This is the preprint of the article that has been accepted at EMSE and put here for
personal use only! For the final version, please refer to the Journal's webiste!

Noname manuscript No.
(will be inserted by the editor)

Commenting Source Code:
Is It Worth It For Small Programming Tasks?

Sebastian Nielebock - Dariusz
Krolikowski - Jacob Kriiger - Thomas
Leich - Frank Ortmeier

Received: October 10, 2018/ Accepted: date

Abstract Maintaining a program is a time-consuming and expensive task in soft-
ware engineering. Consequently, several approaches have been proposed to improve
the comprehensibility of source code. One of such approaches are comments in
the code that enable developers to explain the program with their own words or
predefined tags. Some empirical studies indicate benefits of comments in certain
situations, while others find no benefits at all. Thus, the real effect of comments
on software development remains uncertain. In this article, we describe an experi-
ment in which 277 participants, mainly professional software developers, performed
small programming tasks on differently commented code. Based on quantitative
and qualitative feedback, we i) partly replicate previous studies, i) investigate
performances of differently experienced participants when confronted with varying
types of comments, and 444) discuss the opinions of developers on comments. Our
results indicate that comments seem to be considered more important in previous
studies and by our participants than they are for small programming tasks. While
other mechanisms, such as proper identifiers, are considered more helpful by our
participants, they also emphasize the necessity of comments in certain situations.

Keywords Comments - Program Comprehension - Empirical Study - Documen-
tation - Maintenance

Sebastian Nielebock - Dariusz Krolikowski
Otto-von-Guericke-University Magdeburg
E-mail: sebastian.nielebock@ovgu.de

E-mail: dariusz.krolikowski@darekkay.com

Jacob Kriiger
Otto-von-Guericke-University Magdeburg & Harz University of Applied Sciences Wernigerode
E-mail: jacob.krueger@ovgu.de

Thomas Leich
Harz University of Applied Sciences Wernigerode & Metop GmbH Magdeburg
E-mail: tleich@hs-harz.de

Frank Ortmeier
Otto-von-Guericke-University Magdeburg
E-mail: frank.ortmeier@ovgu.de

a-jkrueger
Textfeld
This is the preprint of the article that has been accepted at EMSE and put here for personal use only! For the final version, please refer to the Journal's webiste!

2 Sebastian Nielebock et al.

1 Introduction

Developers spend most of their time maintaining, understanding, and familiarizing
with existing source code (Standish 1984; Tiarks 2011; Siegmund 2016; Kriiger et al
2018). Consequently, maintenance — comprising, for instance, bug fixing and up-
dating — is often the most expensive phase of software development (Boehm 1981;
Standish 1984; Chikofsky and Cross 1990; Sharon 1996). Improving the comprehen-
sion of a program reduces the necessary time for maintenance and the probability
of introducing new bugs (von Mayrhauser and Vans 1995; Storey et al 1997). In
particular, program comprehension is a research area that investigates how de-
velopers understand existing programs (Koenemann and Robertson 1991). Several
patterns evolved to improve a program’s source code and, thus, its comprehension,
for example, guidelines for clean code (Martin 2009) or design patterns (Gamma
et al 1995). However, these often emerge from personal preferences and experiences
rather than scientific methods.

To address this issue, researchers conduct studies and propose approaches to
investigate program comprehension (von Mayrhauser and Vans 1995; Storey 2005;
Siegmund 2016; Schréter et al 2017). Several works address categories such as com-
prehending source code itself, for example, the importance of identifiers (Takang
et al 1996; Anquetil and Lethbridge 1998; Lawrie et al 2007; Hofmeister et al 2017),
or a program’s behavior (Cornelissen et al 2007; Beck et al 2013; Kobayashi et al
2013; Trumper et al 2013). According to a recent study, fewer researchers seem
to investigate the effect of documentation, such as comments, on program com-
prehension (Schroter et al 2017). Furthermore, as we discuss in Section 2, studies
on comments contradict each other, rely mainly on students, or are older than
20 years, wherefore they do not use modern languages or paradigms. Thus, the
real effect of comments on comprehensibility, especially with modern programming
methods, remains uncertain.

