
Do You Remember This Source Code?

Jacob Krüger
Harz University of Applied Sciences

Otto-von-Guericke-University
Wernigerode & Magdeburg, Germany

jkrueger@ovgu.de

Jens Wiemann
Otto-von-Guericke-University

Magdeburg, Germany

Wolfram Fenske
Otto-von-Guericke-University

Magdeburg, Germany
wfenske@ovgu.de

Gunter Saake
Otto-von-Guericke-University

Magdeburg, Germany
saake@ovgu.de

Thomas Leich
Harz University of Applied Sciences

METOP GmbH
Wernigerode & Magdeburg, Germany

tleich@hs-harz.de

ABSTRACT

Being familiar with the source code of a program comprises knowl-

edge about its purpose, structure, and details. Consequently, famil-

iarity is an important factor in many contexts of software develop-

ment, especially for maintenance and program comprehension. As

a result, familiarity is considered to some extent in many different

approaches, for example, to model costs or to identify experts. Still,

all approaches we are aware of require a manual assessment of

familiarity and empirical analyses of forgetting in software devel-

opment are missing. In this paper, we address this issue with an

empirical study that we conducted with 60 open-source developers.

We used a survey to receive information on the developers’ famil-

iarity and analyze the responses based on data we extract from their

used version control systems. The results show that forgetting is an

important factor when considering familiarity and program com-

prehension of developers. We find that a forgetting curve is partly

applicable for software development, investigate three factors – the

number of edits, ratio of owned code, and tracking behavior – that

can impact familiarity with code, and derive a general memory

strength for our participants. Our findings can be used to scope ap-

proaches that have to consider familiarity and they provide insights

into forgetting in the context of software development.

CCS CONCEPTS

•General and reference→ Empirical studies; • Software and

its engineering→Maintaining software; Risk management; •

Applied computing→ Psychology;

KEYWORDS

Familiarity, forgetting, empirical study, maintenance, program com-

prehension, expert identification, knowledge management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180215

ACM Reference Format:

Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas

Leich. 2018. Do You Remember This Source Code?. In ICSE ’18: ICSE ’18:

40th International Conference on Software Engineering , May 27-June 3, 2018,

Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3180155.3180215

1 INTRODUCTION

Developers’ familiarity (or expertise) with a project’s context –

comprising programs and colleagues – is an essential factor for

many aspects of software engineering, such as, team and task per-

formance [16, 29, 37], knowledge sharing [37, 54, 67], and tool

acceptance [17, 37, 54]. Considering the software itself, familiar-

ity influences how fast and reliable developers can comprehend,

enhance, and maintain a program, for instance, to locate and fix

bugs or for reengineering [7, 55, 60, 62]. Consequently, software
familiarity, comprising the knowledge on a programs’ source code,

design, and usage, facilitates maintenance tasks [2, 66]. Especially

as maintaining software is the main cost driver in software devel-

opment [8, 12, 23, 61, 64], comprehending and familiarizing with a

program is essential [60]. For this reason, familiarity is considered

as an important factor in many cost estimation approaches [1, 9–

11, 38] and identifying experts for a piece of code receives much

attention [19, 46–48].

While team familiarity has been investigated extensively [28, 29,

43, 52], less research focuses on analyzing software familiarity. The

main issue in this context are developers forgetting details about

their source code, complicating software development and main-

tenance [33, 39, 66]. To address this issue, approaches on program
comprehension aim to support developers in regaining their famil-

iarity. Several approaches, such as, clean code guidelines [44] or

suitable identifier names [27, 41, 65], have been analyzed and pro-

posed to improve the comprehension of source code [57]. However,

at this point familiarity must already be regained [4, 34]. Assessing

how familiar a developer still is with the source code is essential,

for example, to assign tasks, to identify experts, or, consequently,

to reduce and estimate costs.

In this paper, we propose to adopt forgetting curves [4, 32, 50]

from the psychological domain for software engineering. For this

purpose, we utilize the forgetting curve proposed by Ebbinghaus

[15] and test its applicability for software engineering. Thus, the

main focus of our work is an empirical study that we conducted

This is the authors' version (preprint) of this paper and is posted here for personal use only. The

final version has been accepted at the International Conference on Software Engineering 2018.

Not for redistribution. For any other use contact ACM.

DOI: 10.1145/3180155.3180215

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

with 60 open-source developers from 10 GitHub projects. They

participated in an online survey in which they, for example, ap-

proximated their own familiarity with a specific file. Based on their

responses and data from their commits, we investigate three fac-

tors – namely, the number of repeated edits, ratio of own code,

and tracking behavior – that may affect their familiarity, derive an

average memory strength, and test the aforementioned forgetting

curve. Our findings help to understand how developers forget de-

tails about their source code and how to estimate their remaining

familiarity. The results can support many approaches in software

engineering, for example, to allocate developers to tasks they are

most efficient on, to identify experts, and to search for knowledge

gaps in a project. Moreover, reliable familiarity estimations can

improve the accuracy of cost models. In detail, we contribute the

following in this paper:

• We report an empirical study that we conducted as an online

survey. Based on 60 responses with open source developers,

we investigate the importance of repetition, ratio of own

code, and code tracking on their familiarity. The results indi-

cate moderate to strong correlations for the first two factors.

Surprisingly, we find no correlation between familiarity and

tracking for our participants.

• We identify an average memory strength for our participants

as a crucial factor to approximate forgetting.While this value

needs to be refined in the future, it provides hints at how

fast developers may forget their code and on the reliability

of self-assessments. Also, researchers and practitioners can

use this value as baseline for further research.

• We test if Ebbinghaus’ [15] forgetting curve is applicable in

software engineering. For this purpose, we analyze which

of the investigated factors distort the standard course of

the curve. The results show that different factors need to

be considered before the forgetting curve can be fully ap-

plied. Nonetheless, if these factors are not effective, the curve

actually fits well to the responses of our participants.

Overall, we aim at analyzing the effects of forgetting to derive ap-

proaches to automatically measure or improve software familiarity

in future research.

2 BACKGROUND

In this section, we introduce background information on famil-
iarity and forgetting curves. Both concepts are essential for the

understanding of this paper.

2.1 Familiarity

Familiarity comprises knowledge persons gain on different aspects

of their daily work and about their team members. Over time, they

become familiar with their domain and each other, improving in-

teractions, implementing a knowledge base, and supporting the

identification of expertise [50, 52]. Thus, studies show positive ef-

fects of familiarity on, for example, team performance in flight

simulations, problem solving, and several other tasks [16, 42, 43].

In software development, this familiarity focuses on a specific

program and the developing team. While it is an important fac-

tor, we are not aware of detailed analyses and measurements of a

developer’s familiarity with a program. For example, Boehm et al.

����

����

����

����

����

� � � � � �

	
��

�
����

�
��

�

�
�

��

�
�
�

�
�
�

�
�
�

Figure 1: Forgetting curves of Ebbinghaus [15] for memory

strengths (s) of 1, 2, and 3.

