
What Developers (Care to) Recall:
An Interview Survey on Smaller Systems

Jacob Krüger
University of Toronto, Canada

Otto-von-Guericke University Magdeburg, Germany
Email: jkrueger@ovgu.de

Regina Hebig
Chalmers | University of Gothenburg, Sweden

Email: hebig@chalmers.se

Abstract—Developers spend most of their time with program
comprehension, obtaining (or recovering) the knowledge they
need to perform a task. Researchers have investigated the
information needs of developers to understand what knowledge
is important and to scope techniques, for example, to facilitate
program comprehension, support knowledge recovery, or identify
experts. Similarly, researchers analyzed developers’ memory to
understand how they forget, which essentially causes the need
to recover knowledge. However, we are not aware of studies
linking these research directions to investigate what knowledge
developers aim to keep in their memory, allowing them to ask less
and different questions during knowledge recovery. To address
this gap, we conducted an interview survey with 17 experienced
developers, in which we investigated 1) what knowledge develop-
ers consider important to remember; 2) whether developers can
correctly recall knowledge about their (smaller) systems; and
3) how their self-assessment relates to their actual knowledge.
Our results indicate, among others, that developers consider
architecture and abstract code knowledge (e.g., its intent) as most
important to remember, that the perceived importance relates to
their ability to recall knowledge correctly, and that their self-
assessment decreases while reflecting about their system. Based
on these findings, we discuss research directions and practical
implications for managing and recovering developers’ knowledge.

Index Terms—Knowledge, information needs, memory

I. INTRODUCTION

In their daily work, developers must constantly understand
the artifacts (e.g., code) and properties (e.g., dependencies)
of the system they are working on to obtain knowledge
about its behavior and structure. So, a developer’s knowledge
impacts numerous aspects of software engineering, for example,
development and maintenance costs, system quality, and the
number of bugs [2], [25], [30], [45], [59], [63], [64]. For
this reason, researchers investigate developers’ understanding
of a system from different perspectives, for instance, in the
context of program comprehension [46], [51], [64], information
needs [9], [57], or knowledge management [6], [45]—regularly
proposing new techniques to support developers, for example,
with expertise identification [34], [35] or on-demand documen-
tation [43], [61]. Moreover, empirical studies assess the impact
of specific practices, such as the use of identifier names [5],
[19] or code comments [7], [37], on program comprehension.

Such research is highly valuable since it improves our
understanding of how developers obtain knowledge about
a system. In particular, forgetting and software evolution
are among the most important causes for which developers’

knowledge becomes less reliable [20], [27], [39], and for
which they need to recover knowledge. Still, fundamental
questions about the link between developers’ memory and their
information needs remain open. For instance, it is unclear what
information developers consider important to, and actually do,
remember about their systems. That, however, impacts their
information needs and how respective tools should be designed.

We investigated this link based on a two-fold study. First,
we reviewed the literature on questions developers ask during
their tasks, adopting guidelines for systematic literature reviews
(SLRs) [21]. The results of our SLR served as input for the
design of an interview survey, and as basis for comparisons. Sec-
ond, we conducted an interview survey with 17 developers who
mostly develop smaller systems. We decided for this method
since the correctness of a developer’s memory is difficult to
assess and subject to several threats, due to its subjective and
psychological nature [27], [58]. So, using a qualitative method
promises more reliable insights [66]. In detail, we contribute:
• An analysis of empirical studies that are concerned with

questions developers ask during their tasks (Sec. II-B).
• Insights on the knowledge developers consider important

to remember (Sec. IV-A), the relation of importance and
correctness of knowledge (Sec. IV-B), and developers’ ability
to correctly recall their knowledge (Sec. IV-C).

• Discussions of the implications for research and practice.
• An open-access repository with the results of our SLR, our

interview guide, and anonymized results.1

Our results show that the information needs of developers
depend on what they consider important to remember; and,
not surprisingly, that meta knowledge is less important for
smaller systems with few developers. Overall, our insights
imply important research directions, and can help to tailor the
support for program comprehension and knowledge recovery.

II. RELATED WORK AND MOTIVATION

As time goes by, developers forget the details of systems they
work on, affecting their knowledge of, for instance, source code,
architecture, evolution, and collaborators. Unfortunately, only
few studies analyze forgetting in software engineering. Kang
and Hahn [20] investigated learning and forgetting curves for
domain, methodological, and technological knowledge. Their

1https://doi.org/10.5281/zenodo.3972404

https://doi.org/10.5281/zenodo.3972404

TABLE I: Overview of the related work.
Paper Venue #P #Q Method S

[14] ASE’98 — 60 Newsgroup analysis IQ
[54]* FSE’06 25 44 Observational study IQ

[22] ICSE’07 { 17 21 Observational study IQ
42 21 Survey RI

[55] TSE’08 <extends Sillito et al. [54], no relevant changes>
[17]* ICSE’10 11 46 (78)a Interviews IQ
[30] ICSE’10 460 12 Survey RD
[31]* PLATEAU’10 179 94 Survey IQ

[62] FSE’12
{ 33 8 (24)b Survey IQ

180 15 Survey RI
180 15 Survey RD

[28] PLATEAU’14 6 7c Think-aloud sessions IQ
[38]* VEM’14 42 11 Survey RI
[57]* ESEC/FSE’15 10 78 (559)d Think-aloud sessions IQ
[1] ICST’17 194 37 Survey IQ
[50] CHASE’17 27 25 Survey RI
[29] ICPC’19 <extends Kubelka et al. [28], no relevant changes>

#P: Number of Participants; #Q: Number of Questions; S: Scope
IQ: Identify Questions; RI: Rate Importance; RD: Rate Difficulty;

a Lists 46 questions, website not available; b Lists 8 questions;
c 7 new questions, others from previous work [22], [55]; d Lists 78 questions,

website not available; * Starting points for snowballing

results indicate that methodological knowledge is prone to
forgetting, whereas domain and technological knowledge is
more resilient. Complementary, Krüger et al. [27] aimed to
apply and analyze a forgetting curve on code level. The results
show that especially the number and ratio of contributions to
the code influence developers’ perception of their memory.

Due to their memory decay, software developers have to re-
cover knowledge before working on a system again, with differ-
ent types of knowledge requiring specific information, depend-
ing on the responsible part of the memory [39]. Two main direc-
tions of empirical research relate to this issue. First, researchers
investigate the information needs of software developers during
their tasks [9], [31], [38], [54], [57]. Such research aims to un-
derstand the importance of different types of knowledge for fa-
cilitating developers’ tasks. Second, researchers analyze how to
directly improve the program comprehension of a system [44],
[46], [60], [64], focusing on code as the primary artifact
developers inspect to understand a system [24], [37], [56], [63].
The goal is to aid knowledge recovery, potentially using other
types of artifacts besides code as supportive means. Building
on these two directions, researchers have proposed techniques,
among others, to recover and visualize information [10], [12],
[17], [43], [67] or to identify experts [2], [3], [18], [33], [47].

A. Motivation

As the related work shows, researchers have collected a large
body of knowledge on information needs and recovery. In
contrast, little is known about developers’ memory decay, and
even more important: We are missing a link between memory
decay and information needs regarding what developers
consider important to remember. This is an important link,
as information may be codified in the code and additional
documentation, may be easy to recover, or may remain in a
developer’s memory for a long time. So, depending on the
type and availability of knowledge (and information for its
recovery), we may need specialized techniques and research
to understand and facilitate developers’ tasks.