Comments are a standard in most programming languages, became more pow-
erful (e.g., with JavaDoc (Kramer 1999)), and enable developers to explain the
code in their own words (Elshoff and Marcotty 1982; Corazza et al 2015). Conse-
quently, they provide an additional mechanism to improve the comprehensibility
of code. For this article, we differentiate three types of commented code, precisely:
Non-commented code, code with implementation comments, and code with docu-
mentation comments. We explain their differences in Section 2.

In this article, we describe an empirical study (Section 3) based on small pro-
gramming tasks, in which we investigate how these differently commented code
types impact the comprehensibility of the source code. Even though the task sizes
were mainly designed to motivate many programmers to participate in our study,
these tasks can provide meaningful insights: First, maintenance tasks usually com-
prise a small fraction of code that developers need to comprehend and change in
order to fulfill their task. For example, bug fixes typically consist of small code
changes (Martinez and Monperrus 2015).

Second, our results provide initial insights for what code size comments are
helpful. During programming, a developer may wonder whether the actual code is
worth — more precisely, is large enough — to be commented. Thus, by considering
small programs, we provide a first keystone to decide whether and which comments
support comprehension of such elementary code parts (i.e., single methods with
less than 30 source lines of code).

Commenting Source Code: Is It Worth It For Small Programming Tasks? 3

Finally, we analyze if there are differences between novice and professional pro-
grammers. Within this article, professionals represent experienced software devel-
opers, while nowvices are still learning to program, for example, first-year students.
We describe our distinction between these two groups in Section 3.2.

In detail, we are concerned with the following three research questions:

RQ1 Is there a significant difference between the types of commented code and
the correctness or time of task solving, respectively?

RQ2 Is there a significant difference between novice and professional programmers
in the correctness or time of task solving for differently commented code
types?

RQs3 Are the programmers’ self-assessments of comments coherent with the ob-
served results?

We analyze the first two questions based on an experiment, while we investigate
the third question based on a questionnaire. Furthermore, we discuss the results
and potential threats to validity in Section 4 and Section 5, respectively. Thus,
our two main contributions in this article are the following:

First, we describe a quantitative experiment that we conducted as an online
survey. For this experiment, we designed different programming tasks based on
small programs — applying existing code, extending code, and fixing bugs — and
three different kinds of commented code — non-commented code, code with im-
plementation comments, and code with documentation comments. We measured
the performance of the participants based on the proportion of correctly solved
tasks and the time to do so. Overall, we received 277 responses with a high ra-
tio (= 81%) of professionals. Thus, we quantify the impact of different types of
commented code on these differently experienced developers.

Second, we report the qualitative feedback of 157 participants from our online
survey. We compare and discuss the obtained results with additional personal
opinions, experiences, and responses of 86 participants. Based on this, we gain
further insights into the usefulness and usage of comments, especially in industrial
settings, as well as the participants’ capabilities on self-reflection. Overall, we
significantly extend the scope of current studies by considering a larger number of
professionals and comparing differently commented code types using quantitative
and qualitative methods.

2 Commenting Source Code

In this section, we provide a brief introduction on commenting source code. After-
ward, we describe existing experiments to summarize the state of the art in this
area and compare those to our work. Finally, we provide an overview of additional
related work, for example, studies not considering comments explicitly.

2.1 Comments

While source code is mainly intended to be executed by a computer, it is impor-
tant for developers to understand it (Knuth 1984; Standish 1984; Tiarks 2011;

4 Sebastian Nielebock et al.

1 | /*x*

2 |* Calculate the sum of all roman numerals

3 |* in an array as an integer

4 |* @param strings - array with roman numerals
5 |* @return - sum of roman numerals as integer
6 | x/

7 | public int foo(Stringl[] strings) {

8 // variable to accumulate converted roman numerals
9 int number = 0;

10

11 // iterate over all roman numerals

12 for(int 1 = 0; i < strings.length; i++){

13 // add current roman numeral to result
14 number += convertRoman2Int(strings[i]);
15 ¥

16 return number;

17 |}

Listing 1: Implementation and documentation comments.

Siegmund 2016). Useful comments may improve the comprehension, due to addi-
tional information (Elshoff and Marcotty 1982; Corazza et al 2015). Nonetheless,
new code is rarely commented and existing comments are not updated with the
code, for instance, because of time limitations, missing motivation, or automated
refactoring (Jiang and Hassan 2006; Fluri et al 2007; Sommerlad et al 2008). To
tackle this problem, approaches to detect legacy comments have been proposed
in recent works (Tan et al 2012; Sridhara 2016; Ratol and Robillard 2017). Still,
the overall effect of comments on comprehensibility is not obvious and requires
empirical analysis.

