
Where is my Feature and What is it About?
A Case Study on Recovering Feature Facets

Jacob Krügera,b,∗, Mukelabai Mukelabaid, Wanzi Guc, Hui Shenc, Regina Hebigd, Thorsten Bergerd

aOtto-von-Guericke-University Magdeburg, Germany
bHarz University of Applied Sciences Wernigerode, Germany

cChalmers University of Technology, Sweden
dChalmers | University of Gothenburg, Sweden

Abstract

Developers commonly use features to define, manage, and communicate functionalities of a system. Unfortunately, the
locations of features in code and other characteristics (feature facets) relevant for evolution and maintenance, are often
poorly documented. Since developers change and knowledge fades with time, such information often needs to be recovered.
Modern projects boast a richness of information sources, such as pull requests, release logs, and otherwise specified
domain knowledge. However, it is largely unknown from what sources features, their locations, and their facets can be
recovered. We present a case study on identifying such information in two popular, variant-rich, and long-living systems:
The 3D-printer firmware Marlin and the Android application Bitcoin-wallet. Besides the available information sources,
we also investigated the projects’ communities, communications, and development cultures. Our results show that a
multitude of information sources (e.g., commit messages and pull requests) is helpful to recover features, locations, and
facets to different extents. Pull requests were the most valuable source to recover facets, followed by commit messages,
and the issue tracker. As many of the studied information sources are, so far, rarely exploited in techniques for recovering
features and their facets, we hope to inspire researchers and tool builders with our results.

Keywords: Feature location; Marlin; Bitcoin-wallet; case study; feature facets; software product line

1. Introduction

Features are commonly used to specify, manage, and com-
municate the functional and non-functional properties of a
software system. Features support developers in compre-
hending, reusing, and adapting these systems [Apel et al.
2013; Kang et al. 1990]. As such, features are useful entities
to support software development, maintenance, and evolu-
tion [Berger et al. 2015; Passos et al. 2013]. Yet, features
are often poorly documented, including their locations in
the source code, but also many other facets [Berger et al.
2015] that are relevant for evolving and maintaining them,
such as the responsible developer, binding time, rationale
(i.e., why a feature is introduced) or architectural respon-
sibility of the feature. When a system evolves over time,
the knowledge about features, their facets, and their loca-
tions often fades and has to be recovered [Ji et al. 2015;
Krüger et al. 2018c]—an activity known as feature location.
In fact, feature location [Assunção and Vergilio 2014; As-
sunção et al. 2017; Dit et al. 2013; Lozano 2011; Rubin and

∗Corresponding author
Email addresses: jkrueger@ovgu.de (Jacob Krüger),

mukelabai.mukelabai@cse.gu.se (Mukelabai Mukelabai),
wanzi@student.chalmers.se (Wanzi Gu),
huish@student.chalmers.se (Hui Shen), regina.hebig@cse.gu.se
(Regina Hebig), thorsten.berger@chalmers.se (Thorsten Berger)

Chechik 2013] is one of the most common and expensive
activities in software engineering [Biggerstaff et al. 1993;
Ji et al. 2015; Poshyvanyk et al. 2007; Wang et al. 2013].

Several automated techniques have been proposed to
recover features and their locations [Dit et al. 2013; Olszak
and Jorgensen 2011; Razzaq et al. 2018; Rubin and Chechik
2013]. Unfortunately, these techniques generally exhibit a
low accuracy, need substantial effort (e.g., calibration and
adaptation for specific projects), and often only exploit
a single source of information source, such as execution
traces or code comments. Other feature facets, such as
the rationale or architectural responsibility, are even more
difficult to extract, as corresponding information sources
are largely unknown and developers may have varying
understandings of these facets.

To improve techniques for feature location and for re-
covering feature facets, we need to improve our empirical
understanding of features. This includes knowledge about
information sources we can utilize for these purposes, about
strategies to exploit these information sources, and about
the facets of features. Particularly interesting are modern
open-source projects that are developed on software-hosting
platforms such as GitHub and BitBucket, which provide
additional capabilities for maintaining and documenting a
project. Such platforms boast a richness of different infor-
mation sources (e.g., pull requests, change logs, release logs,

Preprint submitted to Elsevier January 25, 2019

commits, Wikis, issue tracker) from which such information
can be recovered—and that can be present in similar form
in industrial settings. Furthermore, realistic datasets of
feature locations and feature facets are necessary to test,
evaluate, and compare corresponding techniques.

We present an exploratory study of identifying and lo-
cating features and their facets in two open-source sys-
tems: The 3D-printer firmware Marlin and the Android
app Bitcoin-wallet. Both systems exhibit characteristics
of software product lines, relying on established variability
mechanisms (C preprocessor and runtime parameters, re-
spectively) [Apel et al. 2013; Gacek and Anastasopoules
2001] to allow customization. As Marlin and Bitcoin-wallet
are hosted on GitHub, they exhibit a richness of different
and varying information sources we can explore. Moreover,
the specific culture, processes, and communication styles
are important to understand and can also be exploited for
recovering features and their facets. After analyzing these
specifics, we performed manual feature identification and
location based on similar patterns for each information
source. We investigated various feature facets that help to
comprehend features and that are relevant for maintaining
and evolving features.

Overall, our contributions comprise:

• an analysis of the development process of the open-
source systems Marlin and Bitcoin-wallet;

• a set of consolidated search patterns to identify and
locate features;

• empirical data on the facets of the identified features
in both systems; and

• an online appendix1 containing our feature fact sheets,
feature models, and the annotated code bases.

We provide insights into the development of open-source
software that comprises several levels of variability, rang-
ing from cloning over preprocessor directives to runtime
parameters. Our results show that different information
sources can be exploited to varying extents to locate fea-
tures and to identify their facets. Specifically, we find that
pull requests are the source that helped us most to recover
different feature facets, followed by commit messages, and
the issue tracker. Only few sources have a rather narrow
usefulness to obtain information, but these often document
specific facets well. For example, due to the development
process applied for Marlin, we could use the contributor
list and commit author information only to identify devel-
opers that are responsible for a specific feature, but this
facet can easily be extracted from these sources. We did
not find any information source that was not useful, but
the extraction effort differed depending on its usage in
a project, and whether it is updated. For instance, it is
challenging to extract facets from a contributor’s GitHub
page. Furthermore, we usually needed to include different
information sources into our analysis to recover all facets of

1https://bitbucket.org/rhebig/jss2018/

a feature. For instance, we found that some mandatory and
optional features that are bound during implementation
and build-time, respectively, may comprise further runtime
variability that is not explicitly documented on the same
level as other features, but is discussed in commit messages.
Consequently, solely analyzing preprocessor directives may
neglect not only mandatory features, but also dynamic
variability, potentially biasing the results. After investigat-
ing Bitcoin-wallet, we also identified the reverse pattern:
Features seem to be dynamically bound and configurable at
runtime, while the checked parameter is a constant set at
compile time. Finally, our results illustrate the importance
of considering different feature facets.

An earlier version of this article appeared as a conference
paper [Krüger et al. 2018b]. There, we reported a case study
on manually locating 43 features in Marlin. We (i) explored
what information sources help identifying and locating
features, and (ii) compared characteristics of optional and
mandatory features. For instance, we found that optional
and mandatory features exhibit different characteristics,
which challenges the validity of studies that derive conclu-
sions for mandatory features based on analyzing optional
ones. In this article, we focus on information sources for
feature location and investigate to what extent we can use
these sources to recover different feature facets. We applied
our methodology not only to Marlin, but also to a second
system, namely Bitcoin-wallet. In contrast to Marlin,
Bitcoin-wallet follows a less structured development process
and comprises more dynamic variability—challenging
the identification of feature locations and facets—but we
can rely on similar information sources. Finally, we also
provide more details on Marlin, specifically its feature
development process, and report in detail what search
strategies we applied while recovering feature locations.

2. Feature Facets

A software feature is a relatively abstract and vague concept.
Consequently, it is not surprising that several notions of
features exist [Apel et al. 2013; Classen et al. 2008]. Berger
et al. [2015] provide a list of different feature facets, relevant
for describing features in their full richness. They also
describe rationales and example values for these facets that
are derived from interviews with industrial practitioners.

In the following, we briefly describe those facets that
comprise information connected to developing features.
Foremost, we focus on the nature (i.e., optional or manda-
tory) and on the binding time and mode, which define what
features are included in what way into a variant. The
other facets are important to scope features and to manage
development tasks.

2.1. Facet: Nature of a Feature
This facet describes whether a feature primarily represents
a unit of variability (optional) or a unit of functionality
(mandatory). In particular, distinguishing between these

2

https://bitbucket.org/rhebig/jss2018/

notions is important in the context of software-product-line
engineering: While optional features allow to customize a
variant, the intended benefits of reuse are heavily driven
by mandatory features that are part of every variant. As
software-product-line engineering is often focused on the
notion of variability, this seems to neglect important parts
of such systems.
Features as Units of Variability. In software-product-
line engineering, features are primarily seen as units of
variability, due to the widespread use of annotation-based
variability mechanisms—usually conditional compilation
(e.g., #ifdef) [Apel et al. 2013; Medeiros et al. 2015]. We
display a code snippet from Marlin in Listing 1, in which
the preprocessor macro NOOZLE_PARK_FEATURE represents
a variation point for an optional feature that is excluded
if this macro (configuration parameter) is disabled. To
represent code-level dependencies and to foster automated
configuration, optional features are often declared in a vari-
ability model [Berger et al. 2013; Czarnecki et al. 2012;
Nadi et al. 2015], which is usually the input for a config-
uration tool (in contrast, Marlin relies on configuration
files). Given the availability of many open-source systems
that comprise such optional features, several studies on
these features’ code-level characteristics have been con-
ducted, resulting in extensive knowledge about some of
their facets [Apel et al. 2013; Berger and Guo 2014; Liebig
et al. 2010; Lillack et al. 2019; Passos et al. 2015].

In this notion of variability, the annotated feature loca-
tions only represent variable parts, while any mandatory
code that also belongs to a feature is not annotated. Conse-
quently, locating variable code is simple, but recovering and
distinguishing the locations of mandatory parts is difficult
and costly. Likewise, completely mandatory features may
not be represented in the variability model. Overall, this
notion is useful if features are only used as configuration
parameters, but not if features shall also be used to plan
the development, to communicate, to maintain the system,
to fix bugs, or to re-engineer the system, among others.