For instance, code details may not be worth remembering
and are instead encoded in identifier names. Similarly, missing
knowledge about code ownership may be encoded in a
version control system, and thus is easy to recover with
lightweight tooling and not worth remembering. Also, novices
are missing both, knowledge that experienced developers
remember and knowledge they can recover when needed.
Therefore, the information needs vary between both groups.
New developers may, for example, require additional support
to gain architectural knowledge, especially if the architecture
is not codified since experienced developers can remember it.
Advancing on existing research, we investigate particularly such
links between developers’ memory and their information needs.
Research Questions (RQs). Building on this motivation, we
aimed to understand what developers consider important to
remember (RQ1), how reliable their knowledge is (RQ2),
and how they assess their knowledge (RQ3). Specifically, we
formulated three research questions:
RQ1 What knowledge about their system do developers con-

sider important to remember?
RQ2 Can developers correctly answer questions about their

system based on their memory?
RQ3 To what extent does a developer’s self-assessment align

with their actual knowledge about their system?
By answering these questions, we provide fundamentally new
insights into developers’ memory and information needs.

B. Reviewing Information Needs

We reviewed the related work on questions software developers
ask during their tasks, following established guidelines for
SLRs [21], [65]. This way, we aimed to i) summarize the
research on information needs, ii) ground our study design in
empirical evidence, and iii) establish a dataset to compare our
results with. So, our goal was not to conduct a full-fledged
SLR, which is why we adapted the following points:
• We employed snowballing [65] based on a set of relevant

papers we knew. So, we may have missed papers that
we could have found with an automatic search. However,
automatic searches face considerable problems regarding
effort and replicability [21], [26], [48], and we argue that we
used a proper starting set of papers from appropriate venues.

• We did not perform a quality assessment, but trusted the
review processes of the venues [8]. Also, since we classify
existing findings, a quality assessment is less important [21].

• We do not report the typical statistics of an SLR (besides
those in Tbl. I), because they are not relevant for our study.

These established adaptations facilitated our conduct, while
ensuring that we could obtain reliable data.
Search Strategy. For our snowballing search, we started with
five relevant papers (asterisked in Tbl. I). Then, we snowballed
through references (backwards) and citing papers (forwards) to
identify further papers. To be as complete as possible, we used
Google Scholar for our forwards snowballing (last checked on
February 11th 2020), as it indexes most papers, and did not
limit the number of iterations. So, whenever we identified a
relevant paper, we employed snowballing on that paper, too.

(a) Themes identified based on the classifications
defined in the selected papers. The numbers on
the left indicate the numbers of questions (and
classes) associated with each theme.

(b) Results of the re-classification and the number
of questions associated with each theme.

(c) Relative, normalized
rankings ([0,1]) of archi-
tectural (A), meta (M),
and code (C) questions.

Fig. 1: Overview of the themes and rankings we identified from the papers in Tbl. I.

Selection Criteria. We collected studies on questions develop-
ers ask, indicating missing and apparently required knowledge.
Precisely, we defined the following inclusion criteria:
IC1 The paper is written in English.
IC2 The paper has been published at a peer reviewed venue.
IC3 The paper reports an empirical study.
IC4 The paper analyzes development/maintenance questions.
IC5 The paper does one or both of the following:

a) Identifies (ID) concrete questions that developers ask.
b) Rates importance (RI) or difficulty (RD) of questions.

We used these criteria to ensure the quality of included papers
(IC1, IC2) and that they provide empirical evidence (IC3).
Moreover, we excluded studies on questions too specific to
ask for any subject system (IC4), for instance, those focusing
on code reviews [40], bug reports [9], API usages [13], or
concurrent programming [41]. Finally, we included only papers
that provide a systematic sample of concrete questions (IC5)—
excluding papers that only exemplify some questions (e.g., by
Letovsky [32] or Sharif et al. [49]).
Data Extraction and Synthesis. We extracted bibliographic
data, all concrete questions, and author classifications of these
questions. Further, we extracted for each individual study in
a paper the number of participants, the questions involved, the
research method, the scope (i.e., ID, RI, or RD – cf. IC5), and
any additional comments (e.g., regarding the availability of
questions). To analyze our data, we adopted card sorting [68]:
First, we identified themes based on the classifications provided
in the papers, aiming to unify the 81 classes (of 420 questions)
defined by the authors. Second, we applied these themes to
reclassify all questions (456 including those not classified by
authors) based on their texts. We did this to check our first
classification and gain a more detailed understanding of the
questions’ contexts that may be hidden by the authors’ classifi-
cations. Finally, we used our re-classification (i.e., architecture,
meta, code) to synthesize the rankings of questions in the papers.
For example, if the ranking in a paper was not normalized, we
took the ranking of a question (e.g., #2 out of 21) and normal-
ized that ranking (i.e., 0.95). Then, we averaged the rankings of
all questions in a theme to synthesize the rankings of all papers.

Results & Discussion. We display a summary of our results
in Fig. 1. As we can see in Fig. 1a, we initially identified seven
themes based on nine classifications. During our analysis, we
found that the questions of Erdem et al. [14] are General (e.g.,
“What does it do?”) and can be used in any context. For this
reason, we did not consider these questions in more detail in
our remaining analysis. In contrast, we found that classes on
Testing, how developers form mental models during program
Comprehension, and Other issues subsume questions related
to the three remaining themes. So, we decided to establish a
classification based on these three themes:
A Architecture questions are concerned with the structure of

a system (e.g., “[Which] API has changed?” [17], “Who
can call this?” [57]).

M Meta questions on a system’s context (e.g., “Who owns a
test case?” [17], “How has it changed over time?” [31]).

C Code questions about the implementation of a system (e.g.,
“How big is this code?” [31], “What are the arguments to
this function?” [54]).

While a suitable abstraction, we remark that questions can
belong to multiple themes, for example, covering the evolution
(Meta) of a method (Code). For simplicity, we assigned the
theme we considered predominant in a question.

To improve our understanding of the questions and select
questions for our interviews, we investigated all 456 questions.
In Fig. 1b, we display the sub-themes we identified to specify
questions in more detail. We remark that we again show only
the predominant sub-theme of a question (e.g., “Who has made
changes to [a] defect?” [17] relates primarily to People, but
also to Change and Testing). For code and architecture, not sur-
prisingly, the sub-themes mostly relate to a system’s Structure,
Behavior, the model-view-controller (MVC) pattern (which
we considered separately, due to its apparent importance),
and Testing. Besides testing, meta questions mostly relate to
understanding a Change, finding Information, and identifying
responsible People. Particularly on the code level, questions
relate to the Intent of the implementation. Our re-classification
is comparable to Fig. 1a, yielding a similar number of questions
for testing and meta information, which is the theme with most

questions. Overall, we can see that fewer questions relate to the
code of a system, potentially because developers can investigate
it, and thus can directly recover the corresponding knowledge.