[10] introduce a scale to measure unfamiliarity for cost estimations

with the COCOMO II model and its extensions [5, 11]. The pro-

posed scale ranges from 0 to 1, representing completely familiar
and completely unfamiliar, respectively. Still, the actual value must

be judged by a user.

In the context of this work, we are focusing on a developer’s

familiarity with a program. This software familiarity is the result

of studying and working with a program, leading to knowledge

about the purpose, usage, and structure, for example of a file. We

are aware that several terms exist that are closely related, used

synonymously, and sometimes may be interpreted in the same way,

for instance, comprehension, knowledge, learning, expertise, or

experience. However, we rely on the term familiarity in this paper,

as it subsumes such meanings.

2.2 Forgetting

Familiarity is no consistent state: It can be gained but also fades over

time. The main reason for becoming unfamiliar with a program is

that we forget details about it. Consequently, over time developers

become less familiar with their code and need more effort to regain

the necessary familiarity to work on it. This forgetting process

basically represents the opposite and, thus, is strongly connected

to learning [32, 50]. In psychology, different forgetting models and

curves exist [32, 50]. We rely on the forgetting curve described

by Ebbinghaus [15]. While it is rather old, studies show that it can

be replicated and performs similar to other curves [4, 49]. In the

context of this work, the remaining memory calculated with this

curve represents the developers’ familiarity.

Ebbinghaus [15] describes an exponential nature of forgetting,

as we display in Equation 1.

R = e−
t

s (1)

Do You Remember This Source Code? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Here, R represents the resulting memory retention rate. The relative

memory strength of the considered subject is defined by s and t

is the time (in days) between studying an artifact and testing the

subject’s memory. To exemplify this function, we display curves

for three different memory strengths in Figure 1. As we can see, a

higher memory strength results in a slower retention rate, meaning

that the familiarity remains for a longer time. For example, with

a memory strength of s = 1 (solid red line in Figure 1), after the

first day only 37% of the familiarity remains. In contrast, a memory

strength of s = 3 (dotted black line in Figure 1) indicates that the

same value is reached only after three days. This memory strength

is individual for each person and depends on several factors, such

as, learning effects and the considered artifact.

3 PROBLEM STATEMENT

In several scientific and industrial domains it is essential to consider

the familiarity of software developers with the code they work

on. There are multiple factors that influence how fast developers

forget and, thus, loose familiarity with a program. Consider the

following example with two developers, A and B: At first, developer

A implements a file and at the point of creation is most likely

completely familiar with it. However, when he stops working on the

file for some time, his familiarity decreases, potentially resembling

a forgetting curve by Ebbinghaus [15], as we depict in Figure 1.

Additionally, developer B changes the file, for example, to add new

functions or remove bugs. Here, two other factors besides forgetting

apply: Developer B has to understand the existing code at least far

enough to change it and, thus, gains familiarity. He could even

gain 100% familiarity if he would investigate every detail of the file.

In contrast, the familiarity of developer A is negatively affected

because he also has to analyze the new implementation at some

point. Any further change results in the same effects and in one

developer loosing familiarity while the other may gain it.

This example raises several questions regarding the impact of

code changes on a developer‘s familiarity, for example: Is a forget-
ting curve appropriate for software developers? How fast do software
developers actually forget their source code? Do repeated commits
improve the memory strength? How do changes of other developers im-
pact familiarity? How many changes of others do developers analyze?
Which other tasks, such as, reviewing or testing, affect familiarity?
In this work, we focus on a subset of these questions. Namely, we

investigate the applicability of Ebbinghaus’ [15] forgetting curve

on software developers, their average memory strength, and if rep-

etitions, the ratio of own code, or observing others’ changes on

own files affect familiarity. Despite our focus on these factors, all

stated questions are important future work. The resulting findings

can be used to derive approaches for measuring familiarity and to

improve our understating of software engineering activities.

To this end, we derive the following three scenarios that affect

familiarity based on our example:

Sc1 Forget: Over time, developers lose knowledge and become less

familiar with source code they worked on. Thus, they cannot

recall all details anymore and need time to regain familiarity.

Sc2 Gain: Developers who edit source code, for instance, by adding,
modifying, or removing lines, aim to understand already ex-

isting code in addition to their newly written code. Thus, they

gain or regain familiarity, due to analyzing existing source code,

either someone else’s or their own.

Sc3 Unaware: If another developer edits source code, the original
author is unlikely to review the modifications until it is neces-

sary. For this reason, the familiarity of a developer decreases

with any edit another one applies, due to his unawareness of

the modification.

In the remaining paper, we refer to these scenarios to describe

which aspects of familiarity we address with our analysis.

4 SURVEY DESIGN

To address the aforementioned questions, we conducted an online

survey. In this section, we describe our research questions, survey
setup, and subjects.

4.1 Research Questions

The goal of our survey is to provide insights into software famil-

iarity and especially on factors that preserve it. Thus, we aim to

answer the following research questions:

RQ1 Do the factors repetition, ratio of own code, or change

tracking affect a developer’s familiarity?

There are many factors that can affect a developer’s famil-

iarity, of which we investigate three: Firstly, we hypothesize

that repeatedly working on the same code refreshes famil-

iarity (Sc2) and improves capabilities to remember details,

due to learning effects (Sc1). Based on the results of Glenberg

[21], we expect a monotonically rising dependency. Secondly,

developers should also be more familiar with a file if they

wrote a larger ratio of it (Sc3). Finally, we analyze whether
our participants track changes (Sc3) of other developers on
their files and if this affects their familiarity. Answering this

research question will contribute empirical findings regarding

the influence of these factors on software familiarity.

RQ2 What is the average memory strength of a developer

regarding the source code?

As we described in Section 2, the memory strength is nec-

essary to estimate how fast forgetting proceeds (Sc1). Thus,
our results help to approximate how long developers remem-

ber code, supporting corresponding estimations. We remark

that this factor is heavily impacted by individuals’ charac-

teristics and can also be trained. Consequently, there can be

considerable outliers for a specific developer.

RQ3 Is Ebinghaus’ forgetting curve applicable for software

developers?

In the end, we aim to assess the applicability of Ebbinghaus’

[15] forgetting curve in software development. For this pur-

pose, we compare the self-evaluations of our participants

with computed values. The outcome helps to design further

research, for example, to automatically measure familiarity

or improve approaches that are based on it.

Overall, answering these questions helps research and industry

alike to analyze, understand, and improve software development.

Our findings support many research areas, such as, cost estimation,

knowledge management, teaching programming, expert identifica-

tion, and reengineering.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

4.2 Survey Setup

For the general setup of our study, we decided to perform an on-

line survey. As an introducing part of the survey we provided the

following short introduction of familiarity to avoid confusion on

this term:

Software familiarity – generally known as a result of study or

experience. If familiar, you know: The purpose of a file, its usage

across the project, and its structure or programming patterns.