In our experiment, we rely on Java, for which we can provide code snippets
with three differently commented code types. We use the following terms, according
to Vermeulen (2000) and the Java Code Conventions':

— No comments (N) refers to uncommented source code. Thus, there is no addi-
tional documentation in the code.

— Implementation comments (I) describe one or multiple lines of code, for ex-
ample, the implemented behavior, used algorithms, or known bugs. Such com-
ments usually comprise a single line, as we show in Listing 1 in lines 8, 11, and
13. Their beginning is marked with // and prohibits further source code after
the comment in that line.

— Documentation comments (D) describe mainly constructs, such as interfaces,
methods, or classes. Usually, they only report information necessary to under-
stand and execute these constructs, but not their concrete implementation.
In Listing 1, we show the most common form of these comments in Java:
JavaDoc (Kramer 1999) from line 1 to 6. JavaDoc comments became a pow-
erful tool to comment source code, for example, by serving as input data to
automatically create APl documentation (Khamis et al 2010). In particular,
these comments utilize block tags, such as eparam or @return.

In our experiment, we use implementation comments for implementation details
and JavaDoc for documentation details. There exist also other classifications, for

L http://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057 . html

http://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057.html

Commenting Source Code: Is It Worth It For Small Programming Tasks? 5

example, based on the position of comments (i.e., leading, trailing, and freestand-
ing (Sommerlad et al 2008)) or the reason for a comment (e.g., copyright, ToDo
notes, or section marks (Martin 2009; Steidl et al 2013)). However, we are focusing
on whether a comment explains the functionality of a whole method or of specific
statements in a method. For this reason, we rely on the distinction between imple-
mentation and documentation comments. Other aspects like the position or finer
granularity may also affect the comprehensibility, but are not part of this study.

2.2 Related Studies on the Effect of Comments on Program Comprehension

In recent decades, several studies on the influence of source code elements on
program comprehensibility have been published. Within this section, we describe
previous experiments that considered comments in the source code. As we partly
replicate existing studies, we follow the suggestions of Carver (2010) on reporting
replications. For this purpose, we provide detailed information about the identified
studies, motivate our study, and clarify what parts we replicate and why. As we did
not interact with any author of the previous studies and are not strictly following
a previously used setup, we report our detailed study design in Section 3. We
compare and discuss the findings of the identified studies and our own results
in Section 4.4.

To identify existing studies, we applied a lightweight systematic review of the
available literature. We started with an automated search in four digital libraries
that index publications of important publishers in software engineering, namely
DBLP, SCOPUS, Google Scholar, and the ACM Guide to Computing Literature.
In these libraries, we searched all documents for which the title applies to the
following search string (last checked July 18" 2018):

comment AND comprehension

This way, we identified an initial set of three studies:

— Woodfield et al (1981)
— Salviulo and Scanniello (2014)
— Borstler and Paech (2016)

Afterwards, we applied backwards and forwards snowballing (Jalali and Wohlin
2012; Wohlin 2014) on these studies using Google Scholar to extend the scope
of our review (last checked July 18" 2018). With this procedure, we aim to re-
duce potential threats to the completeness that may appear, due to issues with
searching in digital libraries (Jalali and Wohlin 2012; Shakeel et al 2018). We only
selected documents that comprise an empirical study on the influence of source
code comments on program comprehension. Thus, we finally identified ten empir-
ical studies. In the following, we briefly describe each study and summarize the
key details in Table 1. Afterward, we emphasize the need for extensions and match
previous works to our own research.

Information about Existing Studies: Sheppard et al (1978) investigated the in-
fluence of different program characteristics, such as comments and structure. In
this experiment, 36 professional programmers had to modify differently structured

6 Sebastian Nielebock et al.

Table 1: Summarized details of related studies and their comparison to this study.

Part.
Study ——— Com. Lang. Meas. Improvement
Nov. Prof.