For example, consider the re-engineering of cloned prod-
ucts into a software product line [Dubinsky et al. 2013;
Krüger et al. 2017; Stănciulescu et al. 2015], specifically,
consider a single feature that is cloned among two variants,
and slightly modified in one variant. If the feature is inte-
grated into a common platform, only the differences will be
annotated (likely, a new feature representing this variability
is introduced). The actual location of the whole feature is
not annotated and needs to be recovered to allow correct
configuring and to facilitate maintenance and evolution.

Features as Units of Functionality. A broader notion
of features is to consider them as units of functionality. In
this notion, a feature represents a functionality (or con-
cern) in a system, regardless of whether it is an optional or
mandatory functionality of a software product line. This
notion of features is more common in industrial software
engineering [Berger et al. 2015] and in research on concern

Listing 1: Preprocessor code in Marlin_Main.cpp.
1 #i f ENABLED(NOZZLE_PARK_FEATURE)
2 /∗∗
3 ∗ G27 : Park the n o z z l e
4 ∗/
5 inline void gcode_G27 () {
6 // Don ’ t a l low n o z z l e parking without homing f i r s t
7 i f (a x i s _ u n h o m e d _ e r r o r ()) r e t u r n ;
8 Nozzle : : park (parser . ushortval (’P ’)) ;
9 }

10 #e n d i f // NOZZLE_PARK_FEATURE

location [Eaddy et al. 2008; Figueiredo et al. 2009; Ro-
billard and Murphy 2007]. Mandatory features and their
locations are rarely documented, for example, with feature-
traceability databases [Robillard and Murphy 2003] or
embedded feature annotations [Ji et al. 2015], which is why
recovering their locations is costly and error-prone [Krüger
et al. 2018a; Wang et al. 2013]. Even automated or semi-
automated feature-location techniques require substantial
manual effort (e.g., to calibrate them to a system or for
providing so-called seeds from which they start exploring)
and fall short in accuracy [Abukwaik et al. 2018; Rubin
and Chechik 2013]. Furthermore, they often consider only
a single information source (e.g., code comments), while it
is unclear which other information sources can be utilized
for systems rich in meta-data, such as projects developed
in version control systems, with potentially relevant infor-
mation in issue trackers, pull requests, or Wiki pages.

2.2. Facets: Binding Time and Mode
The binding time of a feature refers to the point in time
a feature is included into the system [Berger et al. 2015],
such as at implementation, compile, build, load, or run
time [Kang et al. 1990; Lee and Muthig 2006; Rosenmüller
2011]. Binding mode refers to the ability to re-bind fea-
tures at runtime, where we distinguish between static (a
bound feature cannot be re-bound during program exe-
cution) and dynamic binding (a feature can be re-bound
while the program is executed). Considering the natures
of features, the question arises if a dominating variability
mechanism (i.e., preprocessor directives) may comprise dy-
namic variability that is not obvious to researchers—thus,
impacting the results for optional (e.g., not all variability
is annotated) as well as mandatory (e.g., unawareness of
dynamic variability) features. This is especially interesting
as the software-product-line engineering community per-
forms analyses based on static preprocessor annotations,
which may not capture the whole scope of variability. For
example, some features in Marlin comprise these types (not
annotated and unaware) of dynamic variability based on
runtime parameters to react to different input values that
depend on the printer’s hardware and context. In contrast,
most features in the Bitcoin-wallet seem to be mandatory
and can be rebound at runtime by the user. However, some
of these features only appear to be dynamic because an if
statement checks a parameter: Instead, these parameters
are constants that developers define before compiling the

3

application and, thus, the features cannot be changed and
are, in fact, optional and static.
Static Binding. By using static binding, the features of a
software product line are bound before a concrete variant is
executed. Thus, the variability is resolved and the variant
is customized before it is deployed. In practice, especially
the C preprocessor (cf. Listing 1) is used to implement
static binding. The C preprocessor relies on annotations
to mark features and remove them during a preprocessing
step and, thus, bind each feature even before compilation.
Afterwards, an instantiated variant can only be changed
by reconfiguring and recompiling it.
Dynamic Binding. In contrast to static binding, dynamic
binding binds feature only when a program is started or
during its execution. This allows the developers to react to
changing demands while the program is running. Usually,
this is implemented by using runtime parameters that can
be set by the program’s user and are checked in the control
flow. However, there are also more advanced techniques for
dynamic binding, which led to the introduction of dynamic
software product lines that are focused on reacting to
changes in the program context [Capilla et al. 2014].
Static and Dynamic Binding. Static as well as dynamic
binding have pros and cons, which make them more suitable
for different application scenarios. Consequently, several
techniques aim to combine them at different points in time.
Such techniques include [Rosenmüller 2011]:

• Early (static) and late (dynamic) binding in object-
oriented programming;

• Combined usage of different variability mechanisms
(e.g., preprocessors and runtime parameters); and

• Integrations of both binding times into one variabil-
ity mechanism (e.g., for feature-oriented program-
ming [Prehofer 1997]).

In particular interesting for our work is the second example.
We investigated to what extent static and dynamic binding
are present in parallel within Marlin and Bitcoin-wallet
that appear to have predominant binding modes: Static
and dynamic, respectively.

2.3. Other Facets
Besides the facets nature, binding time, and binding
mode, we also investigate what information sources in
Marlin and Bitcoin-wallet can help to identify the following
facets that are relevant for developing features [Berger et al.
2015]: First, the rationale describes why a feature has
been developed, for example, due to customer requests or
platform adaptations. Consequently, this facet defines the
purpose and requirements connected to a feature. Second,
a feature’s architectural responsibility describes how a
feature is connected to the system’s architecture, for exam-
ple, to the application logic or user interface. Thus, this
facet provides a clue about the architectural parts affected
by a feature. Third, the definition and approval facet
captures how the feature has been defined and approved to

be included into the system, for example, during workshops
or comparisons to existing products. This is particularly
interesting to understand the development processes (e.g.,
quality assurance) of features. Fourth, responsibility is
concerned with the developers that manage a specific fea-
ture. Based on such information, tasks may be assigned
or experts identified. Fifth, the evolution of features is
important to see their changes over time. In particular,
this can help to identify features that are regularly changed
or may require an update, due to a longer cycle without
updates. Finally, in the quality and performance facet,
non-functional characteristics of a feature are captured.
Thus, it can be ensured that requirements—other than
functional ones—are fulfilled and tested appropriately. We
focus on these facets, as they define the development pro-
cesses that are applied to a system, for example, which
developer updates or tests a feature.

3. Study Design

To efficiently engineer features for long-living, variant-rich
systems developed by a larger community or team, it is
necessary to record many different information that align
to these features. Such information allow to evolve and
maintain a feature in a consistent and documented way. In
addition, the information can clarify communications, iden-
tify responsible developers, and describe a feature’s origin,
reasoning, and evolution, allowing developers to coordinate
their tasks. Despite their importance, these information are
often not recorded and, thus, need to be recovered. Conse-
quently, the question arises, what information sources are
available and suitable for this task?

We conducted a case study on Marlin, a variability-
rich 3D printer firmware, and Bitcoin-wallet, an Android
application for Bitcoins, that both comprise several in-
formation sources and variability mechanisms. Precisely,
we report our analysis of the corresponding communities,
our feature location process, our search patterns, and the
used information sources for feature facets. Analyzing the
communities and their development processes as well as
defining search patterns for information sources can help to
improve techniques for feature location and facet identifica-
tion. Thus, the results can help to automate the analysis
of modern software systems, for example, for maintenance
or re-engineering activities.

3.1. Research Questions
We define the following four research questions:

RQ1 How are features developed in Marlin and Bitcoin-
wallet?
We studied the feature-development processes as ex-
ercised by the Marlin and Bitcoin-wallet developers.
Both systems are developed on a project-hosting plat-
form that documents and tracks many information on
the development of the software and captures discus-
sions, documentations, or bugs. Marlin is particularly

4

interesting, due to its larger contributing community,
which can provide insights into the usage and commu-
nication of features and their facets. Thus, systems
like Marlin allow us to gain insights into the practices
of developing features in a larger team, providing de-
tails on the design, development history, and quality
assurance. In contrast, Bitcoin-wallet is driven by a
single developer, who is sparsely supported by other
developers. Understanding such processes helps to
consolidate current or best practices, identify poten-
tial for improvements or automation, and puts our
research into context.

RQ2 What information sources help to locate features to
what extent?
Automated feature-location techniques usually ex-
ploit a single information source, such as the source
code or requirements documents. For Marlin and
Bitcoin-wallet, several modern information sources,
for instance, release logs, issue trackers, and pull re-
quests, exist. We systematically analyze which of
these sources can facilitate the task of recovering
feature locations. To this end, we focus on the dif-
ferences between optional and mandatory features,
as especially mandatory features are challenging to
locate (cf. Section 2.1) and identify variations in the
dominating binding mode of each system (cf. Sec-
tion 2.2).

RQ3 What search strategies help to recover features?
This work is driven by manually analyzing the Marlin
and Bitcoin-wallet communities and systems. As we
adapted similar search processes for each information
source, we consolidate these into common patterns.
Such patterns help to scope further automation for
recovering features and their locations. Furthermore,
they can be used by researchers and practitioners to
analyze other systems.

RQ4 What information sources help to identify feature
facets and to what extent?
Feature location techniques usually neglect the rich
set of information sources that is available in mod-
ern project-hosting platforms. The same accounts
for other recovery techniques that focus on specific
feature facets, for example, the rationale or responsi-
bilities. Systematically analyzing information sources
and the extent to which they can be used to recover
feature facets helps to improve corresponding tech-
niques.

Answering these research questions provides insights into
Marlin, Bitcoin-wallet, and similar systems.

3.2. Subject Systems
Marlin. Our first subject system is Marlin, which re-
flects three common representations of software-product-
line variability: First, Marlin relies on the C preprocessor
to implement variation points in its platform. Thus, op-
tional features are defined as preprocessor macros in the

code and can be selected in the two configuration files
Configuration.h and Configuration_adv.h. Marlin’s
build system is based on plain Makefiles, which contain
conditionals (e.g., ifeq) that define which files to select
and build based on a configuration.