We asked to insert the GitHub username or mail address to prevent

multiple responses from the same developer and to track their

commits. Furthermore, all developers had to specify one file of their

project they had been working with. Here, we especially asked

them not to check this file before participating. We used several

questions, of which the following are of interest for this work.

Howwell do you know the content of the file? For this ques-

tion, the developers have to assess how familiar they are with the

file they specified before. Here, they can rate their familiarity on a

Likert scale from 1 (i.e., barely the purpose) to 9 (i.e., purpose, us-

age, and structure), which represents percentages. We do not allow

a rating of 0 as the developer of a file should have at least some

knowledge about it. Furthermore, we assume that participants do

not know all details (e.g., each line) of the code even if they devel-

oped it and, thus, we do not allow a 10. We use the answers for all

our research questions, as they provide the basis for our analysis.

After howmanydays do you only remember the structure

and purpose of a file, but have forgotten the details? In this

case, the participants have to estimate after how many days they

would still have a remaining familiarity of 5 (i.e., its purpose and

usage). While this is a challenging estimation, we use the answers

to validate our calculations for the second research question.

Howwell do you track changes other developers make on

your files? This question addresses our first research question. We

can extract values for repetitions based on commits and the ratio of

own code based on a file’s history. In contrast, we have to personally

ask our participants whether they track changes that others do on

their files. To this end, we use a Likert scale ranging from 0 (i.e., no

tracking at all) to 10 (i.e., analyzing each change).

How many lines of code does the file contain?We ask this

question to validate whether the participants remember the correct

file or are just too unfamiliar with it. Here, we exclude responses

with a high error rate, as we describe in the next section.

When was the last date you edited the file? Again, we use

this question to validate the participants’ responses. A high de-

viation from the real date of the last edit may indicate missing

motivation or a wrong file being remembered. Thus, we also ex-

clude such responses from our analysis.

4.3 Subjects

As we aimed to use data from version control systems to answer

our research questions, we considered the ten GitHub projects we

display in Table 1. We varied our selection to consider different de-

velopment approaches and to increase the response rate, wherefore

we included projects with different attributes: Firstly, we searched

for actively developed and popular projects from which we invited

all developers that edited a file in 2016. Secondly, we varied the

Table 1: Projects considered for the survey.

Project Language
Developers

Inv. Resp. Incl.

aframe JavaScript 43 5 4

angular.js JavaScript 75 8 7

astropy Python 41 13 7

ember.js JavaScript 75 5 3

FeatureIDE Java 10 4 4

ipython Python 33 3 3

odoo Python 135 15 10

react JavaScript 153 4 4

serverless JavaScript 89 12 11

sympy Python 68 9 7

Overall 722 78 60

Inv:: Invited; Resp.: Responded; Incl.: Included

programming language and team size to consider different devel-

opment styles. Finally, we considered some scientific projects, for

example astropy, as research shows that response rates for these

are higher [14]. Each active developer received a mail containing a

link to our survey.

To consider the quality of responses, we define the following

exclusion criteria:

(1) Participant did not edit the selected file: As we do not ask

the participants to specify a file they committed to – but

with which they worked – 4 of them picked one they did not

commit to. As we cannot extract any information from the

commits, we remove these responses.

(2) Last edit was more than a year ago: We especially ask the

participants to specify a file they worked on in 2016. Still, 9

of them picked one that they edited only before. We exclude

these responses.

(3) High deviation: We also exclude responses where answers

to the last two questions deviate by more than 100% (75%

considering the lower bound for lines of code) from the real

value. In 5 cases this appears for the date of the last edit

(measured in days) and in 9 other cases for the lines of code.

As we show in Table 1 (the delta between responded and included),

we exclude 18 responses, often due to multiple criteria. Still, 60

responses remain valid and provide the basis for our analysis.

5 RESULTS

In this section, we describe for each research question the results

of our survey and discuss the corresponding implications. We dis-

play an overview of our data in Table 2.1 Here, we show all values

grouped by the subjective familiarity (SF) that each participant

estimated. Furthermore, we show the number of commits that were

done by the participant (#C) as well as the number of participants

(#P) that responded with this combination of familiarity and com-

mits. We remark, that the commits actually refer to distinct days

on which the participant submitted at least one commit. Otherwise,

we would, for example, consider multiple small commits of one

developer more important than a larger one by another. This way,

we aim to neglect this effect. In addition, the number of participants

1All responses (anonymous): https://bitbucket.org/Jacob_Krueger/icse-2018-data

Do You Remember This Source Code? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Subjective file familiarity (SF) assessment compared to the number of commits (#C) and time since the last commit

(∆D). The number of participants (#P) is explicit and describes how often the corresponding combination of SF and #C appears.

SF 1 2 3 4 5 6

#C 1 1 2 4 1 2 3 6 1 2 7 1 2 9 1 2 4 5 21

#P 4 8 1 1 6 2 1 1 3 1 1 2 1 1 1 1 1 1 1

∆D 206.3 146.6 317 86 70.8 169 60 184 52 159 41 58 114 25 25 23 28 23 44

SF 7 8 9

#C 1 3 4 8 27 1 2 5 6 7 9 11 15 27 3 4 16 35 37 43

#P 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∆D 10 183 43 91 100 9 15 38 96 115 30 299 137 114 41 234 55 43 34 151

���

���

���

� ��� ��� ���

�	
��
������	���������

�
	�
��
�	
��
�

Figure 2: Familiarity of all responses related to the time

since the last commit and the number of commits (circle-

sizes represent #C). The solid blue line displays average val-

ues. The dashed red line displays the average for responses

with a single commit.

is explicit (not represented by the number of columns) and we have

between 4 and 10 participants for each familiarity level. Finally,

we provide an overview on the average days since the last commit

(∆D) based on the date on which the survey has been answered.

First, we consider Figure 2 to describe the necessity for our

research questions. Here, we display all responses by relating the

days since the last commit to the subjective familiarity. Each circle

represents one participant and the circles’ sizes the absolute number

of commits. In addition, the solid blue line illustrates the average

value for all participants, while the dashed red line illustrates the

average for those that committed only once.

If we assume that all developers have the same memory strength

and that no other factors influence how well they can remember

code, the average in Figure 2 should resemble the forgetting curve

of Ebbinghaus [15]. At the beginning, this seems to be the case, as

most participants state a high familiarity if their last commit is not

far in the past. However, around the value of 100 days since the last

commit, the average familiarity rises. We see in Figure 2 that the

responses with high familiarity at this point skew the curve.

Overall, the average does not follow the forgetting curve. Also

considering the peak at around 120 days, this implies two pos-

sibilities: Firstly, the forgetting curve is unsuitable for software

developers. Secondly, there are other factors besides the time that

influence familiarity. As the responses with a single commit (the

dashed red line in Figure 2) fit the forgetting curve better, we favor

the second option, which means that adaptations to the curve are

necessary. This matches our first and third research question, which

we investigate in the following.