Sheppard et al (1978) 0 36 N,I,D Fortran T No
Woodfield et al (1981) 48 0 N, D Fortran Q For modularized code
Norcio (1982) 130 0 N,I,D Fortran C For unindented code

- 31 0 N, I Fortran C Yes
Dunsmore (1985) 48 0 N, D Fortran — Yes
Tenny (1985) 81 0 N, I PL/I Q Marginally significant
Tenny (1988) 148 0 N, D PL/1 Q For monolithic code
Takang et al (1996) 89 0 N, D Modula-2 Q, S Yes
Nurvitadhi et al (2003) 103 0 N, D Java Q Yes
Salviulo and Scanniello (2014) 18 12 D Java Q Professionals no, novices yes
Borstler and Paech (2016) 104 0 N, I Java Q.S No
This study 50 227 N,I,D Java T,C, S

T: Time; Q: Answering questions; C: Completing tasks correctly; S: Subjective opinion
N: No comments; I: Implementation comments; D: Documentation comments

and commented code fragments in Fortran. The authors found only performance
differences when changing the structure, but not the comments of the code.

In another study, Woodfield et al (1981) distributed 48 students into two
groups. One group received Fortran code with documentation comments, while
the other group received uncommented code. Within a given time frame, the par-
ticipants of both groups had to answer the same comprehension questions regard-
ing the code. Participants who received modularized, commented code were able
to correctly answer more questions than those who received the same, but un-
commented code. In contrast, for monolithically structured code, no significant
differences were found.

Norcio (1982) investigated the effects of indentation and comments. For this
purpose, 130 students participated in two experiments and had to correctly com-
plete different versions of Fortran programs. The results indicate that comments
have a significant positive impact on comprehension when no indentation is used.

Dunsmore (1985) conducted two experiments on the effect of implementation
and documentation comments. The studies relied on differently sized Fortran code
for which different numbers of students, 31 and 48 respectively, had to perform
specific tasks. Unfortunately, the author reports few details about the studies
(e.g., it is not specified what measurements were used for the second experiment
and the subject code is not provided), but they seem to be connected to the
one of Woodfield et al (1981). For both experiments, Dunsmore (1985) reports a
positive effect of comments on program comprehension and modification.

Tenny (1985, 1988) analyzed the influence of comments and procedure types on
comprehension in two different experiments. Both were conducted with students,
81 and 148 respectively, and different variants of PL/I systems. Each variant was
either commented for each code section and procedure or did not contain any
comments. Regardless of the type of the procedure, in both experiments, students
were able to answer more questions correctly if they read the commented code.
However, the results indicated that comments were marginally significant and
significant only in a monolithic program structure, for each of the two experiments.

Takang et al (1996) analyzed the impact of comments and identifier names. In
their study, 89 computer science students had to answer questions on Modula-2
source code and had to assess the program readability. While in the questionnaire

Commenting Source Code: Is It Worth It For Small Programming Tasks? 7

comments tended to improve readability, this was not supported by the partic-
ipants’ subjective assessment. The authors conclude that comments, as well as
identifier names, improve the understandability of programs.

In a study on the influence of Java documentation comments by Nurvitadhi
et al (2003), 103 students had to answer a questionnaire. The authors considered
class and method comments on documentation level, exclusively and together, as
well as without comments. Their findings are that students who received both
types of comments had significantly better scores than the other groups. For low-
level questions, method comments improved code comprehension in comparison to
uncommented code.

Salviulo and Scanniello (2014) analyzed the influence of identifiers and com-
ments with 18 students and 12 professional developers. Within their controlled
experiment, the participants had to answer questions and accomplish different
tasks on a medium sized game implementation in Java. The authors discuss that
professional programmers tend to ignore comments while solving their tasks. In
contrast, students emphasize the importance of comments.

Finally, Bérstler and Paech (2016) performed a study on comments and method
chains. They used data from 104 students who assessed different versions of a Java
system that contained no, “good”, or “bad” comments. The authors used cloze tests
and subjective assessments to evaluate the readability of the code. They found
no significant differences for any comment type. However, “good” comments were
considered best and no comments as worst readable.

Why another study? We have four main reasons that motivate this study. Based on
these, we argue that our work provides significant value to the research community
and practitioners alike.

