in the
best situation. So I would say it’s very important to have your
dependencies correct.”

[codes: benefit, separation of concerns]

In summary, while it is often not the primary concern and seems
unnecessary since the system behaves correctly, most interviewees
see clear benefits in resolving unintended dependencies. We argue
that these benefits also hold true for quality issues in mono-lingual
systems, providing real-world evidence on those lines of research.

6.4 Implications
We outline below key implications for practitioners and researchers.
For Practitioners.We noticed that some unintended dependen-
cies seem linked to the design of the component bridges and other
artifacts (e.g., allow-list) used to define legit dependencies as well
as to configuration settings. Thus, software architects and software

engineers should carefully assess the design and implementation
of the communication between components written in different
programming languages. For instance, they need to check whether
the communication protocol among multi-lingual components is
sufficient. Moreover, how to define the actual dependencies is es-
sential, particularly with respect to what dependencies are allowed,
how to enforce that the corresponding rules are uphold, and how
to synchronize these between relevant artifacts.

On a final note, regarding any software system, developers face
the dilemma between maintaining legacy code (fighting techni-
cal debt and lag) and introducing new features that add value to
customers. For instance, one interviewee mentioned that

“[maintenance] adds no value immediately, but if you look at
the long term, it makes development of software much easier,
much faster, and much safer.”

[codes: benefit, maintenance]

Another interviewee added that
“the biggest challenge is that [maintenance] is not something
that adds direct value to the customer. So it’s not very easy to
find the budget for this.” [codes: maintenance]

To tackle this issue, an organization as a whole must value mainte-
nance as an ongoing process to improve quality in the long run.

For Researchers. Managing dependencies in software systems
is challenging, and dealing with unintended ones in multi-lingual
systems poses even more complexity. Throughout this paper, we
have sketched directions for future research that are based on in-
dustrial needs, such as developing new techniques for identify-
ing unintended dependencies and (automatically executable) pat-
terns for resolving these. Our catalog of unintended dependencies
and the corresponding insights provide a stepping stone towards
this direction, emphasizing the challenges of dealing with complex
multi-lingual systems in practice. Furthermore, our findings pro-
vide real-world supportive evidence on the negative consequences
of software smells and design flaws, while also highlighting the
benefits of resolving them. In this context, we underpin the need for
lifting existing techniques for dealing with such quality issues from
mono-lingual to multi-lingual systems to facilitate developers’ tasks.
Also, similar to software smells in mono-lingual systems, research
on the evolution, impact, and accumulation of unintended depen-
dencies in multi-lingual systems is an open research direction.

7 THREATS TO VALIDITY
As any qualitative survey building on interviews at one company,
the generalizability of our results is inherently limited. In particular,
there may be potential biases involved due to the teams’ or com-
pany’s perspective on certain code structures and coding standards.
Moreover, our interviewees are employees at ASML who have roles
related to software engineering. Although the questions are specific
to software engineering, their answers are also narrowed to these
specific roles. Other insights may be identified when interviewing
other roles on the topic. Since our research is specific to ASML,
the types of unintended dependencies we identified may not be
applicable to every other system. Especially, ASML operates in a
highly specialized domain and has implemented its own solution
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for establishing dependencies between multi-lingual components.
Thus, the unintended dependencies we identified may not apply to
other domains or companies. Nonetheless, since our findings align
to existing research and provide industrial experiences that were
lacking in these directions, we argue that such threats are small and
our contributions are valuable for practitioners and researchers.

8 CONCLUSION
In this paper, we have investigated eight types of unintended depen-
dencies in multi-lingual software systems at ASML by interviewing
17 practitioners. Not surprisingly, we found that the types of depen-
dencies in multi-lingual systems are often similar or even identical
to smells in mono-lingual systems. However, we found and show-
cased that unintended dependencies in multi-lingual systems can be
more problematic to resolve and may cause more severe problems
than in mono-lingual systems. Such findings provide supportive
real-world evidence on the severity of smells and unintended depen-
dencies in software engineering. Moreover, they highlight the need
to lift existing techniques for identifying, managing, and resolving
unintended dependencies for mono-lingual towards multi-lingual
systems. With our contributions, we provide helpful advice for prac-
titioners on managing unintended dependencies. For researchers,
we contribute a stepping stone for future research and new tech-
niques in this direction.
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