5.1 Factors’ Impact on Familiarity

Regarding our first research question, we aim to identify if there

are correlations between the subjective familiarity and the three

factors repetition, ratio of own code, and tracking. We support our

investigations of each factor with two rank correlation measures:

Spearman’s Rho (rs) and Kendall’s Tau (τ) [18, 24, 35, 59]. Both

are used to asses monotonic dependencies between two variables

without assuming normal distribution. The results range from -1

to 1, meaning negative and positive correlation, respectively. We

apply for each measure a corresponding significance test with a

confidence interval of 0.95 – using algorithm AS 89 [6] for Spear-

man’s Rho and a tau test for Kendall’s Tau, as implemented in the

statistical programming language R [30].

Before investigating the mentioned factors, we have to test

whether the size of a file correlates to familiarity. This should not

be the case, as we – in accordance with Ebbinghaus’ [15] forgetting

curve – consider each file as a single artifact and the remaining

familiarity in percentages. The statistics show no significant corre-

lation (p > 0.2). For completeness, we still compute the effect sizes,

which are very weak for both measures (rs = 0.16 and τ = 0.11).

Thus, all results confirm our assumption that the file size does not

correlate with the stated familiarity. We summarize the significance

tests and correlation measures for all factors (including file size) at

the end of this section in Table 3.

5.1.1 Repetition. As first factor that may influence the deviation

between the theoretical forgetting curve by Ebbinghaus [15] and

the empirical average, we consider repetition. Research shows that

repetition can significantly improve memory and learning [45, 56].

In Figure 2, we see that the increase around 100 days since the

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

���

���

���

� �� �� �� ��

	
��
������������

�
��
��
��
��
��

Figure 3: Familiarity related to the number of commits. The

blue line displays average values. The circle-sizes represent

the number of participants with this combination.

last commit matches with a higher number of total commits. Fur-

thermore, we see that most responses with multiple commits are

above a familiarity of 5. Responses with fewer – mostly singular –

commits are mainly below this threshold.

We can further support this observation by displaying the aver-

age only for those responses with a single commit as the dashed

red line in Figure 2. In this case, the average actually resembles

the forgetting curve of Ebbinghaus [15]. This is reasonable as the

curve does not consider repetitions and, thus, may be appropriate

for single commits.

In Figure 3, we show the familiarity solely related to the number

of commits. Here, the circles’ sizes illustrate the number of par-

ticipants stating this combination. Again, the blue line represents

average values. We see that all responses below a familiarity of

5 have 10 or less commits. On average, the results show a rising

familiarity as the number of commits increases.

Discussion. All results indicate that repetition affects familiarity.

The average deviates from the forgetting curve at points at which

responses with multiple commits appear. This is due to these re-

sponses being mostly located in the top half of the familiarity scale,

where they should not be according to the forgetting curve. In Fig-

ure 3, this effect is emphasized even more, as only responses with

less than 10 commits in total are below this threshold. To test this,

we assume the null hypothesis that commits and familiarity are not

correlated. However, our statistics reveal a highly significant corre-

lation between the two (p < 0.001). The rank correlation measures

imply a moderate to strong positive effect (rs = 0.67 and τ = 0.55).

We therefore reject the null hypothesis in favor of assuming that

the number of commits positively affects familiarity.

���

���

���

� �� �� �� ���

��	
���
����������
��	����
��
�
��

�

�
�

	�

Figure 4: Familiarity related to the ratio of own code. The

blue line displays average values. The circle-sizes represent

the number of participants with this combination.

Based on the results we conclude:

The number of edits is moderately to strongly positively cor-

related with familiarity in software development.

5.1.2 Ratio of Own Code. Another factor that may impact a de-

veloper’s familiarity is the ratio of code they implement themselves.

To compute this ratio, we extract the file’s version for the day we

received the survey. Then, we account each line the participants

edited last (using git blame) to them and relate the sum to the file

size. We display the corresponding results in Figure 4. Again, the

blue line represents the average and the circle-sizes the number of

participants with this combination. The average behaves compara-

ble to the one we find for repetitions (cf. Figure 3). However, the

line is on a lower familiarity level in this case.

Discussion. The results imply a correlation between the ratio of

own code and familiarity. Still, as the average trend is not as strong

as in Figure 3 and more deviation occurs, we assume a weaker cor-

relation. This seems reasonable, as the developer has implemented

the code but can only regain familiarity based on repetitions. For

our significance tests, we assume as null hypothesis that the ratio of

code a developer implemented is not correlated to their familiarity.

The outcome indicates a highly significant correlation (p < 0.001),

wherefore we reject the null hypothesis in favor of assuming that

both parameters are related. As rank correlations, we compute

rs = 0.55 and τ = 0.42 and, thus, a positive, moderate correlation.

Based on the results we conclude:

The ratio of code implemented by developers themselves is

moderately positively correlated with their familiarity.

Do You Remember This Source Code? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

���

���

���

��� ��� ��� ��� ����

��	�
��
�	�������
�	����

�
	�
��
�	
��
��

Figure 5: Familiarity related to the tracking behavior. The

blue line displays average values. The circle-sizes represent

the number of participants with this combination.

5.1.3 Tracking. We asked our participants to which extent they

track changes others apply to their code. This factor could also

impact their familiarity, because tracking may indicate that they

analyze the changes and are therefore more familiar with the code.

We display the results in Figure 5. Actually, it surprises us that

many of our participants state a value of above 5. This indicates

that they are aware of the code others implement and change in

their files. Still, participants with high tracking values are almost

equally distributed above and below a familiarity of 5.

Discussion. Despite high values in the responses, we find no hint

of a correlation between tracking and familiarity in Figure 5. Due to

the deviation of responses, we assume no correlation between the

two considered parameters. We use this as our null hypothesis and

find no significant correlation (p > 0.78). Also, the rank correlation

measures of rs = 0.04 and τ = 0.02 indicate almost no dependency.

Thus, for our participants, we find no correlation between tracking

changes and familiarity.

This result poses some questions. Possible explanations may be

that developers indeed track changes but do not investigate them.

Maybe, our participants also interpreted the term tracking differ-

ently. For example, some may have seen it as actually analyzing

code, but others as just reading notifications. If they actually review

code, we would expect a correlation to the familiarity, as these activ-

ities are also a form of repetition. However, this does not seem to be

the case. Further qualitative analyses are necessary to investigate

this discrepancy.

Based on the results we conclude:

The tracking behavior of own files does not affect familiarity.

Table 3: Spearman’s Rho (rs), Kendall’s Tau (τ), and the cor-

responding significance (sig.) values for each factor.

Factor rs sig. τ sig.

File Size 0.162 0.218 0.11 0.236

Repetition 0.671 4.557 × 10
−9 0.546 5.175 × 10

−8

Own Code 0.553 4.57 × 10
−6 0.42 6.863 × 10

−6

Tracking 0.036 0.788 0.023 0.81

5.1.4 Summary. Overall, we find that repetitions are positively

correlated with familiarity. This is not surprising, as learning and

memorizing are improved with repetitions. Interestingly, the num-

ber of commits seems to partly outweigh time as an indicator for

the subjective familiarity. For the ratio of code implemented by a

developer, we also find a positive but weaker correlation. It seems

clear that the code developers implement themselves is more fa-

miliar to them. Still, they also become unfamiliar with this code,

reducing their familiarity if they do not repeatedly investigate it.