Firstly, replications in empirical software engineering help to validate and con-
solidate existing knowledge (Basili et al 1999; Juristo and Vegas 2009; Bezerra et al
2015). Thus, several authors, for example, Nurvitadhi et al (2003) and Salviulo and
Scanniello (2014), of the described studies themselves emphasize the importance
of replicating their experiments. Considering the varying and partly contradicting
findings of previous studies, further replications seem necessary to investigate the
suitability of comments for documentation purposes.

Secondly, we see threats to the validity of existing studies in modern and
especially industrial settings. This is mainly due to the fact that most studies
are older than 20 years (Sheppard et al 1978; Woodfield et al 1981; Norcio 1982;
Dunsmore 1985; Tenny 1985, 1988; Takang et al 1996). They use older program-
ming languages and paradigms (e.g., Fortran), and rely mostly or solely on stu-
dents (Woodfield et al 1981; Norcio 1982; Dunsmore 1985; Tenny 1985, 1988;
Takang et al 1996; Nurvitadhi et al 2003; Salviulo and Scanniello 2014; Borstler
and Paech 2016), who may not be representative for real-world evaluations (Host
et al 2000; Runeson 2003; Svahnberg et al 2008). In contrast, for our experiment,
we use Java, which is widely used today, and not only 50 novices but also 227
professional programmers participated in our study. We remark that only 66 of
the participants finished the study completely, wherefore some tasks received fewer
responses. In Section 3.1, we describe this issue in detail.

Thirdly, we find that several studies consider additional aspects of a program,
such as modularity (e.g., Woodfield et al (1981)) or identifier names (e.g., Salviulo
and Scanniello (2014)). Due to dependencies between these aspects, analyzing the

8 Sebastian Nielebock et al.

actual effect of comments separately may be difficult. This threatens the internal
validity of these studies (Perry et al 2000; Siegmund et al 2015). Furthermore, the
used measurements are mainly subjective, providing rarely quantitative results. In
contrast, we conduct our experiment focusing only on the effects of comments and
combine quantitative with qualitative measurements to gain detailed insights.

Fourthly, most studies, except for Salviulo and Scanniello (2014) partly cover-
ing RQz2, address solely RQ1 with some of the previously mentioned limitations.
Thus, our other research questions are scratched at best and reliable results are
missing. For this reason, we are not only replicating previous studies, but extend
their scope to provide more insights. In particular, we consider differences between
novices and professionals as well as subjective opinions on comments compared to
their actually measurable impact.

2.3 Related Work on Comment Analysis and Program Comprehension

There are several other works that investigate comments for different purposes
and empirical studies on program comprehension. In the following, we provide a
brief overview of some of them. The described studies complement our work by
investigating the effects of other aspects on program comprehension. Furthermore,
the results of our study can be used as a basis for scoping and extending the
described approaches that utilize comments.

A recently proposed approach is to automatically generate comments that are
considered helpful in understanding source code (Wong et al 2013; McBurney and
McMillan 2014). The question arises, by which properties “good” comments are
characterized. To this point, McBurney and McMillan (2016) conducted an ex-
periment and found that comments written by the authors usually use keywords
from the source code. A reason could be that comments with these keywords di-
rectly provide relations to the code. Moreover, the authors determined that the
similarity of human-written comments and code can be measured with text simi-
larity metrics, while it cannot be measured between generated comments and code.
Similarly, Buse and Weimer (2010) investigate the readability of code comments
and develop a corresponding measure. Furthermore, the authors show that their
measure correlates with three other quality measures: Code changes, automated
defect reports, as well as defect log messages.

Program comprehension is not solely influenced by comments. Several stud-
ies analyze the influence of different artifacts, approaches, and human factors, for
example, software design techniques (Briand et al 1997), the application of do-
main specific languages instead of general purpose languages (Kosar et al 2012),
visual code highlighting (Feigenspan et al 2013), static typing (Hanenberg et al
2014), code repetition (Jbara and Feitelson 2015), identifier names (Hofmeister
et al 2017), or developers’ memory (Kriiger et al 2018). Most approaches recog-
nize a significant positive or negative influence on program comprehension. Thus,
we have to keep in mind that other aspects of software development can be more
important than commenting code to improve the understandability. As a result,
many different approaches have been proposed to improve or investigate the un-
derstandability of code.