Second, Marlin exists in over 4,600 forks developed by
different users that extend and adapt it to their own needs
(the clone-and-own approach [Dubinsky et al. 2013; Ray
and Kim 2012]). An existing analysis by Stănciulescu et al.
[2015] and our investigations show that, while such forks
often only comprise changed configuration files, they are
used to implement new features that are later merged back.
Our analysis is based on the mainline of Marlin, specifically
Release Candidate 8, and ranges from November 2011 until
December 2016.

Third, our analysis also shows that not all variable parts
of Marlin are annotated in preprocessor annotations. In-
stead, the system also comprises runtime parameters to
make dynamic changes, depending on the context. For this
reason, we investigated the features we identified in more
detail to analyze if they comprise such dynamic variability—
arguing that this could hide other features.
Bitcoin-wallet. Our second subject system is Bitcoin-
wallet, which is an Android application that relies on run-
time parameters to implement variability and has been
forked more than 1,200 times. As this system relies on
runtime parameters, many of its features can be customized
by the users. This comprises the selection of features as
well as setting a parameter to change the application’s
behavior, for instance, to customize the displayed accuracy
of Bitcoins (denomination). For this system, we finally
annotated version 6.3, which was committed on October
1st 2018 and the history ranges back to March 2011.

Our analysis revealed that not all features rely on the
same binding mode, despite using the same variability
mechanism. Several features are only active if a constant
is set already before compiling the application. Thus, such
features actually represent static variability to which the
Bitcoin-wallet developers refer to as compile-time flags.
Again, we investigate the features in more detail to analyze
differences between dynamic and static variability.

3.3. Methodology

For both of our subject systems, we applied the same
methodology with slight adaptations. These adaptations
depend on the kind of system, namely, embedded printer
software that is connected to hardware in contrast to an
Android application. We display an overview of our method
and the analyzed features in Figure 1.
Domain Analysis. First, we performed a domain analysis
of our subject systems to identify an initial set of features.
To this end, for each system, two of the authors build and
used it in different settings.

For Marlin, we constructed two 3D printers: A Delta
printer—which moves arms up and down to position the
printing-nozzle based on trigonometric functions—and a

5

Domain Analysis

Analyzing the Ecosystem

Manual Feature Location

Analyzing Feature Facets

Data Extraction and Documentation

Identified
19 Features in Marlin
47 Features in Bitcoin-wallet

Identified and Located
44 Features in Marlin
72 Features in Bitcoin-wallet

Analyzed
36 Features in Marlin
62 Features in Bitcoin-wallet

Figure 1: Overview of the applied methodology.

Cartesian printer—which uses a rail on each axis to move
the printing-nozzle based on Cartesian coordinates. During
this phase, we learned about the hardware components by
following the instructions described in the manual. We
then installed the Marlin firmware onto the printers’ moth-
erboards and tested different configurations. Thus, we got
an understanding of the functionality of hardware com-
ponents and how they are connected to the firmware. In
particular, we learned which optional features that are
defined as preprocessor macros are represented by which
hardware in our two printers. As a result, we also identified
hardware commonalities between both printers, which are
the once fundamentally necessary for 3D-printing, such as
temperature sensors. At the end of this construction phase,
we created a first version of a feature model comprising 6
optional and 13 mandatory features that was based on our
understanding of the hardware components.

For Bitcoin-wallet, we installed the application on dif-
ferent devices and emulators to test its functionalities. In
particular, we explored the options we could set on the
user interface and differences between devices. Based on
this, we were able to understand the functionalities that
are provided by Bitcoin-wallet. We discussed the different
features we explored to provide a ground-truth we could
agree on. Thus, we identified a total of 47 features, of
which we found 17 by customizing the application, indicat-
ing optional and alternative features. Again, we derived
a feature model, in which we used 9 abstract features to
structure the commonalities and variabilities we identified.
Analyzing the Ecosystems. In the second phase, we
familiarized with the development processes, community,
and evolution of our subject systems. We aimed to find
additional information sources that help us to locate and
identify further features as well as their facets, for example,
pull request reviews and the contributor list. To this end,
we performed a pilot study on each system’s ecosystem, for

instance, identifying the main contributors that implement
new features.

For Marlin, we identified 18 developers that are most
actively extending and maintaining the firmware. To un-
derstand how the community works, communicates, and
implements new features, we investigated their develop-
ment processes. For this purpose, we analyzed the release
log that is maintained on the GitHub website and tracked it
to pull requests and commits. We investigated the life-cycle
of the corresponding features to understand how they are
implemented and integrated into the firmware.

For Bitcoin-wallet, we found that the development is
heavily driven by a single developer. Other developers sup-
port the implementation with small contributions, opening
issues, and discussions. However, it did not seem like there
was a thorough process for development and communica-
tion, as in Marlin. While most issues and pull requests
for Marlin are linked and tagged, we found this rarely for
Bitcoin-wallet. Thus, the system seems to be less driven by
a community and more dependent on a single developer.
Manual Feature Location. The previous steps improved
our understanding on both of our subject systems and
their ecosystems, allowing us to identify some manda-
tory and optional features as well as additional informa-
tion sources. Next, we annotated the identified feature
locations—if these were not yet in preprocessor directives
(in the case of optional features in Marlin)—by using an
embedded feature-annotation approach [Ji et al. 2015] for
which we can utilize a tool to visualize these features
and their annotations [Andam et al. 2017]. These an-
notations are lightweight: //&begin[<feature name>] and
//&end[<feature name>] associate the lines between these
comments to the feature specified with its name. In con-
trast, //&line[<feature name>] annotates a single line of
source code that is separated from the rest of its feature.
As these annotations are based on comments, they do not
interfere with the code or preprocessor, but are solely for
documentation purpose. We refined the feature models to
include newly identified features and dependencies.

For Marlin, we especially identified domain knowledge
and the release log, with corresponding pull-requests and
commits, as our initial information sources. We then com-
pletely manually located features by performing a system-
atic code review, relying on the information sources we
discuss in Section 4.3. To this end, we started with Marlin’s
main file, continued to read comments, G-Code documen-
tation, and aimed to understand the code. Altogether, we
identified 44 features. Out of these features, we decided
to ignore one in our later analysis: A feature to cancel
the heat-up phase was not implemented, only some empty
methods existed. During our study, discussions between
developers on how to implement this feature are ongoing.
As we can only guess that this feature may be optional—
the printers work without it and the same behavior can
be achieved with workarounds, we excluded it from our
following analysis.

6

For Bitcoin-wallet, we identified the change log and
wikipages as additional information sources. However, these
information are not linked to the source code and we did
not find a release log or similar system that links feature
to code, as we found for Marlin. Thus, these information
sources did not provide entry points for feature location,
but only to identify features and their facets. For this
reason, we relied on another code review, starting from the
configuration file to locate features. Overall, we identified
72 implemented features for Bitcoin-wallet.
Analyzing Feature Facets. After the feature location
phase, we analyzed the features’ facets. For each feature,
we tracked down the artifacts belonging to it in each in-
formation source. We did this based on keywords that are
consistently used by the community. By manually analyz-
ing the identified artifacts, we consolidated the existing
knowledge of feature facets in the version control system.

For Marlin, we investigated 36 of the identified features.
We excluded 8 features that a) are repetitions (e.g., different
unit transformations), b) are rather feature interactions and
glue-code (e.g., movement specifics that require adaptations
to the printer hardware), or c) are small parts encapsulated
by other features (e.g., changing the units for movement
from coordinates to radius). For the remaining 36 features,
we used the release log and website as starting points for our
analysis of feature facets. We identified further information
sources that were not helpful for feature location, but
solely to recover their facets, such as contributor lists,
the contributors’ websites, or pull request reviews and
discussions. Overall, we identified 10 sources that are
partly more fine-grained than those for feature location.

For Bitcoin-wallet, we applied the same methodology, but
deviated from it based on the availability of information
sources. In this case, we included 62 features into our
facet analysis. The excluded features are interchangeable
options, namely for denomination of the displayed amount
of Bitcoins and codings that can be used to transfer data.
Overall, we relied on the same information sources as for
Marlin, but they are less connected to each other.
Data Extraction and Documentation. For each iden-
tified feature, we created a feature fact sheet to document
the following extracted information, depending on the avail-
ability in each system:

• Name of the feature
• The feature’s name in preprocessor directives and an-

notations
• Description of the feature’s intent
• Used information sources to identify and locate the

feature
• Applied search strategies for feature location
• Release version
• Feature characteristics (lines of code, scattering degree,

tangling degree)
• Pull request comprising commit links, numbers, names,

and code changes
• Identified facets

• Value of each facet
• Used information source for each facet

All feature fact sheets, the corresponding data, the con-
structed feature models, and the feature facets are publicly
available in our repository.1

.
Example: Homing. In the following, we describe our
analysis process on one concrete example feature. The
Marlin feature Homing is responsible for positioning the
extruder of a printer into a stop position when it is not
printing. For feature location, we relied on our domain
knowledge from observing this behavior, connecting it to
G-Codes, comments in the code, and our systematic code
review (i.e., using the keyword home). During this phase,
we already found that this feature is mandatory. To iden-
tify the facets, we relied on different information sources.
As rationale, we see Homing as a necessary feature derived
from the technical environment, which we derived from our
domain knowledge and Marlin’s G-Code documentation.
This G-Code documentation helped us further to identify
that the architectural responsibility of the feature is in the
application logic. Considering the definition and approval,
we had to dig into the commit messages, in which the
developers indicate that this feature is essentially necessary
for any 3D-printer to be usable—connecting this facet to a
market analysis. To identify the binding time and mode of
Homing, we could use the source code we identified during
feature location, but also looked into source code changes
in commits. We found that despite being bound at imple-
mentation time, the feature comprises dynamic variability,
reacting to the decision why homing is necessary (e.g., for
cleaning) and allowing to home a specific axis. For the
responsibility, we only identified who committed changes
and found that these are platform developers. Finally, the
release log indicates that evolution-wise, the feature was
rolled out with release 1.1.2.

4. Results

We first report the insights we gained during our pilot
studies, to then answer our research questions.