Considering the tracking of changes, we find no correlation.

Regarding our first research question we conclude:

Repetition as well as the ratio of own code are significantly

positively correlated with familiarity. Thus, they must be

considered in a suitable forgetting curve.

5.2 Memory Strength

Regarding our second research question, we want to identify an

average memory strength for our participants. For this purpose, we

compute the memory strength of each participant first by transpos-

ing Equation 1 into Equation 2.

s = −
t

ln(R)
(2)

Recall that t represents the days since the last commit and R is the

stated familiarity. Consequently, s indicates how fast our partici-

pants’ memory fades each day.

We compute three different distributions: Firstly, the memory

strength based on the subjective familiarity of all participants. This

value includes repetition and, thus, is biased considering the actual

forgetting rate. However, we can again verify our previous find-

ings: If repetition is significant, the median and distribution of the

memory strength should be higher than for the other two cases.

Secondly, we compute the memory strength based on the subjec-

tive familiarity of participants that committed only once. Finally,

we compute the memory strength based on the responses to the

question after how much time half of a file is forgotten. Here, the

retention rate R is 0.5, meaning that half the familiarity is lost, and

the time is the participant’s response. As this question is challeng-

ing to answer, we assume that the second value should represent

the best approximation for our participants’ memory strength.

Results. We display the computed distributions for each case

as violin plots in Figure 6. Note that we use the median instead

of the mean for our calculations in the next section, as we have

large outliers. These outliers are only partly visualized to avoid an

unreadable scaling. We also display the number of responses in

each distribution below the corresponding violin plot.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

��

��

��

�� �� ��
�

���

���

���

���

���

��	
���
����� �������

�	��������
���������

�
	�

�

�
��
�

	�

�!

Figure 6: Computed memory strengths based on the famil-

iarity of all 60 participants (Overall, left), of only those 27

with one commit (#E = 1, center), and based on the approxi-

mation question (R = 0.5, right).

As we expect, the memory strength based on the familiarity

of all participants is the highest with a median of 90. In addition,

the deviation in the results is the largest. For the participants with

only a single commit (#E = 1) and the approximation question, the

medians are 65 and 43, respectively. Both have considerably smaller

deviations than the first sample. While the sample with only single

commits has the smallest deviation, it also contains only 27 out of

60 responses. Regarding the approximation question, we remark

that our participants state that they forget half of their files after

30 days in the median and 40 days on average. To compute the

corresponding familiarity, we again use the median.

Discussion. For our goal of deriving a general memory strength,

we discard the overall sample as it includes repetition. However,

the higher deviation and median substantiate our previous find-

ings. Due to repetition, the computed memory strength increases,

indicating the same effects we find in Section 5.1.

Interpreting the remaining two samples is quite difficult. In the

sample #E = 1, we compute the values based on the remaining

familiarity and only for participants that committed once to a file.

Due to the smaller sample size, less deviation appears. The median

value of 65 indicates that after this number of days, developers

remember only 36.79% of the original file. After approximately 45

days, half of the knowledge is lost.

The median of 43 for the approximation sample (R = 0.5) could

represent a more complete view on the participants’ familiarity,

as we include all of them in this distribution. However, instead of

assessing only their subjective familiarity, each participant also has

to estimate a time factor. Thus, these results seem less reliable.

This analysis has to be repeated and validated in further studies.

Still, we argue that 65 can be considered as a good approximation

of the general memory strength for our participants. It is based on

less subjective assessments, includes only the appropriate subjects,

and is affected by less deviation. In addition, this memory strength

does closely correspond to the stated days – on average – after

which half of a file is forgotten (40).

Regarding our second research question we conclude:

The computed memory strengths substantiate the previous re-

sults on repetition. A median value of 65 seems to be an appro-

priate approximation of our participants’ memory strength.

5.3 The Forgetting Curve

Finally, we consider Ebbinghaus’ [15] forgetting curve to answer

our third research question. As stated before, if there are no other

factors than time, the results we show in Figure 2 should resemble

the forgetting curve. If we only consider responses with a single

commit (dashed red line), our results and the curve become more

similar. Still, our previous results show that there are factors that

influence familiarity in software engineering.

In Figure 7, we display the familiarities computedwith Equation 1

– based on the previously derived memory strengths – compared

to the subjective assessment of our participants. Ideally, one of

the curves would resemble equal values for both familiarities. We

illustrate this with the black diagonal. As we see, none of the func-

tions resembles this line completely. This is not surprising, as the

forgetting curve does not consider any other factor than time. For

instance, we find that a high number of commits indicates a high

familiarity and, for this reason, all functions drop at a certain point.

Still, as we explained before, Ebbinghaus’ [15] curve does roughly

resemble the black line if we consider the memory strength of 65

and only single commits. This is indicated by the orange line and

triangles being close to the ideal until a familiarity of 6. However,

as we determined this memory strength based on the illustrated

values, this match is not surprising.

Discussion. The results of our study indicate that the forgetting

curve of Ebbinghaus [15] is applicable in software engineering if

no other factors than time affect familiarity. In our study, most

deviation occurs due to repetition. Consequently, the curve could

be used if developers would not modify their code again. Still,

this is usually not the case and adapted approaches for software

development seem necessary. These can base on our analysis and

potentially integrate our findings into an existing forgetting curve,

for example by Ebbinghaus [15].

The results we show in Figure 7 also substantiate that the re-

sponses of the approximation question seem less reliable. Estimat-

ing two subjective values may have negatively influenced the self-

assessment of our participants. However, we cannot finally conclude

which of the curves represents reality best, as we rely on subjec-

tive self-assessments. Thus, further empirical studies are needed

to validate and consolidate the memory strength, potentially with

different measurements.

Regarding our third research question we conclude:

The forgetting curve of Ebbinghaus [15] is only applicable for

software developers if no other factors, mainly repetitions,

occur. Thus, an adaptation seems necessary.

Do You Remember This Source Code? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 7: Comparison of subjective and computed familiari-

ties with different memory strengths.

6 THREATS TO VALIDITY

We are aware of several threats to validity, which we discuss based

on common classifications [13, 53, 68]. Most threats result from

combining two research areas: Psychology and computer science.

Construct Validity. The terms we used may result in misun-

derstandings and our questions may have been misinterpreted.

Especially, this could be a problem regarding that native and non-

native English speakers participated. We mitigate this threat by

using control questions, as explained in Section 4, and excluding

responses that indicate misunderstandings (e.g., proposing a file

the participant did not commit to).

Internal Validity. As we aim to measure the familiarity of de-

velopers with the source code, we find several threats to the internal

validity, due to potentially unknown or not yet considered parame-

ters. In the following, we exemplify some aspects that can affect

learning and forgetting, but are excluded from our study:

• The effect of reviewing and testing but not committing source

code is not considered, but also results in repetitions.