Finally, in Fig. 1c, we summarize the rankings reported in the
identified papers. We considered our three themes and used a
question’s normalized, relative position (i.e., from 0 to 1) in the
respective ranking of each paper. Since we found only two ex-
amples, we cannot judge the difficulty of answering meta ques-
tions, but we can still observe that the difficulty and importance
of answering questions seem to relate (as also found by Tao et
al. [62]). Moreover, while meta questions represent the largest
theme, they seem to be considered less important than architec-
tural or code questions. This does not seem to purely relate to
the higher number of these questions. For instance, the seven
(out of 21) meta questions ranked in the study of Ko et al. [22]
are among the lowest nine—even though they were asked as fre-
quently as questions from the other two themes. Overall, these
insights indicate that meta questions may be frequently asked,
but can be recovered more easily or are simply not important.

• Architecture, meta, and code are general themes appearing
in questions. • Difficulty and importance of the questions in
a theme relate. • How often a theme appears seems unrelated
to its importance. • Developers ask fewer questions about
source code. • Meta questions seem less important. •

Insights from the Literature

III. METHODOLOGY

To address our research questions, we conducted a qualitative
interview survey [66], inspired by research on forgetting [4],
[11], [20], [27], [36] and our SLR (cf. Sec. II-B).

A. Design Decisions

We intended to investigate what knowledge developers can
recall and what knowledge they consider important to remember.
So, a corresponding empirical study involves psychological
research with human subjects, causing a variety of potential
biases due to the subjects’ individuality [16], [27], [53], [58].
Many of these biases are hard to impossible to control or isolate
(e.g., memory performance, motivation). A particular issue was
that we were concerned with developers’ memory, and thus our
subjects needed to have knowledge about the analyzed system
before we conducted our study—without giving away the
study’s purpose to avoid biases. As a result, we decided that we
had to ask questions about one of the systems a subject worked
on before. With all these issues challenging an experimental
setup, we decided to employ a survey to collect qualitative
and quantitative data about how developers behave [66]. More
precisely, we conducted interviews to gain detailed insights,
reduce faulty or empty answers, and limit the drop out rate
(considering that each interview took between 1 and 2.5 hours).
To summarize, we decided to conduct an interview survey,
asking previously identified questions on information needs
about a subject’s system. Thus, similar to previous studies on
information needs, we provide a descriptive empirical study
in which we focus on obtaining a detailed understanding of a
phenomenon or problem instead of searching for correlations.

B. Interview Structure

We display an overview of our semi-structured interview guide
in Tbl. II. In the remaining paper, we use the identifiers to refer
to the questions. Moreover, we provide one concrete source
from our SLR from which we adopted each question. Overall,
we defined 27 questions divided into five sections, with each
section having a brief introduction about its purpose and scope.

First, we were concerned with our interviewees’ self-
assessment of how much they still knew about their system. For
a detailed overview, we asked for an assessment of the inter-
viewee’s overall system (OS1), architectural (OS2), meta (OS3),
and code (OS4) knowledge. To see whether this self-assessment
would change over time, for example, because an interviewee
recalled more details after thinking about other questions, we re-
peated these questions after each of the following three sections.

In the next three sections, we adopted questions from our
SLR according to our (sub-)themes. For instance, A1 relates to
the architectural structure of a system, M4 to changes, and C2 to
testing. So, we aimed to design our interviews to cover a broad
range of knowledge on various levels of detail, for example,
C1 to C3 are concerned with a more abstract representation
of code, while C4 to C6 are concerned with concrete details.
Furthermore, we evaluated the correctness of our interviewees’
responses for these questions. Therefore, we included questions
that could be quantified against the actual system.

Finally, we asked our interviewees to elaborate on our
research questions. So, we asked them what knowledge they
consider important to remember intuitively (IK1), by rating our
three themes (IK2), and by rating each question individually
(IK3). Then, we asked how they reflected about their knowledge
(IK4) and for additional remarks. Afterwards, we evaluated the
answers together with each interviewee, who are experts and
could now look at their systems.

Since our study focuses solely on memory, we decided to
not allow developers to look at their code during the interview,
as that would initiate program comprehension. Furthermore,
we are aware that the order and wording of questions can
be problematic for this type of study. To mitigate potential
confirmation biases, we decided to ask about importance at
the end (but before checking correctness) to avoid that our
interviewees may focus more on answering the questions they
stated to be important to justify their decision. Furthermore, we
clarified any unclear terms with the interviewees if necessary.

Some questions relate to concrete files or methods, which
the interviewer selected from the interviewee’s system (cf.
Sec. III-C). To avoid biases, the interviewees were not allowed
to look at any information regarding their system while we
prepared these questions. Note that we investigated only
systems developed in a version control system, which allowed
us to track precise times of an interviewee’s last edit to files.
So, we measured the time differences between the edit and
the interview for all code questions, aiming to control for the
impact of time on memory. The other two themes relate to
more tacit and not traceable knowledge, which is why we could
not employ this analysis for these themes.

TABLE II: Structure of our interview guide.
ID S Questions & Answers (A)

Section: Overall Self-Assessment
<asked 4 times: at the beginning and after each of the following three sections>
OS1 — How well do you still know your system?
OS2 — How well do you still know the architecture of your system?
OS3 — How well do you know your code of the system?
OS4 — How well do you know the file <name>?

AOS1, OS2, OS3, OS4: Rating from 0 to 100 %

Section: Architecture
A1 [31] Can you draw a simple architecture of your system?

AA1: A drawn model <updated after each other section>
A2 [57] Is a database functionality implemented in your system?
A3 [54] Is a user interface implemented in your system?

AA2, A3: ◦ Yes: <file> ◦ No
A4 [30] Can you name a file that acts as the main controller of your system?

AA4: ◦ Yes: <file> ◦ Yes: <functionality> ◦ No
A5 [31] On which other functionalities does the file <file> rely?

AA5: Open text
A6 [31] Can you exemplify a file/functionality you implemented using a library?

AA6: ◦ Yes: <file> ◦ Yes: <functionality> ◦ No

Section: Meta-Knowledge
M1 [38] When in the project life-cycle has the file <file> last been changed?

AM1: Open text
M2 [31] Can you exemplify a file which has recently been changed and the

reason why (e.g., last 2-3 commits)?
AM2: ◦ Yes: <file> <reason> ◦ Yes: <file> ◦ No

M3 [17] Can you point out an old file that has especially rarely/often been
changed?

AM3: ◦ Yes: <file> ◦ No
M4 [17] How old is this file in the project life-cycle and how often has it been

changed since the creation?
M5 [31] Who is the owner of file <file>?
M6 [31] How big is the file <file>?

AM4, M5, M6: Open text

Section: Code Comprehension
<for three> Files: a) <file>; b) <file>; c) <file>
C1 [31] What is the intent of the code in the file?

AC1 <per file>: Open text
C2 [31] Is there a code smell in the code of the file?

AC2 <per file>: ◦ Yes: <smell> ◦ Yes ◦ No
C3 [54] Which data (in data object or database) is modified by the file?

AC3 <per file>: Open text
<for three> Methods: a) <from file a>; b) <from file b>; c) <from file c>
C4 [31] Which parameters does the following method need?
C5 [28] What type of data is returned by this method?
C6 [54] Which errors/exceptions can the method throw?

AC4, C5, C6 <per method>: Open text

Section: Importance of Knowledge
IK1 — Which part of your system do you consider important?

AIK1: Open text
IK2 — Which type of the previously investigated types of knowledge do you

consider important?
AIK2: ◦ Architecture ◦ Meta ◦ Code

IK3 — Which of the previous questions do you consider important or irrelevant
when talking about familiarity?