Other studies analyze the application of comments in other contexts than pro-
gram comprehension. For instance, Ying et al (2005) detect that programmers

Commenting Source Code: Is It Worth It For Small Programming Tasks? 9

use comments also for internal communication, for example by applying ToDo-
comments. Ali et al (2015) investigated the effect of comments on requirements
traceability and found that they have a significant impact. Several authors (Ji et al
2015; Seiler and Paech 2017; Kriiger et al 2018) use annotations in a comment-
like style to integrate feature traceability in the source code, emphasizing their
benefits. Thus, comments may also have an influence on traceability, which was
found to have positive effects on programming (Mider and Egyed 2015). To this
end, several authors proposed techniques to automatically trace documentation to
the code and to use this traceability for different purposes. For example, Antoniol
et al (2002) describe a technique to automatically recover traceability links between
code and documentations by analyzing identifier names. Moreover, Sridhara et al
(2010) propose a technique to automatically generate summary comments for Java
methods to provide up-to-date documentation in natural language.

3 Design of the Online Survey

The goal of our study is to ascertain the influence of differently commented code
types on correctness and time of solving small programming tasks. In particular,
we varied the types of commented code among groups of participants and measured
the time it took them to correctly solve each task. For this purpose, we conducted
an online survey between June 1°* and July 11'" 2016. While an online survey does
not allow us to observe our participants as good as a controlled experiment, such
methods have several benefits considering the diversity of participants — preventing
biases — and prove to be consistent with traditional methods (Gosling et al 2004).
Before conducting the study, we tested it with five participants and rectified it
if necessary. In particular, we aimed to improve the quality of our examples, for
instance, if code or comments were hard to understand or ambiguous. These five
participants were not part of the final study.

The survey was completely conducted in German and mostly targeted na-
tive speakers to avoid language barriers. Particularly, tasks and comments were
provided in German. However, for the sake of replicability and repeatability, we
translated the tasks and comments. All tasks and our basic solutions can be found
in Appendix A of this article.

Technologically, we deployed the open source LimeSurvey.? To facilitate sam-
pling and to avoid selection biases, we extended this tool in order to automatically
distribute participants to different groups. We provide an overview of the main
factors of our survey in Table 2 — similar to the scheme by Hofmeister et al (2017)
— and describe our procedure in the following.

3.1 Acquisition and Data Rectification

We promoted our study in an academic as well as in an industrial context via
mail and social media. Overall, 416 participants started the survey. Due to our
decision to perform an online survey, we consciously designed an unsupervised ex-
periment. This means, even though the programmers were informed not to disturb

2 https://www.limesurvey.org/

https://www.limesurvey.org/

10 Sebastian Nielebock et al.

Table 2: Main factors of the conducted online survey.

Goal Study the impact of differently commented code types on program
comprehension, precisely, correctness and solving time of program-
ming tasks.

Independent Variables Commented code types, programming experience

Tasks Apply existing code, fix bugs, extend code

Dependent Variables Correctness, time

Secondary Factors Influence of comments on different programming tasks

Confounding Factors Materials (code snippets), identifier names, interruption/abandon-

ment of the study, inter-individual differences, item-order

Design Within-subjects

their work, some participants were interrupted or did not finish the experiment
at all. Thus, we removed those participants from the initial 416, who answered
the preliminary questionnaire, but did not proceed to the programming tasks or
whose task execution times appear to be unrealistic (see below), resulting in 277
participants. Among these 277 participants were 227 professional and 50 novice
programmers, based on our classification described in the following section.

We excluded those answers that exhibit an unrealistic execution time, meaning
either too long or too short times. Precisely, we consider a time as too long, if it is
greater than the third quartile plus the threefold interquartile range (difference of
the first and third quartile) of all submissions of the task in the particular group,
regardless of the participant’s experience. In contrast, as the same mechanism does
not work for too short answer times, due to the lower bound of 0, we removed
those solutions that had an answer time of fewer than ten seconds. Furthermore,
some participants mentioned in the post-questionnaire disturbances while solving
specific tasks, so that we removed these results, regardless of statistical deviation.
Therefore, not all programming tasks have the same number of participants. By
means of this procedure, we omitted 321 single tasks from the original obtained
1,940 tasks, leaving 1,619 tasks from 277 different participants. For 66 (7 novices
and 59 professionals) participants, we could keep all obtained tasks. Still, for each
individual task, we received more than 100 responses (ranging from 127 to 262)
as basis for our analysis (cf. Figure 1 in Section 4).