• Different development approaches may influence how devel-

opers remember source code or whether we consider them

correctly during our analysis.

• The degree of reuse of source code may further support

developers’ memory, due to multiple occurrences.

• Considering implemented features, development time, and
importance of source code could indicate whether developers
can remember such factors more easily.

• Some programming languages may be harder or easier to

remember than others.

Despite such factors, we intentionally used a simplistic approach

based on a prominent forgetting curve to gain insight into forgetting

in software engineering. While all the aforementioned factors can

have an impact, further investigations are necessary to analyze

these and, currently, we would have to rely on many assumptions.

Also, we argue that considering forgetting, unknown code, and

repetition are valid and important factors to this end.

Another threat to the internal validity is the used forgetting curve

of Ebbinghaus [15]. Other curves may be better suited to represent

forgetting in software engineering and may consider additional pa-

rameters. However, the curve we use is established and in a recent

study, Murre and Dros [49] replicate and validate its suitability in

an experiment. As they also show that other forgetting curves do

not heavily differ, we argue that this is not threatening our study.

Furthermore, Averell and Heathcote [4] also show that the expo-

nential nature of the forgetting curve fits best to their participants’

results. We remark that both studies origin from the psychological

domain and, thus, may not be completely transferable.

External Validity. Background factors, such as, age, gender,

education, or the motivation of open-source developers [22, 26,

63] – and our respondents in particular – may influence memory

performance. However, medical and psychological studies suggest

that memory performance is stable until middle age [51] and gender

mainly affects episodic memory [25], which is unimportant to our

study. We assume that the educational level and motivation are

relatively homogeneous in our sample. Still, as we cannot control

these factors, they remain a threat to validity.

An additional concern is the subjective nature of familiarity.

Each developer learns, understands, and forgets at a different rate,

with different factors influencing familiarity. Still, as we rely on an

accepted model for forgetting, we argue that by using medians of

the participants’ results, we obtain valid insights into forgetting in

software development.

Conclusion Validity and Reliability. Potentially the main

threat to our work are several of our questions requiring subjective

self-assessment. This could bias our conclusions in several ways,

but as we measure and compute subjective factors, we have to rely

on these assessments until we know more about such factors. In

addition, we have a comparatively small number of participants,

which may lead to statistical errors. We mitigate these threats with

our control questions – excluding implausible responses – and

by carefully deriving conclusions not only from statistical tests

– which we only use to support our arguments. Considering the

applied tests, we especially used Spearman’s Rho and Kendall’s Tau

as they do not require normal distributions or linear correlations.

Despite the discussed threats, we argue that any researcher can

repeat our study on their own. Depending on the subjects, questions,

and parameters, different results may occur. However, this is true for

most empirical studies and is not a threat to our study. Nonetheless,

we strongly encourage the research community to replicate and

extend our approach and study, as we also aim to do. For this

purpose, we provide access to an anonymous version of our results,

as we described in Section 5.

7 RELATEDWORK

There exist several related works that investigate forgetting in differ-
ent domains. Other complementary works include empirical studies
and expert identification.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

Forgetting. Nembhard and Osothsilp [50] report a comparative

study on forgetting models in the context of production manage-

ment. They identify several strengths and weaknesses of the models

considering different tasks. While this work has a different scope

than ours, utilizing the applied method can help to adapt an ap-

proach for software development. Also, the problem of correctly

approximating forgetting and familiarity can be seen, as few years

later Jaber and Sikstrom [32] criticize the aforementioned work.

They contradict the results for one model that performs poorly in

the previous study. Similarly, Jaber and Bonney [31] compare three

learning and forgetting models on a mathematical level.

In psychology, the form of forgetting curves is often debated

and Averell and Heathcote [4] address this issue with an experi-

ment. To this end, they measure different variables over 28 days to

observe forgetting. The results indicate that exponential forgetting

curves, such as the one by Ebbinghaus [15], are the best fit for their

participants. Their analysis may provide further details for refining

our study and to derive an approach for software engineering.

Empirical Studies. In an empirical study with 19 Java devel-

opers, Fritz et al. [19] investigate the identification of knowledge

in software development. The participants are asked questions for

files they worked regularly or recently on. Both metrics are helpful

to identify the experts of a program element and several aspects

that can improve the model are investigated. Our study is comple-

mentary to this one as we are not interested on identifying existing

knowledge, but its fading over time. We also show a significant

correlation between regularly working on a file (i.e., repetition) and

familiarity, which supports the assumptions of Fritz et al. [19].

Kang and Hahn [34] investigate learning and forgetting in soft-

ware development. Their findings suggest that learning effects

appear for all kind of technology while only methodological knowl-

edge exhibits forgetting. However, they perform their analysis on

artificial project data rather than with participants and focus on

general categories of knowledge. Our work differs as we examine

familiarity on the code level and conduct our study with developers.

LaToza and Myers [40] investigate questions that programmers

face while developing software. For this purpose, they gather more

than 300 questions and categorize them. The results indicate that

developers often ask rather specific questions about a scenario,

such as, the impact of a potential bug. Most of these questions

are connected to the source code and illustrate the importance of

being familiar with it. Thus, their work can be used as basis for

extending our study by definingmore detailed questions, potentially

to approximate familiarity for validation purposes.

Koenemann and Robertson [36] report an empirical study in

which they investigate how professional developers analyze source

code. Their findings show that programmers only focus on those

parts of a software that are relevant to them. Combining these

results with ours could imply some further factors that we have to

consider when approximating familiarity.

Expertise Identification. Mockus and Herbsleb [48] propose

the Expertise Browser, a tool to identify experienced developers

and experts. To this end, they rely on change management and

quantify the changes implemented by a developer as experience.

We are not aware of their approach considering that even experts

forget and become unfamiliar. Thus, our analysis confirms their

assumptions and complements their approach. This also applies to

other expertise identification approaches and tools, which focus on

communities as well as source code [46, 47, 58].

Of these approaches, the one proposed by Fritz et al. [20] may be

the one closest to our study. The authors derive a model to identify

experts from previous empirical studies. Here, they consider devel-

opers’ authorship and interactions with a piece of code to represent

their familiarity, which are additional factors that we have to con-

sider. However, while this approach is based on repetition, we are

not aware of any consideration of forgetting. Thus, our approach

may improve their model by also including this factor.

Anvik et al. [3] describe an approach to assign bug reports based

on the previously performed bug fixes of a developer, usingmachine

learning. They use this knowledge to identify the most suitable

expert to resolve the new problem. Our insights complement this

analysis, as we investigate at which point an expert may have lost

too much knowledge.