AIK3 <(per Ai, Mi, Ci)>: ◦ Irrelevant ◦ Half/half ◦ Important
IK4 — What do you consider/reflect about when making a self-assessment of

your familiarity?
IK5 — Do you have additional remarks?

AIK4, IK5: Open text
S: Example source from our SLR

C. Conduct

For conducting the interviews, at least one interviewer met
with one interviewee at a time. We asked the interviewees
to participate in a study on program comprehension, without
revealing our actual intent in advance. Furthermore, we
asked each interviewee to provide us access (e.g., via a link
in advance or by bringing their computer with the system)
to their version control system. Using this access, we first
prepared the actual interview guide (e.g., filling in file and
method names, documenting the last time files were edited
by the interviewee). We selected files and methods ourselves,
without the interviewees seeing them. Moreover, we focused

TABLE III: Overview of the interviews in order of conduct.
ID Area Domain Prog. Lang. LOC # D

1 Academia Document Parser Java <10k 2
2 Academia Model Editor Java <10k 3
3 Academia Security Analysis Java <10k 1
4 Academia Machine Learning Python <10k 4
5 Academia Static Code Analysis Java <10k 1
6 Industry Web Services JavaScript, PHP 10k-100k 2
7 Industry Web Services PHP >100k 1
8 Academia IDE Java >100k 6
9 Academia Databases C++ >100k 3

10 Academia Static Code Analysis Java <10k 1
11 Industry Android App Java 10k-100k 1
12 Industry ERP C# >100k 6
13 Academia Static Code Analysis Java <10k 1
14 Academia Web Services Ruby <10k 1
15 Open-Source Geometry Processing Rust <10k 1
16 Industry Static Code Analysis OCAML <10k 2
17 Open-Source Traceability Java <10k 5

D: Number of active developers

on selecting different files and methods in terms of, for
instance, their position in the file system, size, last change, and
parameters. Afterwards, we conducted the actual interviews,
during which the interviewees could ask any question to clarify
uncertainties. In the end, we checked the interviewee’s answers
for correctness (for Ai, Mi, and Ci), allowing them to look into
their system and re-evaluate what answers had been correct.

We did not plan for a concrete number of interviews, but
stopped when we found that the last three interviews did not
change the average responses anymore. As described by Wohlin
et al. [66], such a saturation is a reasonable stop criterion for
qualitative research methods. In the end, we conducted 17
interviews. Besides reaching saturation, our sample size is
comparable to those reported for similar studies (cf. interview,
observational, and think-aloud studies in Tbl. I), and our results
yield comparable findings regarding the importance of question
(compare Fig. 1c and Fig. 2a). Consequently, we argue that
our sample size is reasonable to tackle our research questions.

D. Interviewees

Following recommendations [66], we aimed to include subjects
based on differences rather than similarity. To achieve this
goal, we invited former or recent collaborators from different
countries (e.g., Germany, Sweden, France), who have five to
over ten years of programming experiences, are or were active
programmers of their system, are working full-time in industry
(5) or have industrial experiences from previous positions (4),
and are female (3). In Tbl. III, we provide an overview of the
respective systems, where the area refers to the system, not the
interviewee. Most of the systems had no dedicated documen-
tation. The systems span various domains and programming
languages, have been or are still developed for three months
to over 10 years, and have between 1 and 6 regular developers.
One limitation we can see is that most systems are rather small
in terms of size and collaborating developers (even though
one system had far more than 50 contributors over the years).
So, while our interviewees represent a diverse sample, we can
generalize our observations only for smaller systems.

E. Rating Correctness

We rated the correctness of answers by iterating through the
corresponding questions together with the interviewee, and

investigating the system’s code as well as version control
data. Assessing the correctness with the interviewee had
two advantages: First, feasibility: Many of the questions can
be answered only or more easily by developers who have
knowledge about and access to the system. Especially for our
industrial interviewees, we were not allowed to access the
system alone to evaluate the answers. Second, uncertainty: We
needed to asses the correctness of memory in comparison to the
interviewee’s individual understanding of the system. For some
questions, we cannot assume that there is a single “correct”
answer that would be valid from the eyes of every developer
of the system. As an example, consider the intent of a file
or the presence of code smells, which may be up for debate
between developers of the same system.
Rating Scheme. We rated questions A2–6 and M1–6 as incorrect
(0 points), partially correct (0.5 points), or correct (1 point).
Identically, we rated the answers for each file and method for
questions C1–6. For each of these questions, the interviewee’s
score was then the average of the points received for the
three files or methods. As example, imagine that the intent was
correctly described for two files (1 point each) and incorrect for
the third one (0 points). The interviewee’s score for correctness
for question C1 was then 0.67. Note that in five cases not all
questions were applicable to all files. This happened in cases
where the publicly accessible repository we used for preparation
was not up to date, or the chosen file did, for instance, not
include a method that could be used for the interview.

A special case was the correctness of the architecture (A1),
which can be subjective. We decided to allow any representation
and the interviewees could correct or detail the model during
the interview. For rating, we reasoned with the interviewees to
understand what they missed and considered three questions:
1) Did the interviewee consider the final version of the model

as correct after they had a chance to look at the system?
2) Was the architecture system-specific (i.e., can it be clearly

associated with the system)? For instance, this was not the
case for a generic standard architecture, namely a model-
view-controller without any system-specific details.

3) Were refinements or corrections performed? Refinements
were additions (e.g., of classes) made during the interview
to enrich the diagram. Corrections were cases, where the
interviewee removed (crossed out) or substituted parts.

For architectures that the interviewee and the interviewer con-
sidered correct, system specific, and to receive only refinements
(but not corrections) during the interview, we rewarded 1 point
for the question. If the architecture was not system-specific,
we rewarded 0 points. In one case, we rewarded 0.5 points,
as the architecture was not specific, but had annotations that
described the specific technologies used in the system. Finally,
we rewarded 0.5 points if the architecture was system-specific,
but comprised corrections at the end.

IV. RESULTS AND DISCUSSION

In this section, we present the individual results for each of
our research questions. Moreover, we discuss the implications
for research and practice that we derive from our observations.

A. RQ1: The Importance of Knowledge

To understand what knowledge developers consider important,
we analyzed the answers to questions IK1, IK2, and IK3.
We asked these questions after our interviewees answered
all questions for which they had to recall knowledge about
their system, but before assessing their correctness.
Results. First, we extracted 35 codes from the answers to
IK1. With this analysis, we aimed to capture the knowledge
our interviewees considered important based on their intuition
and experience, without predefined themes. Some interviewees
referred to specific classes or components of a system, but we
still found common codes. In seven answers, our interviewees
explicitly stated architecture as important. Closely related, we
identified six codes that were concerned with dependencies,
APIs, extension mechanisms, and own extensions, capturing
knowledge on a system’s structure. Three codes related to the
intent of the system or code as important to know, and two
more referred to program comprehension or code conventions.
Other codes appeared once, such as knowing bug locations,
domain-specific information, or the controller.

• Intuitively, most interviewees consider the architecture to
be an important type of knowledge. • Some interviewees
thought about dependencies (i.e., architecture) and intentions
(i.e., code) of the system. •

Observation 1

Second, we asked our interviewees to rate the importance
of remembering knowledge based on our study. We display
the corresponding results for IK2 in Fig. 2a and for IK3
in Fig. 2b. Regarding the first, high-level question (IK2), the
majority of our interviewees considered the architecture to
be important. Roughly half of our interviewees stated that
knowledge about the code is important, while only two argued
that meta knowledge is important. Interestingly, these ratings
align with the insights we identified in the literature (cf. Fig. 1c),
rating questions about architecture and code as more important
than those on meta knowledge. However, as we were analyzing
smaller systems with few developers, we also expected that
meta knowledge would be considered less important.