4.1. Pilot Studies
During our pilot studies, we explored both subject systems
with their communities and development cultures.
Marlin. We found that the primary means of communi-
cation are issue trackers and pull requests. Moreover, pull
requests are linked to the release log, in which developers
track development, quality improvements, and bug fixes
of each release. Interestingly, pull requests are labeled
and categorized by Marlin’s developers, for example, as
PR:Bugfix, PR:Coding Standard, and PR:New Feature.
By analyzing the commits that are linked to a pull request,
we found that feature names are derived from the prepro-
cessor directives, for example, PRINTCOUNTER in Listing 1,

7

and are used consistently through all discussions and doc-
umentations. Thus, we identified the release log with the
corresponding pull requests and commits as information
source to identify and locate features as well as their facets.

Marlin’s developers rely on the notion of optional features
and structure their communication around them, similar
to the software-product-line engineering community. A uni-
fied terminology seems to be in use from the source code
up to the tracking systems and release log to communicate
about these features. In contrast, we found no explicit use
of mandatory features in the release log or pull requests.
We also learned that Marlin’s main file Marlin_Main.cpp
contains the core logic for 3D-printing, with a code anal-
ysis contributing as the most general information source.
The file handles input commands and interprets them into
electrical functions. As a result, the file is the largest in
Marlin with over 10,000 lines of code. During our analysis,
we also experienced that Marlin reacts dynamically to its
environment (e.g., temperature) within few of its features.
Thus, because of the missing notion of mandatory features,
there seems to be runtime variability hidden within Marlin
that the developers do not consider as separate features.
We discuss this issue further in Section 4.5.

We also found an additional, domain-specific information
source: G-Code instructions [EIA RS-274-D]. G-Code is a
numerical control programming language that is used in
computer-aided manufacturing to operate machine tools—
specifying the system’s behavior to the machine controller,
for example, the direction and speed of a movement. These
instructions are directed into corresponding implementa-
tions that command electrical units of the 3D printers, as
we illustrate in Listing 1. Because G-Code instructions and
their domain functions are well-documented, we were able
to utilize them as information source for locating features
and identifying their facets.
Bitcoin-wallet. In contrast to Marlin, the development
process of Bitcoin-wallet seems to heavily rely on a single
developer. Other developers communicate and make con-
tributions through the issue tracker and with pull requests.
However, both are less structured and not tagged, which
makes it more challenging to link these information to each
other, the code, and features. This also seems not neces-
sary, as the contributions of other developers are sparse
and small. Thus, most of the development, integration,
and issue solving effort depends on the main developer,
who interacts in issue discussions and merges pull requests.

Compared to Marlin, we were also able to utilize the ap-
plication’s description in the Google Play Store to identify
features.2 In contrast, we could not rely on preprocessor
directives or G-codes. Moreover, we found that Bitcoin-
wallet is implemented with runtime variability, but actually
comprises static binding times. Thus, while the source code
initially indicates that the system is highly configurable by
the user, several of its options are defined by constants and

2https://play.google.com/store/apps/details?id=de.
schildbach.wallet

have to be customized before deployment. Consequently,
Bitcoin-wallet also comprises a configuration file, but the
options are actually defined in the Constants file.

4.2. RQ1 - Feature Development Process
To understand how Marlin is developed and maintained, we
investigated the interactions of developers with the version
control system and each other in detail. The whole devel-
opment is strongly connected and structured around the
issue tracker and forking capabilities of GitHub. Overall,
we found that Marlin has 283 contributors, of which 18
are regularly active, a group of five to seven seems to be
core developers, and especially one of these is arguably
driving the development forwards. Moreover, there are
two main branches: First, the release candidate branch
(RC) in which the core system is stored and driven towards
releases. Based on this branch, several pre-releases and the
stable release are published. Second, the bug fixing release
candidate branch (RCBugFix) is used to fix bugs and merge
new features.

We display a typical development process for a new fea-
ture in Figure 2. At first, anyone can raise an issue within
Marlin’s issue tracker to propose ideas for new features,
bug fixes, or quality improvements. If this issue is unclear,
the community will discuss about the technical solutions,
coding standards, or relevant pull requests. After the issue
is clarified and scoped, developers usually assign an issue
to themselves—taking the responsibility for it—and fork
Marlin into a private fork (which is a requirement of the
community) to implement the issue. Interestingly, as the
issue assignment is decentralized, it can happen that mul-
tiple developers implement the same issue separately. This
is resolved by comparing the final solutions and selecting
the best one during the review phase. Before any solution
is merged back into the main fork, the developer has to
create a pull request. Then, one contributor of the core
group reviews the code to point out bugs and assure the
quality. Only if a solution is finally accepted, it is pulled
and merged into the RCBugFix branch. In this branch, the
code is again tested, partly automatized, but mainly by
developers that review the updated version and install it on
their printers. If the RCBugFix branch comprises enough
new content of a certain quality, it is merged into the main
RC branch, which is driven towards a release. Thus, new
features undergo several quality assurance cycles before
they are finally released. Moreover, during all these phases
data, discussions, and documentations are created, which
present information sources that are usually not considered
for locating features and identifying their facets. For ex-
ample, we already emphasized that developers who assign
themselves to a feature take the responsibility for it, clearly
indicating the corresponding feature facet.

In contrast to Marlin, we found no community-driven
development process in Bitcoin-wallet. This system com-
prises 26 contributors, but only one of them is regularly
working on the code and owns around 99% of the reposi-
tory’s content. As there is also less of a structure around

8

https://play.google.com/store/apps/details?id=de.schildbach.wallet
https://play.google.com/store/apps/details?id=de.schildbach.wallet

Create Pull-Request Merge into RCBugFixFork Project Merge into RCDebate Issue

Review SolutionImplement Issue Test SolutionRaise Issue Self-Assign Issue Release

Clear

Unclear Ok

Faulty

Figure 2: Typical development process of a new feature in Marlin

features or involvement of a release log, the main source of
input is the issue tracker. In this tracker, developers and
users can raise issues and, identical to Marlin, they can
also implement solutions and open pull-requests. While
the main developer is heavily involved in discussions and
reviews others’ solutions, we found no hints of a struc-
tured process. Thus, considering the process we depict
in Figure 2, it seems to be rarely applied to that extent.
Instead, raised issues are often directly addressed on the
main branch.
Discussion. Marlin has a well-defined and structured de-
velopment process for features and bug fixes. Several steps
are concerned with quality assurance and, while everyone
can contribute an issue or implement it, a subset of contrib-
utors is responsible for accepting them. Besides ensuring
quality, this process also serves as a detailed documentation
and allows tracking changes and decision-making processes.
This illustrates the potential for improving automation for
feature location and for recovering feature facets based on
such modern information sources. Still, while we found
a common notion of features for the Marlin community
around which the communication is structured, this may
not be the case for other systems. It seems interesting
to test techniques based on natural language processing
to connect artifacts, such as source code, commits, and
discussions—aiming to identify and locate features as well
as their facets. If a common terminology is established in
projects, this may allow to considerably improve automated
analyses of legacy systems.

The development process is also interesting, due to the
way the variability mechanism of cloning is used: Usually,
it is assumed that clones are forked out and then devel-
oped completely separated to customize them to customers’
needs. However, in Marlin most forks only adapt configu-
ration files, which is hardly a clone in that sense. Instead,
the clones serve only as starting point for developing a new
feature or for fixing a bug. As soon as possible, the updates
are merged back into the base system, meaning that the RC
branch will comprise all approved features. Still, up to this
point, no bugs can be introduced into the stable system,
which limits the risks of developing faulty code.

As a result, the question arises if the defined process
may be a best practice for developers. Marlin has been
developed for more than 7 years (excluding its predeces-
sors) and comprises more than 4,600 forks. Thus, this
development process seems to be established and ensures

constant, qualitative implementation of new features, while
allowing the integration of third-party developers.

Our analysis of Bitcoin-wallet indicates that the same
process is not applied on all open-source projects. However,
Bitcoin-wallet has far less contributors, forks, and issues,
indicating less popularity compared to Marlin. Thus, the
differences in the development processes may not be due to
a strict hierarchy or a developer keeping all responsibility,
but simply due to size issues.

4.3. RQ2 - Entry Points for Feature Location
Overall, we identified and located 43 features in Marlin,

of which 31 are optional and 12 are mandatory. We dis-
play the information sources we used to find entry points
in Figure 3. This figure has a minor correction to our
previous work, as we verified the location of a mandatory
feature in preprocessor compilation and reconsidered it to
be optional. Mainly, we have been able to utilize the release
log (with its connected pull requests and commits), #ifdef
annotations, G-Code instructions [EIA RS-274-D], domain
knowledge, and analysis of all other code parts. Code anal-
ysis, #ifdef annotations, and domain knowledge (obtained
by building and testing two printers) are well-known entry-
points. A more unique entry point are G-Codes, which are
a domain-specific information source and operate the hard-
ware, for example, to park a printer’s nozzle in Listing 1.
Still, most interesting in the context of modern software
development are the release logs, pull requests, commits,
and information sources that are automatically created and
managed in version control systems. Other mechanisms of
software-hosting platforms connect communities even fur-
ther by providing, for example, issue trackers, Wiki pages,
or discussion forums that are used for communication and
documentation. However, during our analysis of Marlin as
well as Bitcoin-wallet, we found these information sources
rarely useful, as we usually identified them by following the
links from release logs and commits. Thus, they appear
rather late and also comprise few information on locations
except for such links. In contrast, such sources are helpful
to identify feature facets.

Besides domain knowledge and the release log, our main
entry points are different source-code elements. In Marlin,
we considered #ifdef directives that, unsurprisingly, are
present for all optional features we identified. Another
helpful means were G-Code commands that are present
in four mandatory and one optional feature. Due to the

9

0

10

20

30

Cod
e A

na
lys

is

Dom
ain

 K
no

wled
ge

G-C
od

e
Ifd

ef

Rele
as

e L
og

Information Source

L
oc

at
ed

 F
ea

tu
re

s

Mandatory

Optional

Figure 3: Entry points used to locate features in Marlin.

G-Code documentation and the G-Codes’ strong connec-
tion to a printer’s hardware they control, it is fairly easy
to understand the behavior that is implemented in these
features. Finally, we investigated the remaining source
code based on comments and keywords, which helped us to
identify and locate 12 mandatory and 6 optional features.