8 CONCLUSIONS

In this paper, we investigated forgetting in the context of software

engineering. For this purpose, we conducted an empirical study

with 60 developers. We relied on a simple but valid forgetting curve

to analyze their familiarity with a file.With our study, we identify to

which extent the original curve represents the subjective assessment

of developers. Furthermore, we investigate the importance of three

factors on familiarity and derive a representative memory strength

for our participants. To conclude our findings, we find:

• The forgetting curve of Ebbinghaus [15] is appropriate in

software development if only time has to be considered.

• Repetitions moderately to strongly correlate to familiarity

and can be even more important than the elapsed time.

• The ratio of code a developer implemented is moderately

correlated to familiarity.

• We need to better understand how developers track their

code, as we find no correlation to familiarity.

• A value of 65 for the memory strength seems to be an appro-

priate value regarding our participants.

We remark that there are several threats to our work and only

further studies and research can validate the results. Nonetheless,

we do provide important insights into familiarity in the context of

software development.

In future work, we will measure familiarity in more detail to

investigate forgetting. Currently, we aim to compare subjective and

measurable familiarity. Integrating an automated approach based

on our results and related works is interesting. Also, additional

artifacts of a project and other factors, such as learning, need to be

integrated. To this end, additional studies are essential to validate

the results and identify further factors that influence familiarity.

We see the need for interview studies and action research to derive

qualitative insights into forgetting of developers. With large-scale

experiments, these findings can be validated and evaluated in more

detail than we could do for now. Furthermore, different forgetting

curves and their adaptations should be compared and evaluated

regarding their applicability for software developers.

Acknowledgments This research is supported by DFG grants LE

3382/2-1, SA 465/49-1, and Volkswagen Financial Services AG.

Do You Remember This Source Code? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Yunsik Ahn, Jungseok Suh, Seungryeol Kim, and Hyunsoo Kim. 2003. The

Software Maintenance Project Effort Estimation Model Based on Function Points.
Journal of Software: Evolution and Process 15, 2 (2003), 71–85.

[2] Nicolas Anquetil, Káthia M de Oliveira, Kleiber D de Sousa, and Márcio G Batista
Dias. 2007. Software Maintenance Seen as a Knowledge Management Issue.
Information and Software Technology 49, 5 (2007), 515–529.

[3] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who Should Fix this Bug?
In International Conference on Software Engineering. ACM, 361–370.

[4] Lee Averell and Andrew Heathcote. 2011. The Form of the Forgetting Curve and
the Fate of Memories. Journal of Mathematical Psychology 55, 1 (2011), 25–35.

[5] Jongmoon Baik, Barry W Boehm, and Bert M Steece. 2002. Disaggregating and
Calibrating the CASE Tool Variable in COCOMO II. IEEE Transactions on Software
Engineering 28, 11 (2002), 1009–1022.

[6] D J Best and D E Roberts. 1975. Algorithm AS 89: The Upper Tail Probabilities of
Spearman’s Rho. Journal of the Royal Statistical Society 24, 3 (1975), 377–379.

[7] Barry W Boehm. 1976. Software Engineering. IEEE Transactions on Computers
C-25, 12 (1976), 1226–1241.

[8] Barry W Boehm. 1981. Software Engineering Economics. Prentice-Hall.
[9] Barry W Boehm, Chris Abts, and Sunita Chulani. 2000. Software Development

Cost Estimation Approaches - A Survey. Annals of Software Engineering 10, 1
(2000), 177–205.

[10] Barry W Boehm, Chris Abts, Bradford K Clark, Ellis Horowitz, A Winsor Brown,
Donald Reifer, Sunita Chulani, Ray Madachy, and Bert Steece. 2000. Software
Cost Estimation with COCOMO II. Prentice Hall.

[11] Barry W Boehm, A Winsor Brown, Ray Madachy, and Ye Yang. 2004. A Software
Product Line Life Cycle Cost Estimation Model. In International Symposium on
Empirical Software Engineering. IEEE, 156–164.

[12] Elliot J Chikofsky and James H Cross. 1990. Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software 7, 1 (1990), 13–17.

[13] Thomas D Cook and Donald Thomas Campbell. 1979. Quasi-Experimentation:
Design & Analysis Issues for Field Settings. Houghton Mifflin.

[14] Eric L Dey. 1997. Working with Low Survey Response Rates: The Efficacy of
Weighting Adjustments. Research in Higher Education 38, 2 (1997), 215–227.

[15] Hermann Ebbinghaus. 1885. Über das Gedächtnis: Untersuchungen zur Experi-
mentellen Psychologie. Duncker & Humblot. In German.

[16] J Alberto Espinosa, Sandra A Slaughter, Robert E Kraut, and James D Herb-
sleb. 2007. Familiarity, Complexity, and Team Performance in Geographically
Distributed Software Development. Organization Science 18, 4 (2007), 613–630.

[17] Jean-Marie Favre, Jacky Estublier, and Remy Sanlaville. 2003. Tool Adoption
Issues in a Very Large Software Company. In International Workshop on Adoption-
Centric Software Engineering. Carnegie Mellon University, 81–89.

[18] Gregory A Fredricks and Roger B Nelsen. 2007. On the Relationship Between
Spearman’s Rho and Kendall’s Tau for Pairs of Continuous Random Variables.
Journal of Statistical Planning and Inference 137, 7 (2007), 2143–2150.

[19] Thomas Fritz, Gail C Murphy, and Emily Hill. 2007. Does a Programmer’s
Activity Indicate Knowledge of Code? In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering. ACM, 341–350.

[20] Thomas Fritz, Jingwen Ou, Gail C Murphy, and Emerson Murphy-Hill. 2010. A
Degree-of-Knowledge Model to Capture Source Code Familiarity. In International
Conference on Software Engineering. ACM, 385–394.

[21] Arthur M Glenberg. 1976. Monotonic and Nonmonotonic Lag Effects in Paired-
Associate and Recognition Memory Paradigms. Journal of Verbal Learning and
Verbal Behavior 15, 1 (1976), 1–16.

[22] Alexander Hars and Shaosong Ou. 2001. Working for Free? Motivations of
Participating in Open Source Projects. In Hawaii International Conference on
System Sciences. IEEE, 1–9.

[23] Les Hatton. 1998. Does OO Sync with HowWe Think? IEEE Software 15, 3 (1998),
46–54.

[24] Jan Hauke and Tomasz Kossowski. 2011. Comparison of Values of Pearson’s
and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones
Geographicae 30, 2 (2011), 87–93.

[25] Agneta Herlitz, Lars-Göran Nilsson, and Lars Bäckman. 1997. Gender Differences
in Episodic Memory. Memory & Cognition 25, 6 (1997), 801–811.

[26] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of Software
Developers in Open Source Projects: An Internet-Based Survey of Contributors
to the Linux Kernel. Research Policy 32, 7 (2003), 1159–1177.

[27] Johannes Hofmeister, Janet Siegmund, and Daniel V Holt. 2017. Shorter Identifier
Names Take Longer to Comprehend. In International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 217–227.

[28] Robert S Huckman and Bradley R Staats. 2011. Fluid Tasks and Fluid Teams: The
Impact of Diversity in Experience and Team Familiarity on Team Performance.
Manufacturing & Service Operations Management 13, 3 (2011), 310–328.