• Most interviewees consider architectural knowledge
important to remember. • Few interviewees consider meta
knowledge important to remember. • Half of the intervie-
wees consider code knowledge important to remember. •

Observation 2

The high-level rating is reflected in the low-level ratings
(IK3), assessing the importance of remembering the knowledge
to answer the questions we asked. Except A6, all questions
about the architecture were considered important by more than
50 % of our interviewees. Importantly, all interviewees agreed
that it is important to be able to draw the architecture of a
system (A1). Furthermore, most interviewees agreed that it
is important to know the file that serves as main controller
of the system (A4). The other concepts relating to the model-
view-controller pattern, namely user interface (A3) and data
storage (A2), were perceived similarly important. We remark

(a) IK2: Which type of the
previously investigated types
of knowledge do you consider
important?

A1A2A3
A4A5
A6

M1M2M3
M4M5
M6

C1C2C3
C4C5
C6

(b) Overview of our interviewees’ perceived importance of each question (IK3) and their correctness.
The blue lines show the mean for each category and type of knowledge.

Fig. 2: Our interviewees’ responses regarding the importance of knowledge and their correctness when answering questions.

that in many cases in which interviewees did not consider these
two concepts important, the systems did not implement them.
Slightly over half of our interviewees considered it important
to know which functionalities or dependencies a file relies
on (A5). As sole exception, less than half of our interviewees
thought it is important to know files that rely on a library (A6).

• All interviewees considered it important to know the
architectural structure of their system from memory. • Most
interviewees considered knowing implemented model-view-
controller concepts important. •

Observation 3

For meta knowledge, only knowing recently changed files
(M2) and the owner of a file (M5) were considered important
by more than half of our interviewees. Some participants
considered it important to know old files that are rarely or
often changed (M3, M4). The ability to remember how big a
file is (M6) or when it was last changed (M1) were considered
to be not important by most interviewees. Interestingly, while
the averages for architecture and code knowledge align well
with the overall assessment and related work, the average
importance of meta knowledge is considerably higher for
the individual questions. When asked in general, only two
interviewees considered it important to know meta information.
However, questions M2–6 were all rated important by more than
two interviewees. Particularly, this discrepancy is interesting
since meta questions being rated important does not align
with our expectations for smaller systems. So, this rating may
reflect on larger systems, too—but further studies in larger,
collaborative software development are needed.

• Meta knowledge regarding recent changes and ownership
were considered comparably important. •

Observation 4

In Fig. 2b, we can see that code questions can be split

into two groups regarding the importance to recall them from
memory. More than 70 % of our interviewees considered it
important to be able to recall from memory what the intent of
a file is (C1), whether and what data is manipulated in a file
(C3), or whether a file contains code smells (C2). In contrast,
few interviewees considered it important to know details about
single methods (C4–6). However, even on this level of detail,
the question asking for exceptions (C6), and thus relating to
quality and testing, received a comparably high score.

• Most interviewees considered it important to recall code
knowledge concerning intent, data manipulation, and quality.
• Few interviewees considered it important to know method
and code details. •

Observation 5

Discussion. Aligning our observations with the related work,
we can derive the following implications for smaller systems:
⇒ Architectural knowledge is important to remember and

corresponding questions are difficult to answer (cf. Fig. 1c).
This indicates that architectural knowledge may often be
tacit, causing information needs when details are forgotten.
So, research on recovering architectural knowledge is
an important direction, while documenting a system’s
architecture is essential for practice.

⇒ While meta knowledge is considered less important in
general, we found a discrepancy when comparing this to
the importance of concrete questions. Arguably, this finding
is related to the small number of systems we investigated
that are developed in collaboration, but we also identified
this insight from the related work (cf. Fig. 1c). For research,
this observation implies the need to better understand the
importance of meta knowledge in different contexts.

⇒ Code knowledge is considered important, but less than
architectural knowledge. A detailed analysis revealed that
this situation may relate to the different abstraction levels

of knowledge. Developers seem to consider it important
to know the intent or design flaws of the code, while
they are not interested in remembering code details (e.g.,
parameters) that can be directly encoded in the code. For
research, this indicates the importance of two directions:
developing techniques to recover the intent of source code
and empirically investigating program comprehension. In
practice, our observations implicate that improving code
quality as well as documenting and tracing the intent,
features, and bugs of code is essential.

To answer RQ1, we can see that more abstract knowledge
is considered more important to remember. Particularly,
developers seem to memorize knowledge about a system’s
architecture and the intent of its code. In contrast, more
detailed knowledge—which is relevant for specific tasks, can
be encoded in the code, and may be supported by improving
program comprehension—as well as meta knowledge—which
may be easily recoverable from version control systems—are
considered less important to remember.

B. RQ2: Correctness and Importance

Next, we compare how important our interviewees’ considered
it to recall knowledge compared to their correctness.
Results. In Figure 2b we show the average correctness of our
interviewees’ answers per question. They did generally well
on all questions, with an overall average correctness of 80 %.
Each architectural question was answered correctly by at least
79 % of our interviewees. We can see the highest correctness
for naming a file that acts as controller (A4) and for pointing
to the data storage (A2).

Regarding meta knowledge, three questions reach an average
correctness of more than 80 %. These questions are: Naming an
old file that has been changed particularly rarely or often (M3),
naming a file that has recently been changed (M2), and naming
the owner of a file (M5). We have to be careful with interpreting
these results, as many of the systems we investigated have
only one developer—in larger teams the correctness would
potentially be lower. Interestingly, the only two questions that
less than half of our interviewees could answer correctly are
also related to meta knowledge. Namely, the questions for the
size of a file (M6) and the last time a file was changed (M1).

Finally, the questions about code resemble the previous
pattern of comprising two different groups. Questions about
method details have been answered with an average correctness
of 55 % to 75 %. Of these, the question easiest to answer seems
to be the one regarding errors and exceptions (C6). Again, this
may be caused by our sample, as most methods we studied did
not throw any exceptions. In contrast, questions about the intent
of code files (C1), the data manipulated (C3), and the presence
of code smells (C2) are among the questions for which our
interviewees performed best.

To investigate whether this observation is meaningful,
we show the differences in correctness of our interviewees
regarding the two groups and their combination in Fig. 3—
also considering the time between the interviewee’s last edit
and interview in days. Note that we removed five entries

Fig. 3: Comparison of interviewees’ correctness on code
questions (File: C1–3; Method: C4–6; Overall: C1–6).

(cf. Sec. III-E): We could not completely rate two cases and in
three cases the commit histories were lost due to a repository
migration. This resulted in 46 paired data points. We can see
that, independently of the time, the more abstract questions
(i.e., “File”), were answered correctly more often.