During our code analysis, we found that some features,
for instance Endstop, are easy to locate with keyword
searches, as all locations contain this term. However, in
other cases we need additional domain knowledge to refine
the used keywords. For example, we identified the term
feedrate multiple times in the code and in comments. Only
our domain knowledge from building the printers helped
us to connect this term to the speed of the motor that
feeds material to the extruder. This suggests that syntax-
based feature location techniques highly rely on a good
understanding of the domain.

Analyzing Bitcoin-wallet was more challenging, as the
code provided fewer entry points and helpful code con-
structs. More precisely, we could only rely on our domain
knowledge and a detailed code analysis, as we had neither
code constructs to rely on nor a linked release log. Conse-
quently, we started our code review by identifying keywords
defined in the Constants file that indicate compile-time
features. Again, we applied syntax-based feature location
to locate features, searching for identified keywords as well
as inspecting calls to classes, variables, and methods.
Discussion. Due to the existing notion of features being
optional, Marlin’s developers do not provide much infor-
mation about mandatory features in the version control
system or the release log. Thus, these information sources
are not suitable for locating this type of features. Besides

the actual source code and its elements, mainly domain
knowledge helps to identify mandatory features of Marlin—
in our case heavily based from constructing the actual
hardware. As a result, we argue that feature-location tech-
niques can be improved by considering different types of
documentation while analyzing the source code. Especially
comments seem interesting, as they are directly connected
to the corresponding source code in most cases. However,
several questions arise, for example, how to ensure that
the used documentation is maintained simultaneously to
the code [Fluri et al. 2007; Nielebock et al. 2018]. Other
domain-specific information sources may be helpful, such
as the G-Code commands in our study, but also require
domain knowledge to identify them. Ultimately, we found
five complementary information sources that were helpful
to identify and locate features in software hosted on version
control systems, which we show in Figure 3:

• Domain knowledge (e.g., building two printers)
• Release log (i.e., pull requests, commits)
• Code analysis (i.e., comments, dependencies)
• #ifdef annotations
• G-Code commands

Using these information sources and a combination with
other artifacts, such as models or requirements, can facil-
itate identifying and locating both types of features. In
particular, we experienced that domain knowledge is nec-
essary to identify features and to find their locations.

Unfortunately, Bitcoin-wallet does not provide such a
rich set of entry points for feature location. Especially
the missing linkage between the release log and code, the
limited variability representation, and missing notion of
features made it challenging to analyze the code. Unsur-
prisingly we found it more challenging to track information
for most features in Bitcoin-wallet compared to Marlin. In
particular, as we did not implement the application, we
were only trying to obtain domain knowledge. Thus, we
cannot be sure about the actual intent of the developer,
which hampers feature location.

4.4. RQ3 - Search Strategies for Features
Our search strategies for feature locations can be abstracted
into two categories: Either analyzing the release log or
the source code and its elements. In the following, we will
report both strategies in more detail, describing the applied
processes and helpful structures in each of them. We remark
that domain knowledge is an important information source
to support and facilitate these strategies.
Search Through Release Log. Searching through Mar-
lin’s release log is considerably different compared to search-
ing in source code. First, it has the advantage that optional
features are directly listed and also linked to other artifacts.
Thus, the main effort is to browse through all these arti-
facts and track down feature locations in the code. While,
in the end, we also have to read code, the links facilitate
the identification of seeds considerably. Still, new problems
with this information source arises, for instance:

10

• Analyzing pull requests and commits involves reading
natural language, which may pose problems due to
language barriers and ambiguities.

• The release log only contains new features from the
latest releases, while older features are not documented.
Thus, we have to consider other sources as well to
locate such older features.

• In the case of Marlin, mostly (only a single mandatory)
optional features are listed in the release log, making
this particular information source hardly usable for
mandatory ones.

Despite such problems, the release log is a well-
documented source for a number of features, which allows
us to identify those pull requests and commits in which
a new feature is introduced. As these pull requests are
linked to commits, we gain excellent entry points for sev-
eral features. Considering that each feature in the release
log is connected to a maximum of six pull requests out
of around 4,000, this tremendously reduced the analysis
effort. In total, we analyzed 38 pull requests, their 100
connected commits, and the tracked code changes to locate
24 optional and 1 mandatory feature.
Search Through Source Code. To overcome the limi-
tations of the release log in Marlin and its missing links
in Bitcoin-wallet, we performed systematic code reviews.
For Marlin, this process required around 25 hours in total,
starting from the most important file Marlin_Main.cpp.
It turns out that most mandatory features in Marlin are,
partially or completely, located in that file. We system-
atically studied the whole file to locate features based on
our previously obtained domain knowledge. From there,
we continued to analyze all other files and located 18 (6
optional, 12 mandatory) additional features. Note that we
did not just locate already know features, but also identified
some features in this step we were unaware of before.

During our code review, we relied on different search
patterns, mainly based on the two code-specific entry points
we show in Figure 3:

• If present, #ifdef annotations in the code served as a
fast to identify entry point to locate code belonging
to optional features.

• G-Codes indicate feature locations that are associated
with hardware components and are a fast entry point
for such features.

Based on these entry points and when we could not use one
of these anymore, we had to systematically go through the
remaining source code. To this end, we heavily relied on
keywords that we identified in the source code, in comments,
or derived from our domain knowledge. In some cases, it
was sufficient to use a feature’s name to locate all code
that belongs to it. For instance, Endstop controls the
corresponding hardware component, which finds reference
points for motor movements and searching for this term
already located most of the feature’s code. In contrast, for
other features we needed to refine keywords, for example,

the term feedrate appears several times in the code and
comments. However, there is no corresponding feature
and, initially, we could not connect it to any hardware
component. Finally, we identified that it refers to the speed
of the motor that feeds printing material to the extruder.
Thus, source code that is connected with this term belongs
to one of two features that are concerned with extruders.
For each identified location, we also investigated method
calls and other dependencies to identify further potential
feature locations. Overall, our code analysis resembles an
extended—due to the additional entry points of #ifdef
annotations and G-Codes—combination of the information
retrieval and exploration-based search patterns described
by Wang et al. [2013]

For Bitcoin-wallet we relied on the same analysis process,
but had fewer information sources, namely preprocessor
directives and G-Codes were unavailable. Instead, we were
able to link variables and keywords in Constants.java
and Configuration.java to features. We extended these
feature locations by following the variables and analyzing
their surrounding context, which took us approximately
20 hours. During our analysis, we only investigated the
Java code of the application and focused on the features
we identified before. We did not locate code for 6 features:

• There are 3 options for the BlockExplorer feature,
namely blockchain, blocktrail, and blockcypher.
In the code we identified a single parameter that just
takes one of these options as input from the user
interface, which is defined in XML.

• Similarly, the Localization feature to change the
language is defined with a separate configuration file
that is automatically processed by Android. Thus,
there are no locations in the actual code of Bitcoin-
wallet, even though the feature is statically bound and
can be dynamically changed.

• We did not find any specific locations for the 3 trading
methods Email, Cloud Storage, and Webpage file
download. However, these methods represent corner
cases and the Bitcoin-wallet Wiki states that they are
by-products of other methods. Consequently, there
seems to be no implementation that specifically be-
longs to them.

Overall, we experienced that design decisions, the targeted
platform, and the used variability mechanism can facilitate,
but also heavily hamper feature location.
Discussion. Our analysis indicates that different informa-
tion sources require adapted search approaches, but can
then facilitate the analysis. Consequently, we also have to
adapt automated techniques accordingly. Regarding the
artifacts we considered, this is rather unsurprising: Source
code is differently structure and provides additional sources
compared to the release log and its connected artifacts—
except for the code differences stored in each commit. Still,
the release log proved to be an effective and cheap way to
identify and locate optional features in Marlin.

11

Table 1: Number of features corresponding to a specific value in a
feature facet for the Marlin case.

Feature Facet Value #Features

Rationale
Business reasons - Customer requests 18
Aspects of the technical environment 12
Social aspects - Usage context 7

Nature Unit of variability 31
Unit of functionality 12

Architectural Responsibility Application logic 28
User interface 14

Definition and Approval
Customer requests 25
Market analysis 19
Competitors 5

Binding Time
Compile time 35
Implementation 7
Link time 3

Binding Mode Static 34
Dynamic 3

Responsibility Application developer 7
Platform developer 30

Evolution Rolled out 35

Quality and Performance

Code optimization 7
Reliability 4
Memory consumption 3
Safety 3
Clone avoidance 2
Response time 2
Usability 1
Power consumption 1
Resource consumption 1
Recoverability 1

4.5. RQ4 - Information Sources for Feature Facets

In Table 1 and Table 2, we summarize the identified feature
facets for Marlin and Bitcoin-wallet, including the number
of features that correspond to these values. We see that
in both systems most facets comprise multiple values. For
example, in Marlin, the rationale for features originates
from customer requirements, the technical environment
(hardware) of the printers, as well as the users’ context
and needs. An exception is the evolution facet, for which
we find only one value, rolled out, in both systems. This
is reasonable, as we only analyzed features in the main
branches of the two systems. In both systems, features
that are not rolled out are only present in other forks.
Bitcoin wallet includes 18 dynamic features. This number
is lower for Marlin, which relies on preprocessor annotations.
However, we nonetheless found three dynamic features in
Marlin that are bound at link time.

In Figure 4 and Figure 5, we display the information
sources that we used to identify the feature facets. Com-
pared to the sources for feature location (cf. Figure 3), we
can see that we used far more sources to identify facets.
An explanation for this is the diversity of information as-
sociated to facets, which often includes information that
cannot be found in the code itself. In contrast, feature
location can in doubt be done using the code as single
information source and additional sources are mostly used
to facilitate the task.

Focusing on the used information sources for both sys-
tems, we find similarities and differences. In both cases, we
used commit messages for multiple facets (i.e., architectural

Table 2: Number of features corresponding to a specific value in a
feature facet for the Bitcoin-wallet case.

Feature Facet Value #Features

Rationale

Business reasons - Customer requests 15
Business reasons - Market demand 6
Aspects of the technical environment 3
Social aspects - Usage context 27
Social aspects - User needs 9

Nature
Unit of variability 7
Unit of functionality 34
Configuration/calibration parameter 20

Architectural Responsibility
Application logic 39
User interface 19
Infrastructure level task 3

Definition and Approval Customer requests 16
Market analysis 9

Binding Time

Compile time 2
Configuration time 2
Design time 39
Runtime 18

Binding Mode Static 43
Dynamic 18

Responsibility Application developer 0
Platform developer 60

Evolution Rolled out 61

Quality and Performance

Accessibility/visibility 1
Accuracy (or precision) 1
Availability 1
Cost 2
Performance 1
Precision 1
Privacy 1
Reliability 1
Response time 4
Security 9
Size 1

responsibility, definition and approval, rational, quality and
performance) and source code changes from commits as
main sources to identify binding time and binding mode.
Some information sources are rather specifically aligned to
one feature facet, for instance, a commit’s author and the
contributor list only help to identify responsibilities.