[29] Robert S Huckman, Bradley R Staats, and David M Upton. 2009. Team Familiarity,
Role Experience, and Performance: Evidence from Indian Software Services.
Management Science 55, 1 (2009), 85–100.

[30] Ross Ihaka and Robert Gentleman. 1996. R: A Language for Data Analysis and
Graphics. Journal of Computational and Graphical Statistics 5, 3 (1996), 299–314.

[31] Mohamad Y Jaber and Maurice Bonney. 1997. A Comparative Study of Learning
Curves with Forgetting. Applied Mathematical Modelling 21, 8 (1997), 523–531.

[32] Mohamad Y Jaber and S Sikstrom. 2004. A Note on "An Empirical Comparison of
Forgetting Models". IEEE Transactions on Engineering Management 51, 2 (2004),
233–234.

[33] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In International
Systems and Software Product Line Conference. ACM, 61–70.

[34] Keumseok Kang and Jungpil Hahn. 2009. Learning and Forgetting Curves in Soft-
ware Development: Does Type of Knowledge Matter? In International Conference
on Information Systems. Association for Information Systems, 194.

[35] Maurice G Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30,
1/2 (1938), 81–93.

[36] Jürgen Koenemann and Scott P Robertson. 1991. Expert Problem Solving Strate-
gies for Program Comprehension. In Conference on Human Factors in Computing
Systems. ACM, 125–130.

[37] Jacob Krüger, Stephan Dassow, Karl-Albert Bebber, and Thomas Leich. 2017.
Daedalus or Icarus? Experiences on Follow-the-Sun. In International Conference
on Global Software Engineering. IEEE, 31–35.

[38] Jacob Krüger, Wolfram Fenske, Jens Meinicke, Thomas Leich, and Gunter Saake.
2016. Extracting Software Product Lines: A Cost Estimation Perspective. In
International Systems and Software Product Line Conference. ACM, 354–361.

[39] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In International Workshop on
Variability Modelling of Software-Intensive Systems. ACM, 105–112.

[40] Thomas D LaToza and Brad A Myers. 2010. Hard-To-Answer Questions About
Code. In Evaluation and Usability of Programming Languages and Tools. ACM, 8.

[41] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive Identifier Names for Comprehension and Memory. Innovations in Systems
and Software Engineering 3, 4 (2007), 303–318.

[42] Sherlock A Licorish and Stephen GMacDonell. 2014. Understanding the Attitudes,
Knowledge Sharing Behaviors and Task Performance of Core Developers: A
Longitudinal Study. Information and Software Technology 56, 12 (2014), 1578–
1596.

[43] Glenn Littlepage, William Robison, and Kelly Reddington. 1997. Effects of Task
Experience and Group Experience on Group Performance, Member Ability, and
Recognition of Expertise. Organizational Behavior and Human Decision Processes
69, 2 (1997), 133–147.

[44] Robert C Martin. 2009. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson.

[45] Richard E Mayer. 1983. Can You Repeat That? Qualitative Effects of Repetition
and Advance Organizers on Learning from Science Prose. Journal of Educational
Psychology 75, 1 (1983), 40–49.

[46] David W McDonald and Mark S Ackerman. 2000. Expertise Recommender: A
Flexible Recommendation System and Architecture. In Conference on Computer
Supported Cooperative Work. ACM, 231–240.

[47] Shawn Minto and Gail C Murphy. 2007. Recommending Emergent Teams. In
International Workshop on Mining Software Repositories. IEEE.

[48] Audris Mockus and James D Herbsleb. 2002. Expertise Browser: A Quantita-
tive Approach to Identifying Expertise. In International Conference on Software
Engineering. ACM, 503–512.

[49] Jaap M J Murre and Joeri Dros. 2015. Replication and Analysis of Ebbinghaus’
Forgetting Curve. PLoS ONE 10, 7 (2015), 1–23.

[50] David A Nembhard and Napassavong Osothsilp. 2001. An Empirical Comparison
of Forgetting Models. IEEE Transactions on Engineering Management 48, 3 (2001),
283–291.

[51] Lars-Göran Nilsson. 2003. Memory Function in Normal Aging. Acta Neurologica
Scandinavica 107 (2003), 7–13.

[52] Gerardo Andrés Okhuysen. 2001. Structuring Change: Familiarity and Formal
Interventions in Problem-Solving Groups. Academy of Management Journal 44, 4
(2001), 794–808.

[53] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. 2000. Empirical Studies
of Software Engineering: A Roadmap. In Conference on The Future of Software
Engineering. ACM, 345–355.

[54] Andreas Riege. 2005. Three-Dozen Knowledge-Sharing Barriers Managers Must
Consider. Journal of Knowledge Management 9, 3 (2005), 18–35.

[55] Martin P Robillard, Wesley Coelho, and Gail C Murphy. 2004. How Effective
Developers Investigate Source Code: An Exploratory Study. IEEE Transactions
on Software Engineering 30, 12 (2004), 889–903.

[56] Irvin Rock. 1957. The Role of Repetition in Associative Learning. The American
Journal of Psychology 70, 2 (1957), 186–193.

[57] Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. 2017. Com-
prehending Studies on Program Comprehension. In International Conference on
Program Comprehension. IEEE, 308–311.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden J. Krüger et al.

[58] David Schuler and Thomas Zimmermann. 2008. Mining Usage Expertise from
Version Archives. In International Working Conference on Mining Software Repos-
itories. ACM, 121–124.

[59] Pranab K Sen. 1968. Estimates of the Regression Coefficient Based on Kendall’s
Tau. Journal of the American Statistical Association 63, 324 (1968), 1379–1389.

[60] Teresa M Shaft and Iris Vessey. 2006. The Role of Cognitive Fit in the Relationship
Between Software Comprehension and Modification. Management Information
Systems Quarterly 30, 1 (2006), 29–55.

[61] David Sharon. 1996. Meeting the Challenge of Software Maintenance. IEEE
Software 13, 1 (1996), 122–125.

[62] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An Examination of Software Engineering Work Practices. In CASCON First
Decade High Impact Papers. IBM, 174–188.

[63] Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In International Con-
ference on Software Maintenance and Evolution. IEEE, 151–160.

[64] Thomas A Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering 5 (1984), 494–497.

[65] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. 1996. The Effects
of Comments and Identifier Names on Program Comprehensibility: An Experi-
mental Investigation. Journal of Programming Languages 4, 3 (1996), 143–167.

[66] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. 2007. Empirical
Studies in Reverse Engineering: State of the Art and Future Rrends. Empirical
Software Engineering 12, 5 (2007), 551–571.

[67] Bart Van Den Hooff and Jan A De Ridder. 2004. Knowledge Sharing in Context:
The Influence of Organizational Commitment, Communication Climate and
CMC use on Knowledge Sharing. Journal of Knowledge Management 8, 6 (2004),
117–130.

[68] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.