To test, using R [42], whether this observable difference
may be significant, we first tested whether the results are
independent of time. We used Kendall’s τ because it allows
to test non-normal distributions (i.e., correctness) and found
no relevant (-0.136 < τ < 0.005) or significant (p-value > 0.05)
correlation between time and correctness for any group (the
method group has a negative tendency of -0.136). This indicates
that the difference we can see may depend solely on the type
of knowledge. We tested this hypothesis using the Wilcoxon
signed-rank test for not normally distributed and paired data to
compare the means of both distributions. The results indicate
that the different groups of code knowledge lead to significantly
different results for correctness (p-value < 0.001).

• The interviewees achieve a high correctness (80 %) when
answering questions about their systems from memory. •
On average, architecture questions are answered correctly
most often. • The questions most often answered correctly
are concerned with the intent of code, data modified in
code, owners of files, files that rarely/often changed, recent
changes, and the main controller of the system. • Questions
on code abstractions (e.g., intent) are answered correctly
significantly more often than those on code details. •

Observation 6

In Fig. 2b, we can see that the correctness of the answers
resembles the importance of questions. Still, the averages of
correct answers are far closer to each other than those of
importance. We can also see that only comparably unimportant
questions resulted in fewer correct answers. More precisely,
none of the questions reported important by more than 50 % of
our interviewees received less than 75 % correct answers. To test

whether importance and correctness correlate (e.g., important
questions may be harder to check or are kept in mind), we again
used Kendall’s τ . It reveals a significant, moderately positive
correlation between both aspects (τ = 0.508, p-value < 0.005)
for a confidence interval of 0.95. Due to the qualitative nature
of our study, we obtained only few data point—wherefore
the statistical power of this test is low (0.575). Still, it is a
supportive indicator for our observation that developers seem
to perform well at recalling knowledge they consider important,
or forget knowledge they consider unimportant.

• Our interviewees perform better at remembering knowl-
edge they consider important. •

Observation 7

Discussion. We can derive the following implications:
⇒ The importance of knowledge and developers’ ability to

remember it seem to relate. Considering research, this
highlights an important direction to investigate, implying
the need for tailored program-comprehension support for
different developers (e.g., experts, novices). For instance,
our results suggest that particularly code-level program
comprehension is important to support, as developers do not
recall code details, whereas experts memorize architectures
and code intents. For practice, our results indicate that devel-
opers who are experienced with a system have a good under-
standing of its architecture, and can potentially guide others.

⇒ In contrast to Krüger et al. [27], we found no correlation
(but a non-significant tendency) between the time that has
passed and developers’ knowledge about code. However,
this analysis was not our main goal (we focused on
knowledge types) and there are essential design differences
between both studies. Nonetheless, our results are
interesting and ask for additional research on developers’
ability to remember different types of knowledge over time.

⇒ An important research problem that we indicated in
Sec. II-B and found again, is the question what the
importance of knowledge actually implies? Apparently,
developers can recall the knowledge they consider important
better. However, this knowledge may simply be important
because it is challenging to check or not easy to recover
with existing tools. Tao et al. [62] investigated this problem
and identified similar issues, but they focused solely on
code changes and did not investigate developers’ memory.

So, to answer RQ2, we find that developers perform quite well
in answering questions about their (smaller) systems, even for
questions they do not consider important. However, our results
indicate that the perceived importance of knowledge has a
positive impact on whether developers remember it or not.

C. RQ3: Self-Assessment and Correctness

Finally, we investigated how well the self-assessments (OS1–4)
of our interviewees resemble their ability to remember, and
how they derived their self-assessments (IK4).
Results. In Fig. 4, we compare the interviewees’ overall self-
assessment (OS1) and the correctness of their answers. We show
only the overall as well as initial and final assessment because

Fig. 4: Correctness compared to overall self-assessment (OS1).

they summarize the other self-assessments. Interestingly, only
one interviewee increased their assessment (+5 %), while
eight kept it as it was. On average, our interviewees actually
decreased their assessment (-13.75 %). Note that we cannot
discuss whether a self-assessment is a perfect prediction of the
correctness of answers given to our questions, as changing these
questions could easily lead to different results. Nonetheless,
it is interesting to see that the initial self-assessment included
roughly a similar number of cases with a nominal value below
and above the participants correctness. However, for the final
self-assessment, we can see a drop that leads to most nominal
values of the self-assessment being below the actual correctness.

• Our interviewees’ self-assessment did not change heavily
during the interviews. • The initial self-assessment seems
closer to the participants’ correctness for our questions and
smaller systems compared to the final self-assessment. •

Observation 8

Existing research assumes a correlation between self-
assessments and a developer’s knowledge or experiences, using
self-assessments in guidelines and studies [15], [23], [27], [52].
To test this assumption, we used Kendall’s τ on our data. The
test results show no significant correlations (p-values > 0.05)
and only a small positive tendency (initial τ = 0.176, final
τ = 0.032). However, this outcome is not surprising, as our
analysis is based on only 17 data points. It is important to note
that the correlation test with 17 participants was only designed
to show a strong correlation with a sufficient power (80 %), but
not medium or small ones. Thus, we found neither confirming
nor refuting evidence for the assumptions in previous works,
indicating the need for more detailed analyses.

• There is no significant correlation (but a tendency) between
our interviewees’ self-assessments and correctness. •

Observation 9

In the end, we analyzed our interviewees’ qualitative
responses (IK4) to understand how they derived their
self-assessments. Our interviewees stated a variety of aspects
they considered, but we could identify reappearing themes.
Most often mentioned were reflections about the general
structure and architecture of the system (eight times). Five
interviewees reflected about the work they did on the system.
Other aspects we found were the memory of efforts put into
the system, the intent of the system, or consideration of details.

Some interviewees compared their memory to the level of
understanding that they had for another system they were
working on or to the best understanding they had about their
system at any point in time. Two interviewees reported that they
thought about how long it would take them to start modifying
the system again. Four interviewees relied on their gut feeling
and just guessed their level of knowledge—which undermines
the aforementioned assumption of self-assessments being a
reasonable measure to some extent. Finally, some interviewees
stated that their changed self-assessment during the interview
was caused by the feeling that the questions revealed gaps
in their knowledge. Note that the main overlap between these
results and the perceived importance of knowledge is in the
architecture. Other aspects, such as previous work done, could
be considered meta-knowledge, which is interestingly an area
that was perceived less important by the interviewees.

• Our interviewees reflected about various aspects, mainly
architecture, effort, and intent, to assess their knowledge. •
Some interviewees simply guessed their self-assessment. •

Observation 10

Discussion. Building on our observations, we can derive:
⇒ Interestingly, the initial self-assessment of our interviewees’

was on average closer to their actual knowledge than
the final one. Also, while only few interviewees adapted
their assessments, most reduced their score, resulting in
a more negative perception of their knowledge. Some
of our interviewees stated to simply have guessed their
self-assessment, challenging the reliability of using self-
assessments without control. So, research has to investigate
in more detail to what extent what self-assessments are
reasonable to rely on, for example, considering guidelines
and recommendations for research methods. In addition, it is
interesting to understand why developers may underestimate
their knowledge after (correctly) recalling it.

⇒ We found interesting aspects that our interviewees reflected
about when assessing their knowledge about their systems.
For example, we are not aware of tools for expertise identi-
fication that consider the actual efforts spent on a system or
the knowledge of a system’s intent. So, considering research
and practice, our results imply additional opportunities
to assess the expertise of developers and support their
knowledge recovery. A particular open question is how
efforts spent on a system relate to the effort of working on
it again, and investigating the impact of different types of
knowledge on these efforts.