Similarly, we found information on the evolution facet
only based on pull requests (Marlin) or release logs (Bitcoin-
wallet). This depends on how the projects are using these
sources: Marlin only provides a list of features, but links
them to the code, while Bitcoin-wallet misses the links, but
shows version numbers and corresponding features. Thus,
in Marlin pull requests are a valuable source to identify fea-
ture facets for most features, exceptions being quality and
performance or binding time. In contrast, we could barely
use them for Bitcoin-wallet. Instead, domain documenta-
tion (e.g., Wiki pages, change log, readme files) turned out
to be a richer source for facets in the Bitcoin-wallet case
compared to Marlin. Consequently, some sources differ
strongly in how they can be used for both systems. In the
following, we discuss the results for all of our facets.
Rationale. The rationale facet describes why a feature
is introduced. Considering the values for this facet, we
see that most features in Marlin are driven by customer
requests (i.e., users/developers raising an issue or need)
and the technical environment (e.g., hardware). Usage
contexts, such as being able to react to emergency situa-

12

Architectural Responsibility

Binding Mode

Binding Time

Definition and Approval

Evolution

Quality and Performance

Rationale

Responsibility

Commit A
uthor's G

itHub Page

Commit M
essages

Commits'
Author

Domain Documentation

G-Code Documentation

Issu
e Tracker

Marlin
 GitHub's C

ontrib
utor List

Pull R
equests

Pull R
equests R

eview

Source Code Changes fro
m Commits

Information Source

F
ac

et

10

20

30

40

Figure 4: Distribution of identified feature facets for each information source for the Marlin case.

tions, play a minor role for Marlin features. In contrast,
many Bitcoin-wallet features are motivated by the usage
context. Again, customer requests play an important role.
However, the technical environment is not that important.
This difference can be explained, as Marlin is much more
dependent on the hardware than Bitcoin-wallet.

For both systems, we found no centralized place where
we could identify this facet. This may be a characteristic of
many open-source systems, as they often do not work with
professional requirement management tools, which could
centralize such information. Consequently, we relied on
commit messages, domain documentation, G-Code docu-
mentation, the issue tracker, and pull requests—with none
of these sources standing out in particular.
Architectural Responsibility. Architectural responsi-
bility describes to which part of the system a feature be-
longs. In Marlin, we only identified two values: Features
either belong to the application logic or the user interface.
An explanation for this is that the 3D-printer firmware does
not contain other architectural units, such as a database.
Interestingly, we found a similar picture for Bitcoin-wallet.
Most features belong to the application logic and some
to the user interface. Also, Bitcoin-wallet includes only
few other features, which are concerned with the infras-
tructure of the system. Again, we found no information
source specifically useful to identify this facet. Instead,
it was necessary to recover the information from commit
messages, domain documentation, G-Code documentation,
the issue tracker, pull requests, and sometimes even the
source code.
Definition and Approval. In both systems, features are
usually defined and approved for consideration by customer
requests and market analysis (e.g., analyzing the hardware,
domain, and use case)—especially based on discussions
during Marlin’s development process. Competing firmwares
or systems play only a minor role. The main information

sources in both systems were commit messages and the
issue tracker (and the linked pull requests for Marlin). This
reflects very well the development process that we found
for Marlin and to partly resemble the one for Bitcoin-wallet
(cf. Section 4.2). For features not originating from these
sources, we had to dig deeper into commit author’s GitHub
pages, domain documentation, or G-Code documentation.
Binding Time and Mode. As already mentioned, Mar-
lin is mainly implemented with static binding based on the
C preprocessor, meaning that the binding time is either at
implementation time (mandatory features) or build time
(optional features). However, we also found few features
that comprise dynamic variability and are changed at link
time (e.g., Homing). Bitcoin-wallet is very different, as
features are either bound at design time or dynamically at
runtime (with few exceptions).

To identify the binding time and mode of a feature,
we mainly relied on code analysis, directly investigating
the implementation of the variability mechanisms. This
was particularly necessary, as the variability mechanisms
are barely documented and connected to feature or may
even be misleading (e.g., Bitcoin-wallet using constants
for runtime checks). Consequently, pull requests, domain
documentation, domain analysis, and commit messages can
be supportive means, but to a rather limited extent.

In the case of Marlin, the identified dynamic variability
is interesting, as it is part of mandatory as well as optional
features, but is not considered as explicit features by the
community. Such variability is used to react to different
usage scenarios (cf. Homing) or changing inputs of the
motherboard’s pins. For example, these pins transfer differ-
ent temperature values that may require a specific reaction
or they transfer mechanical controls. To this end, different
pins are used, which must be checked individually and at
runtime, and represents an essential functionality of Marlin.
As a result, we found many interactions with static vari-

13

Architectural Responsibility

Binding Mode

Binding Time

Definition and Approval

Evolution

Nature

Quality and Performance

Rationale

Responsibility

Commit M
essages

Commits'
Author

Community Discussio
ns

Domain Analysis

Domain Documentation

Domain Knowledge

Github's C
ontrib

utor List

Issu
e Tracker

Pull R
equest

Release Log

Source Code Changes fro
m Commits

Source Code Comments

Information Source

F
ac

et

10

20

30

40

50

Figure 5: Distribution of identified feature facets for each information source for the Bitcoin wallet case.

ability, for example, for debugging purposes. For us, such
interactions of statically and dynamically bound features
seem rather interesting. The existing runtime parameters
can hardly be replaced with another variability mechanism,
as they have to react to changes in a printer’s context at
runtime. This dependency between hardware and environ-
mental variability in a software may be impossible, or at
least impractical, to implement with static variability, or
even dangerous if it enables exclusion.

Similarly, while using Bitcoin-wallet, some features ap-
peared to be mandatory, for instance, Exchange Rates
and its sub-features. Still, unsurprisingly, Bitcoin-wallet
comprises more dynamic optionality than Marlin: Android
applications are less dependent on the underlying hardware
and require dynamic options to allow users to change the
system’s behavior, as only one version can be provided in
the official store.

Arguably, similar situations of mixed and hidden inter-
changes between static and dynamic binding times occur in
many other systems, too, for example, to react to contextual
information, changing inputs, or different communication
channels. Thus, the question arises if other communities
are aware of such issues and communicate them. This
awareness seems essential to uncover, understand, and
manage feature interactions by the means of dynamic soft-
ware product line. In Marlin, such issues seem not to be
considered or communicated separately, which may result
in developers missing them.
Responsibility. Identifying the developer who is respon-
sible for a feature is helpful to ask questions or to assign
tasks. As values for this facet, we distinguished between
the roles of developers, namely the predominant platform
developers and the far fewer application developers—which
is especially for Bitcoin-wallet unsurprising, as a single
developer is responsible for the whole system and all its
features. Unfortunately, the contributor list provided by

GitHub is not always suitable to identify this facet. This
list does not define roles, but only shows to what extent a
developer is involved, which may indicate a certain role. In-
stead, we relied on the contributors’ GitHub pages, commit
authors, issue tracker, and pull requests for both systems.
Evolution. While we could utilize different information
sources for most facets, evolution is again an exception.
Above, we already discussed that evolution in the main
branch of Marlin is only characterized by features that are
rolled out and the applied development process (cf. Sec-
tion 4.2). The main information sources for the two systems
were the release log and pull requests. This is due to the
fact that the release log tracks the integration of new fea-
tures for Bitcoin-wallet, while it links to the corresponding
(required) pull requests for Marlin. Still, it is interesting
that these information are not reported in any other source,
except for domain documentation resembling the release
log in the case of Bitcoin-wallet. However, it is possible
that this is due to our focus on the main branch. For
features that are in other stages of their development, the
evolution facet may be identifiable based on other sources.
Quality and Performance. We described in Section 4.2
that Marlin has a rather strict quality assurance. In Ta-
ble 1, we see that several non-functional requirements are
important for the community. Most commonly seem to be
code optimizations, reliability, memory consumption, and
safety. It is not surprising to see that Bitcoin wallet has a
very different focus when it comes to quality, mainly consid-
ering security, regarding that it implements an application
to improve the security of money transactions.

As we captured non-functional requirements, we could
identify these properties only for a subset of all features.
To this end, we utilized commit messages, domain docu-
mentation, issue tracker, pull request reviews, and source
code changes. Apparently, non-functional requirements are
rarely made explicit and mainly discussed in reviews of

14

features that shall be integrated into the system.
Discussion. Overall, we found that different information
sources can be helpful for each feature facet. Most of these
information sources are only available in modern version
control systems, but provide good opportunities to improve
automated techniques to recover feature facets. Still, as
comparing Marlin and Bitcoin-wallet illustrates, the usabil-
ity of each information source for a facet depends heavily
on its usage, a defined development process, community,
and domain of the system.

The question arises to what extent these new sources are
reliable. This is similar to using additional information in
the code for identifying and locating features. For example,
comments and code may not evolve simultaneously [Fluri
et al. 2007; Nielebock et al. 2018] and similar situations may
occur for some of our sources, such as domain documenta-
tions. In contrast, other sources are stored automatically
and if they are not manipulated or ambiguous (e.g., deleted,
merged, or unclear commit messages), they may be more
reliable, as they provide snapshots of the different points
in time of the system’s development history.