To answer RQ3, we found that developers’ self-assessments
about their knowledge seems to decline while reflecting about
their system. However, we could not identify a correlation
between self-assessments and correctness. Further, we identified
aspects developers reflect about during self-assessments.

V. THREATS TO VALIDITY

Internal Validity. Our study was concerned with psychological
aspects and other human factors (i.e., developers’ memory,
knowledge, and opinions). So, there are numerous background

factors, such as age, gender, motivation, or a subject’s memory
performance, that we cannot control. Another threat to the
internal validity are the questions we used, which may have
not been ideal for our study, may not be ideally ordered, or
could be misunderstood. We limited these threats by grounding
the question selection in empirical evidence, conducting face-
to-face interviews to clarify confusions, testing the interviews,
and carefully comparing unavoidable biases against each other.
External Validity Due to the qualitative nature of our study,
its small sample size, and the smaller systems we analyzed,
the external validity of our results is threatened. We aimed
to mitigate such threats by involving diverse developers (e.g.,
different countries, domains, systems), looking for saturation,
and comparing our findings against related work. Still, while
the results seem to be reliable for other systems, we emphasize
that we can only generalize them for smaller systems.

Another threat to the external validity is that we considered
only knowledge in general. However, for instance, the knowl-
edge developers consider important may depend on the task at
hand (e.g., fixing a bug versus introducing a new feature). Our
results may have been different if we focused on a specific
task, and we need to investigate this in future work.
Conclusion Validity. We reviewed the literature to identify
questions for our interview survey and re-classified the ques-
tions based on themes we identified. So, other researchers
may derive different classifications, and thus the results
would change. This threatens the conclusions we derived for
these classifications, but we analyzed the individual questions,
obtained similar results as the papers we reviewed, and cross-
checked our results—mitigating this threat. Moreover, we
followed guidelines [21], [65], [66], [68] for our research
methods to ensure that we derived meaningful results. Finally,
we make all data we collected in this study publicly available to
enable replications and allow others to evaluate our findings.

VI. CONCLUSION

In this paper, we investigated what knowledge developers
consider important to remember, whether they can correctly
recall knowledge, and how good their self-assessments are. For
this purpose, we reviewed the literature to capture the state of
the art on information needs and design an interview survey.
Interviewing 17 developers, we found that for smaller systems:
• Developers consider abstract knowledge (e.g., architecture

and code intentions) more important to remember.
• Developers are more often correct when recalling knowledge

regarding the questions they consider important.
• Developers’ self-assessments may be reliable, but their

assessments decrease while reflecting about their system.
With our study, we investigated the link between developers’
memory and their information needs, extending the existing
body of knowledge and providing important insights for
research and practice. In future work, we will extend and repli-
cate our study, involving more subjects, other research methods,
larger systems, and more detailed analyses of knowledge types.
Acknowledgments Supported by DAAD (IFI fellowship) and
DFG (SA 465/49-3). We thank our interviewees for their help.

REFERENCES

[1] A. Al-Nayeem, K. Ostrowski, S. Pueblas, C. Restif, and S. Zhang,
“Information Needs for Validating Evolving Software Systems: An
Exploratory Study at Google,” in International Conference on Software
Testing, Verification and Validation, ser. ICST. IEEE, 2017.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix this Bug?” in
International Conference on Software Engineering, ser. ICSE. ACM,
2006.

[3] G. Avelino, L. Passos, F. Petrillo, and M. T. Valente, “Who Can Maintain
This Code? Assessing the Effectiveness of Repository-Mining Techniques
for Identifying Software Maintainers,” IEEE Software, vol. 36, no. 6,
2018.

[4] L. Averell and A. Heathcote, “The Form of the Forgetting Curve and
the Fate of Memories,” Journal of Mathematical Psychology, vol. 55,
no. 1, 2011.

[5] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The Impact of Identifier Style on Effort and Comprehension,” Empirical
Software Engineering, vol. 18, no. 2, 2013.

[6] F. O. Bjørnson and T. Dingsøyr, “Knowledge Management in Software
Engineering: A Systematic Review of Studied Concepts, Findings and
Research Methods Used,” Information and Software Technology, vol. 50,
no. 11, 2008.

[7] J. Börstler and B. Paech, “The Role of Method Chains and Comments
in Software Readability and Comprehension – An Experiment,” IEEE
Transactions on Software Engineering, vol. 42, no. 9, 2016.

[8] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from Applying the Systematic Literature Review Process within
the Software Engineering Domain,” Journal of Systems and Software,
vol. 80, no. 4, 2007.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Frequently Asked
Questions in Bug Reports,” University of Calgary, Tech. Rep. 2009-924-
03, 2009.

[10] C. S. Campbell, P. P. Maglio, A. Cozzi, and B. Dom, “Expertise
Identification Using Email Communications,” in International Conference
on Information and Knowledge Management, ser. CIKM. ACM, 2003.

[11] G. Cohen and M. A. Conway, Memory in the Real World. Psychology
Press, 2007.

[12] B. de Alwis and G. C. Murphy, “Answering Conceptual Queries with
Ferret,” in International Conference on Software Engineering, ser. ICSE.
ACM, 2008.

[13] E. Duala-Ekoko and M. P. Robillard, “Asking and Answering Ques-
tions about Unfamiliar APIs: An Exploratory Study,” in International
Conference on Software Engineering, ser. ICSE. IEEE, 2012.

[14] A. Erdem, L. Johnson, and S. Marsella, “Task Oriented Software
Understanding,” in International Conference on Automated Software
Engineering, ser. ASE. IEEE, 1998.

[15] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring Programming Experience,” in International Conference on
Program Comprehension, ser. ICPC. IEEE, 2012.

[16] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson, “Links Between the
Personalities, Views and Attitudes of Software Engineers,” Information
and Software Technology, vol. 52, no. 6, 2010.

[17] T. Fritz and G. C. Murphy, “Using Information Fragments to Answer
the Questions Developers Ask,” in International Conference on Software
Engineering, ser. ICSE. ACM, 2010.

[18] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-
of-Knowledge: Modeling a Developer’s Knowledge of Code,” ACM
Transactions on Software Engineering and Methodology, vol. 23, no. 2,
2014.

[19] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter Identifier Names
Take Longer to Comprehend,” Empirical Software Engineering, vol. 24,
no. 1, 2019.

[20] K. Kang and J. Hahn, “Learning and Forgetting Curves in Software
Development: Does Type of Knowledge Matter?” in International
Conference on Information Systems, ser. ICIS. AIS, 2009.

[21] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Software
Engineering and Systematic Eeviews. CRC, 2015.

[22] A. J. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated
Software Development Teams,” in International Conference on Software
Engineering, ser. ICSE. IEEE, 2007.

[23] A. J. Ko, T. D. Latoza, and M. M. Burnett, “A Practical Guide to
Controlled Experiments of Software Engineering Tools with Human
Participants,” Empirical Software Engineering, vol. 20, no. 1, 2015.

[24] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information
During Software Maintenance Tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, 2006.

[25] J. Krüger and T. Berger, “An Empirical Analysis of the Costs of Clone-
and Platform-Oriented Software Reuse,” in Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE. ACM, 2020.

[26] J. Krüger, C. Lausberger, I. von Nostitz-Wallwitz, G. Saake, and T. Leich,
“Search. Review. Repeat? An Empirical Study of Threats to Replicating
SLR Searches,” Empirical Software Engineering, vol. 25, no. 1, 2020.