5. Threats to Validity

In the following, we report threats to the internal, external
and conclusion validity [Wohlin et al. 2012].
Internal Validity. The main threat to the internal valid-
ity is that we, and not the original developers, identified
features, their locations, and their facets. Thus, our results
may be biased. However, we mitigated this threat with
two authors becoming domain experts for each system, for
example, by assembling two different kinds of 3D printers
(i.e., Delta, Cartesian) for Marlin, which differ in their
mechanics and algorithms. We also performed pilot studies
and system analyses, during which different authors exten-
sively read documentations (e.g., about G-Code commands)
and meta-data (e.g., issue tracker) available in the GitHub
repositories. The source code was also analyzed in pairs,
which includes cross-checking of the code understanding
and of the locations. We plan to validate the data set with
the original systems’ developers.
External Validity. A threat to the external validity
is that we only consider two systems, which may differ
from others. Yet, Marlin is a substantial case, and as
an embedded system, it shares characteristics with many
other embedded systems. In fact, preprocessors are used
similarly in almost all open-source and industrial C/C++
systems [Hunsen et al. 2016]. Similarly, Bitcoin-wallet is
an Android application that shares common characteristics
with others and, thus, should also be representative.

Another factor influencing the external validity is the
software-hosting platform used for Marlin and Bitcoin-
wallet. Other platforms may utilize other version control
systems and additional components that comprise different
information sources, store data in another way, or apply
other mechanics. However, both systems are hosted on

GitHub, which is one of the largest open-source version
control systems. Moreover, the available data is usually
similar, as such systems are based on the same ideas. Thus,
we argue that our results are transferable to other projects.
Conclusion Validity. To enhance the repeatability and
reliability of our study, we provide the data set with feature
locations and all other data in an online appendix.1 Conse-
quently, we argue that other researchers can replicate our
study, but may derive other results. For example, due to
Marlin’s evolution they may categorize features differently,
or include additional information sources (e.g., develop-
ers). Nonetheless, we argue that this is not a threat to the
reliability of our study.

6. Related Work

In the following, we discuss other feature-location datasets,
experiments on manual feature location, and related case
studies. There is also another analysis of the forking tech-
niques of Marlin by Stănciulescu et al. [2015]. The authors
aim to understand the pros and cons of cloning based on
this analysis and, thus, our goal is different.
Feature-Location Datasets. We are aware of only few
data-sets on feature location: Olszak and Jorgensen [2011]
developed a tool for feature location, which they apply
on multiple systems. The corresponding source code and
data is partly available. Ji et al. [2015] annotated feature
locations in the source code of the freely available Clafer
Web Tools [Antkiewicz et al. 2013]. The authors provide
a set of four systems with annotated feature locations in
the source code. Martinez et al. [2017] maintain an on-
line catalog of case studies connected to the extractive
approach [Krueger 2002] towards software-product-line en-
gineering. The catalog currently includes five academic and
open-source systems on which reproducible feature-location
studies with available source code have been performed.
Such data sets complement ours and we can use them to
investigate feature locations and facets in other systems.
Experiments on Manual Feature Location. There
have been few experiments and case studies on manual
feature location [Krüger et al. 2018a]. Wang et al. [2011,
2013] report three exploratory experiments conducted on
four open-source Java systems. Their goal was to un-
derstand how developers perform feature location tasks.
Overall, they describe distinct phases, patterns, and ele-
mentary actions. For evaluating the effectiveness of pat-
terns and actions, the authors rely on junior developers.
Similarly, Damevski et al. [2016] performed a field study
on developers’ behavior when performing feature location
tasks. They report the frequency and type of code search
tools used, queries, retrieval strategies employed, as well
as patterns of developer behavior during feature location.

While these works involve manual feature location, they
do not distinct between the nature of a feature and do
not aim to recover other facets. Furthermore, they do not
include an investigation of information sources for features.
Both experiments focus on feature location in GUI-based

15

systems and observe participants’ interactions with the
GUI, but do not consider preprocessor-based code. Still,
as we described, we used similar patterns for our source
code analysis as reported by Wang et al. [2013].
Case Studies. Wilde et al. [2003] report experiences of
a feature location case study on unstructured FORTRAN
code. The authors used two semi-automatic techniques and
compare them to manual feature location. Their study re-
veals that both techniques are effective in locating features,
but require considerable adaptation.

Jordan et al. [2015] conducted an industrial in-vivo obser-
vation on two experienced software engineers modernizing
a COBOL system. They aimed to understand manual
searches for feature locations and identify helpful tools.
Their results suggest that domain knowledge improves
effectiveness and that search tools do not yield relevant
results.

Ji et al. [2015] conducted a simulation study using a
clone-based software product line on which they applied
an embedded feature annotation approach. They located
features based on the following sources: Project wikis, com-
mit messages, commit diffs, code, issue trackers, and the
original developers. Still, their focus was to show the bene-
fits of embedding feature traces rather than investigating
information sources or feature facets.

Krüger et al. [2017] identified and manually mapped
features in five cloned Java systems. As information source,
they used a code-clone detection tool to identify initial
seeds from which they extended their search. The authors’
focus was to locate features and compare their results to a
fully automated refactoring.

While all these works are related to ours, the goal of
our study is complementary. Mainly, we investigated other
research questions than most works, or considered other in-
formation sources, for example compared to Ji et al. [2015].
Furthermore, our subject systems differ in their develop-
ment processes and we did not use any feature location
technique. While there are some consistent experiences (i.e.,
domain knowledge improves feature location) some others
are quite different among all works (i.e., the usefulness of
keyword searches). It seems interesting to investigate those
discrepancies.

7. Conclusion

We presented an exploratory study of manually identify-
ing and locating features and their facets in Marlin and
Bitcoin-wallet. To this end, we explored and described
the development processes of both systems as well as in-
formation sources that are useful to locate features, and
compared to what extent they can be used to identify their
facets. We contribute a data set of feature locations, usable
by other researchers to evaluate feature-location techniques
or study feature facets, and all our analysis data in an
online repository. Among others, locating features in code
requires substantial domain knowledge. The same accounts

for the corresponding feature facets. We also found sub-
stantial differences in the usability of different information
sources, considering which source can be used for which
facets and to what extent.

As key message, we can summarize our findings as follows:
There are more information sources for locating features
and identifying their facets in modern systems than are
exploited for most corresponding techniques. While a tech-
nique based on such different sources seems promising, we
are still lacking knowledge to make such a technique usable.
Foremost, we need to better understand the relationships
between information sources, their integration into devel-
opment processes, and derive appropriate search strategies
that connect the available information.

In future work, we aim to complement our results by fur-
ther case studies on other systems (and forks of our subject
systems) to consolidate our insights into different informa-
tion sources and development cultures. We plan to do the
same for feature facets and the corresponding information
sources, also supporting developers to potentially improve
their information management. Particularly interesting
are comparisons of development processes among various
projects to unveil why they are applied and what charac-
teristics may lead to changes. An interview study with the
Marlin community and industrial developers may provide
further insights into such issues. In the same way, we argue
that analyzing how and why such communities combine
static and dynamic variability is interesting. Furthermore,
we aim to evaluate the features, facets, and locations, for
instance, by performing feature-based maintenance and
evolution tasks—measuring the benefit of the obtained in-
formation and the accuracy of our feature locations. This
way, we aim to identify best practices to guide developers in
their projects and researchers to scope their work. Finally,
our results provide a starting point not only to develop
new techniques to recover information about features, but
may also extent the scope of existing techniques that we
want to match against our results. Improving the support
for such artifacts in feature location and information re-
covery techniques seems essential to facilitate analysis and
re-engineering (cf. Section 2) activities.

Acknowledgments

Supported by the ITEA project REVaMP2 funded by Vin-
nova Sweden (2016-02804), by the Swedish Research Coun-
cil Vetenskapsrådet (257822902), and the German Research
Council DFG (LE 3382/2-1).

References

Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten
Berger. Semi-Automated Feature Traceability with Embedded
Annotations. In International Conference on Software Mainte-
nance and Evolution, ICSME, pages 529–533. IEEE, 2018. doi:
10.1109/ICSME.2018.00049.

16

Berima Andam, Andreas Burger, Thorsten Berger, and Michel Chau-
dron. FLOrIDA: Feature LOcatIon DAshboard for Extracting
and Visualizing Feature Traces. In International Workshop on
Variability Modelling of Software-Intensive Systems, VaMoS, pages
100–107. ACM, 2017. doi: 10.1145/3023956.3023967.

Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin, Rafael
Olaechea, Jia H. J. Liang, and Krzysztof Czarnecki. Clafer Tools
for Product Line Engineering. In International Software Prod-
uct Line Conference, SPLC, pages 130–135. ACM, 2013. doi:
10.1145/2499777.2499779.

Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.
Feature-Oriented Software Product Lines. Springer, 2013. doi:
10.1007/978-3-642-37521-7.

Wesley K. G. Assunção and Silvia Regina Vergilio. Feature Location
for Software Product Line Migration: A Mapping Study. In Inter-
national Software Product Line Conference, SPLC, pages 52–59.
ACM, 2014. doi: 10.1145/2647908.2655967.

Wesley K. G. Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer,
Silvia R Vergilio, and Alexander Egyed. Reengineering Legacy
Applications Into Software Product Lines: A Systematic Mapping.
Empirical Software Engineering, 22(6):2972–3016, 2017. doi: 10.
1007/s10664-017-9499-z.

Thorsten Berger and Jianmei Guo. Towards System Analysis with
Variability Model Metrics. In International Workshop on Vari-
ability Modelling of Software-Intensive Systems, VaMoS, pages
23:1–23:8. ACM, 2014. doi: 10.1145/2556624.2556641.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and
Krzysztof Czarnecki. A Study of Variability Models and Languages
in the Systems Software Domain. IEEE Transactions on Software
Engineering, 39(12):1611–1640, 2013. doi: 10.1109/TSE.2013.34.

Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher,
Adeline Silva, Martin Becker, Marsha Chechik, and Krzysztof
Czarnecki. What is a Feature? A Qualitative Study of Features in
Industrial Software Product Lines. In International Conference
on Software Product Line, SPLC, pages 16–25. ACM, 2015. doi:
10.1145/2791060.2791108.

Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The
Concept Assignment Problem in Program Understanding. In
International Conference on Software Engineering, ICSE, pages
482–498. IEEE, 1993. doi: 10.1109/ICSE.1993.346017.

Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and
Mike Hinchey. An Overview of Dynamic Software Product Line
Architectures and Techniques: Observations from Research and
Industry. Journal of Systems and Software, 91:3–23, 2014. doi:
10.1016/j.jss.2013.12.038.

Andreas Classen, Patrick Heymans, and Pierre-yves Schobbens.
What’s in a Feature: A Requirements Engineering Perspective. In
Fundamental Approaches to Software Engineering, FASE, pages
16–30. Springer, 2008. doi: 10.1007/978-3-540-78743-3_2.

Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid,
and Andrzej Wa̧sowski. Cool Features and Tough Decisions: A
Comparison of Variability Modeling Approaches. In International
Workshop on Variability Modelling of Software-Intensive Systems,
VaMoS, pages 173–182. ACM, 2012. doi: 10.1145/2110147.2110167.

Kostadin Damevski, David Shepherd, and Lori Pollock. A Field
Study of How Developers Locate Features in Source Code. Em-
pirical Software Engineering, 21(2):724–747, 2016. doi: 10.1007/
s10664-015-9373-9.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshy-
vanyk. Feature Location in Source Code: A Taxonomy and Survey.
Journal of Software: Evolution and Process, 25(1):53–95, 2013.
doi: 10.1002/smr.567.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An Exploratory Study
of Cloning in Industrial Software Product Lines. In European
Conference on Software Maintenance and Reengineering, CSMR,
pages 25–34. IEEE, 2013. doi: 10.1109/CSMR.2013.13.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho.
Do Crosscutting Concerns Cause Defects? IEEE Transactions
on Software Engineering, 34(4):497–515, 2008. doi: 10.1109/TSE.
2008.36.

EIA RS-274-D. Interchangeable Variable Block Data Format for
Positioning, Contouring, and Contouring/Positioning Numerically
Controlled Machines. Standard, Electronic Industries Association,
1979.

Eduardo Figueiredo, Bruno Carreiro da Silva, Cláudio Sant’Anna,
Alessandro F. Garcia, Jon Whittle, and Daltro José Nunes. Cross-
cutting Patterns and Design Stability: An Exploratory Analysis.
In International Conference on Program Comprehension, ICPC,
pages 138–147. IEEE, 2009. doi: 10.1109/ICPC.2009.5090037.

Beat Fluri, Michael Wursch, and Harald C. Gall. Do Code and Com-
ments Co-Evolve? On the Relation Between Source Code and Com-
ment Changes. In Working Conference on Reverse Engineering,
WCRE, pages 70–79. IEEE, 2007. doi: 10.1109/WCRE.2007.21.

Critina Gacek and Michalis Anastasopoules. Implementing Product
Line Variabilities. SIGSOFT Software Engineering Notes, 26(3):
109–117, 2001. doi: 10.1145/379377.375269.

Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf
Leßenich, Martin Becker, and Sven Apel. Preprocessor-Based
Variability in Open-Source and Industrial Software Systems: An
Empirical Study. Empirical Software Engineering, 21(2):449–482,
2016. doi: 10.1007/s10664-015-9360-1.

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof
Czarnecki. Maintaining Feature Traceability with Embedded
Annotations. In International Systems and Software Prod-
uct Line Conference, SPLC, pages 61–70. ACM, 2015. doi:
10.1145/2791060.2791107.

Howell Jordan, Jacek Rosik, Sebastian Herold, Goetz Botterweck,
and Jim Buckley. Manually Locating Features in Industrial Source
Code: The Search Actions of Software Nomads. In International
Conference on Program Comprehension, ICPC, pages 174–177.
IEEE, 2015. doi: 10.1109/ICPC.2015.26.

Kyo Chul Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute Carnegie-Mellon University, 1990.

Charles W. Krueger. Easing the Transition to Software Mass Cus-
tomization. In International Workshop on Software Product-
Family Engineering, PFE, pages 282–293. Springer, 2002. doi:
10.1007/3-540-47833-7_25.

Jacob Krüger, Louis Nell, Wolfram Fenske, Gunter Saake, and
Thomas Leich. Finding Lost Features in Cloned Systems. In
International Systems and Software Product Line Conference,
SPLC, pages 65–72. ACM, 2017. doi: 10.1145/3109729.3109736.

Jacob Krüger, Thorsten Berger, and Thomas Leich. Features and How
to Find Them: A Survey of Manual Feature Location. In Software
Engineering for Variability Intensive Systems: Foundations and
Applications. LLC/CRC Press, 2018a.

Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina
Hebig, and Thorsten Berger. Towards a Better Understanding
of Software Features and Their Characteristics: A Case Study of
Marlin. In International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS, pages 105–112. ACM, 2018b.
doi: 10.1145/3168365.3168371.

Jacob Krüger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and
Thomas Leich. Do You Remember This Source Code? In Interna-
tional Conference on Software Engineering, ICSE, pages 764–775.
ACM, 2018c. doi: 10.1145/3180155.3180215.

Jaejoon Lee and Dirk Muthig. Feature-Oriented Variability Manage-
ment in Product Line Engineering. Communications of the ACM,
49(12):55–59, 2006. doi: 10.1145/1183236.1183266.

Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An Analysis of the Variability in 40 Preprocessor-
Based Software Product Lines. In International Conference on
Software Engineering, ICSE, pages 105–114, 2010. doi: 10.1145/
1806799.1806819.

Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger,
and Andrzej Wasowski. Intention-Based Integration of Software
Variants. In International Conference on Software Engineering,
ICSE, 2019.

Angela Lozano. An Overview of Techniques for Detecting Software
Variability Concepts in Source Code. In Advances in Concep-

17

tual Modeling. Recent Developments and New Directions, pages
141–150. Springer, 2011. doi: 10.1007/978-3-642-24574-9_19.

Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In International
Systems and Software Product Line Conference, SPLC, pages
38–41. ACM, 2017. doi: 10.1145/3109729.3109748.

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and
Rohit Gheyi. The Love/Hate Relationship with the C Preprocessor:
An Interview Study. In European Conference on Object-Oriented
Programming, ECOOP, pages 495–518. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015. doi: 10.4230/LIPIcs.ECOOP.2015.
495.

Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof
Czarnecki. Where do Configuration Constraints Stem From? An
Extraction Approach and an Empirical Study. IEEE Transactions
on Software Engineering, 41(8):820–841, 2015. doi: 10.1109/TSE.
2015.2415793.

Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger, Thomas
Leich, and Frank Ortmeier. Commenting Source Code: Is it Worth
it for Small Programming Tasks? Empirical Software Engineering,
pages 1–40, 2018. doi: 10.1007/s10664-018-9664-z.

Andrzej Olszak and Bo Norregaard Jorgensen. Understanding Legacy
Features with Featureous. In Working Conference on Reverse
Engineering, WCRE, pages 435–436. IEEE, 2011. doi: 10.1109/
WCRE.2011.64.

Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski,
Christian Kästner, and Jianmei Guo. Feature-Oriented Software
Evolution. In International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS, 2013. doi: 10.1145/2430502.
2430526.

Leonardo Passos, Jesús Padilla, Thorsten Berger, Sven Apel,
Krzysztof Czarnecki, and Marco Tulio Valente. Feature Scat-
tering in the Large: A Longitudinal Study of Linux Kernel Device
Drivers. In International Conference on Modularity, MODULAR-
ITY, pages 81–92. ACM, 2015. doi: 10.1145/2724525.2724575.

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano
Antoniol, and Vaclav Rajlich. Feature Location Using Probabilistic
Ranking of Methods Based on Execution Scenarios and Information
Retrieval. IEEE Transactions on Software Engineering, 33(6):
420–432, 2007. doi: 10.1109/TSE.2007.1016.

Christian Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In European Conference on Object-Oriented Programming,
ECOOP, pages 419–443. Springer, 1997. doi: 10.1007/BFb0053389.

Baishakhi Ray and Miryung Kim. A Case Study of Cross-System
Porting in Forked Projects. In International Symposium on the
Foundations of Software Engineering, FSE, pages 53:1–53:11. ACM,
2012. doi: 10.1145/2393596.2393659.

Abdul Razzaq, Asanka Wasala, Chris Exton, and Jim Buckley. The
State of Empirical Evaluation in Static Feature Location. ACM
Transactions on Software Engineering and Methodology, 28(1):
2:1–2:58, 2018. doi: 10.1145/3280988.

Martin P. Robillard and Gail C. Murphy. FEAT: A Tool for Locating,
Describing, and Analyzing Concerns in Source Code. In Interna-
tional Conference on Software Engineering, ICSE, pages 822–823.
IEEE, 2003. doi: 10.1109/ICSE.2003.1201304.

Martin P. Robillard and Gail C. Murphy. Representing Concerns in
Source Code. ACM Transactions on Software Engineering and
Methodology, 16(1), 2007. doi: 10.1145/1189748.1189751.

Marko Rosenmüller. Towards Flexible Feature Composition: Static
and Dynamic Binding in Software Product Lines. PhD thesis,
University of Magdeburg, 2011.

Julia Rubin and Marsha Chechik. A Survey of Feature Location
Techniques. In Domain Engineering, pages 29–58. Springer, 2013.
doi: 10.1007/978-3-642-36654-3_2.

Ştefan Stănciulescu, Sandro Schulze, and Andrzej Wąsowski. Forked
and Integrated Variants in an Open-Source Firmware Project. In
International Conference on Software Maintenance and Evolution,
ICSME, pages 151–160. IEEE, 2015. doi: 10.1109/ICSM.2015.
7332461.

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. An
Exploratory Study of Feature Location Process: Distinct Phases,
Recurring Patterns, and Elementary Actions. In International
Conference on Software Maintenance, ICSM, pages 213–222. IEEE,
2011. doi: 10.1109/ICSM.2011.6080788.

Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. How
Developers Perform Feature Location Tasks: A Human-Centric
and Process-Oriented Exploratory Study. Journal of Software:
Evolution and Process, 25(11):1193–1224, 2013. doi: 10.1002/smr.
1593.

Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajilich,
and La Treva Pounds. A Comparison of Methods for Locating
Features in Legacy Software. Journal of Systems and Software, 65
(2):105–114, 2003. doi: 10.1016/S0164-1212(02)00052-3.

Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn
Regnell, and Anders Wessln. Experimentation in Software Engi-
neering. Springer, 2012.

18

	Introduction
	Feature Facets
	Facet: Nature of a Feature
	Facets: Binding Time and Mode
	Other Facets

	Study Design
	Research Questions
	Subject Systems
	Methodology

	Results
	Pilot Studies
	RQ1 - Feature Development Process
	RQ2 - Entry Points for Feature Location
	RQ3 - Search Strategies for Features
	RQ4 - Information Sources for Feature Facets

	Threats to Validity
	Related Work
	Conclusion