[27] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do You
Remember This Source Code?” in International Conference on Software
Engineering, ser. ICSE. ACM, 2018.

[28] J. Kubelka, A. Bergel, and R. Robbes, “Asking and Answering Questions
During a Programming Change Task in Pharo Language,” in Workshop
on Evaluation and Usability of Programming Languages and Tools, ser.
PLATEAU. ACM, 2014.

[29] J. Kubelka, R. Robbes, and A. Bergel, “Live Programming and Software
Evolution: Questions During a Programming Change Task,” in Inter-
national Conference on Program Comprehension, ser. ICPC. IEEE,
2019.

[30] T. D. LaToza and B. A. Myers, “Developers Ask Reachability Questions,”
in International Conference on Software Engineering, ser. ICSE. ACM,
2010.

[31] ——, “Hard-to-Answer Questions about Code,” in Workshop on Evalua-
tion and Usability of Programming Languages and Tools, ser. PLATEAU.
ACM, 2010.

[32] S. Letovsky, “Cognitive Processes in Program Comprehension,” Journal
of Systems and Software, vol. 7, no. 4, 1987.

[33] S. Lin, W. Hong, D. Wang, and T. Li, “A Survey on Expert Finding
Techniques,” Journal of Intelligent Information Systems, vol. 49, no. 2,
2017.

[34] D. W. McDonald and M. S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” in Conference on
Computer Supported Cooperative Work, ser. CSCW. ACM, 2000.

[35] A. Mockus and J. D. Herbsleb, “Expertise Browser: A Quantitative
Approach to Identifying Expertise,” in International Conference on
Software Engineering, ser. ICSE. IEEE, 2002.

[36] T. P. Moran, “Anxiety and Working Memory Capacity: A Meta-Analysis
and Narrative Review,” Psychological Bulletin, vol. 142, no. 8, 2016.

[37] S. Nielebock, D. Krolikowski, J. Krüger, T. Leich, and F. Ortmeier,
“Commenting Source Ccode: Is it Worth it for Small Programming
Tasks?” Empirical Software Engineering, vol. 24, no. 3, 2019.

[38] R. Novais, C. Brito, and M. Mendonça, “What Questions Developers Ask
During Software Evolution? An Academic Perspective,” in Workshop on
Software Visualization, Evolution, and Maintenance, ser. VEM, 2014.

[39] C. Parnin and S. Rugaber, “Programmer Information Needs after Memory
Failure,” in International Conference on Program Comprehension, ser.
ICPC. IEEE, 2012.

[40] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,
“Information Needs in Contemporary Code Review,” Proceedings of the
ACM on Human-Computer Interaction, vol. 2, 2018.

[41] G. Pinto, W. Torres, and F. Castor, “A Study on the Most Popular
Questions about Concurrent Programming,” in Workshop on Evaluation
and Usability of Programming Languages and Tools, ser. PLATEAU.
ACM, 2015.

[42] R Core Team, R: A Language and Environment for Statistical Computing,
2020. [Online]. Available: https://www.R-project.org

[43] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro,
N. A. Ernst, M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-
Vásquez, G. C. Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-
Demand Developer Documentation,” in IEEE International Conference
on Software Maintenance and Evolution, ser. ICSME. IEEE, 2017.

[44] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do Professional
Developers Comprehend Software?” in International Conference on
Software Engineering, ser. ICSE. IEEE, 2012.

[45] I. Rus, M. Lindvall, and S. Sinha, “Knowledge Management in Software
Engineering,” IEEE Software, vol. 19, no. 3, 2002.

[46] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Comprehending
Studies on Program Comprehension,” in International Conference on
Program Comprehension, ser. ICPC. IEEE, 2017.

[47] D. Schuler and T. Zimmermann, “Mining Usage Expertise from Version
Archives,” in International Working Conference on Mining Software
Repositories, ser. MSR. ACM, 2008.

https://www.R-project.org

[48] Y. Shakeel, J. Krüger, I. von Nostitz-Wallwitz, C. Lausberger,
G. Campero Durand, G. Saake, and T. Leich, “(Automated) Literature
Analysis - Threats and Experiences,” in International Workshop on
Software Engineering for Science, ser. SE4Science. ACM, 2018.

[49] K. Y. Sharif, M. English, N. Ali, C. Exton, J. J. Collins, and J. Buckley,
“An Empirically-Based Characterization and Quantification of Information
Seeking Through Mailing Lists During Open Source Developers’
Software Evolution,” Information and Software Technology, vol. 57,
2015.

[50] V. S. Sharma, R. Mehra, and V. Kaulgud, “What do Developers Want? An
Advisor Approach for Developer Priorities,” in International Workshop on
Cooperative and Human Aspects of Software Engineering, ser. CHASE.
IEEE, 2017.

[51] J. Siegmund, “Program Comprehension: Past, Present, and Future,”
in International Conference on Software Analysis, Evolution, and
Reengineering, ser. SANER. IEEE, 2016.

[52] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and Modeling Programming Experience,” Empirical Software
Engineering, vol. 19, no. 5, 2014.

[53] J. Siegmund and J. Schumann, “Confounding Parameters on Program
Comprehension: A Literature Survey,” Empirical Software Engineering,
vol. 20, no. 4, 2015.

[54] J. Sillito, G. C. Murphy, and K. de Volder, “Questions Programmers
Ask During Software Evolution Tasks,” in International Symposium on
Foundations of Software Engineering, ser. FSE. ACM, 2006.

[55] ——, “Asking and Answering Questions During a Programming Change
Task,” IEEE Transactions on Software Engineering, vol. 34, no. 4, 2008.

[56] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An Examination
of Software Engineering Work Practices,” in CASCON First Decade
High Impact Papers, ser. CASCON. IBM, 2010.

[57] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions Developers Ask While Diagnosing Potential Security Vulner-

abilities with Static Analysis,” in Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE. ACM, 2015.

[58] W. Stacy and J. MacMillan, “Cognitive Bias in Software Engineering,”
Communications of the ACM, vol. 38, no. 6, 1995.

[59] T. A. Standish, “An Essay on Software Reuse,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 5, 1984.

[60] M.-A. Storey, “Theories, Methods and Tools in Program Comprehension:
Past, Present and Future,” in International Workshop on Program
Comprehension, ser. IWPC. IEEE, 2005.

[61] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API Documen-
tation,” in International Conference on Software Engineering, ser. ICSE.
ACM, 2014.

[62] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do Software
Engineers Understand Code Changes? An Exploratory Study in Industry,”
in International Symposium on the Foundations of Software Engineering,
ser. FSE. ACM, 2012.

[63] R. Tiarks, “What Maintenance Programmers Really do: An Observational
Study,” in Workshop on Software Reengineering, ser. WSR, 2011.

[64] A. von Mayrhauser and A. M. Vans, “Program Comprehension During
Software Maintenance and Evolution,” Computer, vol. 28, no. 8, 1995.

[65] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering,” in International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE.
ACM, 2014.

[66] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer, 2012.

[67] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall, “Supporting Developers
with Natural Language Queries,” in International Conference on Software
Engineering, ser. ICSE. ACM, 2010.

[68] T. Zimmermann, “Card-Sorting: From Text to Themes,” in Perspectives
on Data Science for Software Engineering. Elsevier, 2016.