3.2 Structure of the Study

Our study comprised three steps: First, we assessed programming experiences to
distribute participants among different groups. Second, each group had to solve
nine programming tasks with differently commented code. Finally, the participants
had to self-assess the influence of comments and got the chance to give feedback.
We describe the details of these steps in the following paragraphs.

Assessment of Programming Ezperience The assessment of programming experi-
ence is a widespread domain, and there exists no standard metric to be measured,
as found by Feigenspan et al (2012). In their study, the authors analyzed differ-
ent methods to measure programming experience including, for example, years of

Commenting Source Code: Is It Worth It For Small Programming Tasks? 11

Table 3: Categories to quantify programming experience.

Experience Value ‘ 1 2 3 ‘ 4 5 6
Self-Assessment 1 2 3 4 5 6
Years in Programming <1 1-3 3-6 6-10 10-15 >15
Qualification in Programming - no - - yes -

programming, educational background, and self-assessment. They developed a five-
factor model, which encompasses different measurements and enables researchers
to assess programming experience.

We adapted this idea and asked the participants to self-assess their program-
ming skills, state their years as programmers, and whether they have a qualification
in programming or not. As we performed an automatic assignment to the groups,
we defined for every category a number between 1 and 6, as we depict in Ta-
ble 3. These numbers represent experience values where 1 means low and 6 high
experience. Note, as the question about the qualification is binary (yes or no), we
assigned the mean value of the lower and upper part of the experience value (i.e.,
2 and 5), respectively. The scale for years in programming is inspired by one of
the largest studies with programmers performed by Stack Overflow,® one of the
most common Q&A systems for programmers, and adapted to fit into our scale.

In the end, we calculated the rounded average of these three factors as expe-
rience value. We consider participants as novices, if their experience value is < 3,
and as professionals if the value is > 4. Note that this assessment allows students to
be categorized as professionals, even though our procedure takes the participant’s
qualification into account. Nonetheless, some students have been working in the
industry for several years and, thus, can be considered as experienced developers.

Programming Tasks To measure the influence of differently commented code types,
our participants had to process three different maintenance aspects — applying ex-
isting code in the program, fizing bugs, and extending the code. Applying existing
code means that a programmer should use the API of the provided code, for in-
stance, its methods, in the correct manner in order to fulfill a given task. When
participants should fiz a bug, they have to repair a negative behavior in the code,
for instance, an exception or a non-intended output, in the given code. Finally, ex-
tending the code means adding a new feature or a new functionality to the existing
code. For instance, participants have to add a parameter to the existing methods
to provide a new functionality. Each of these aspects comprised three programming
tasks with differently commented code. We distributed the participants into three
distinct groups for which we varied the commented code type in each task, as we
display in Table 4. This way, we overcome the problem that differences in time
are mainly dependent on the particular programming task or on inter-individual
differences of the participants.

At the beginning of our study, the participants did not know that we inves-
tigate the influence of differently commented code, in order to not bias our re-
sults. Furthermore, they were allowed to use their own programming environment
(i-e., usual IDE), to not influence the programming time, due to an unfamiliar

3 https://insights.stackoverflow.com/survey/2016#developer-profile-experience

https://insights.stackoverflow.com/survey/2016#developer-profile-experience

12 Sebastian Nielebock et al.

Table 4: Mapping of groups and programming tasks with no (N), implementation
(I), and documentation comments (D).

Group
Aspect Task ————
A B C
1 N I D
Apply code 2 I D N
3 D N I
4 I D N
Fix bug 5 D N I
6 N I D
7 D N I
Extend code 8 N I D
9 1 D N

environment, (Siegmund 2016). To diminish effects of identifiers on program com-
prehension (Takang et al 1996; Anquetil and Lethbridge 1998; Lawrie et al 2007,
Hofmeister et al 2017), we used anonymous classes (e.g., Classl), methods (e.g.,
foo()), and variable names (e.g. stringl, number). Other effects, such as code in-
dentation or keyword highlighting, were preserved and equal for every participant.

We designed the programming tasks to be short enough for the participants
to process the whole study in less than an hour. Moreover, we only used Java to
prevent the overhead of acclimating to other languages during the study. According
to various indexes,? Java is still one of the most popular programming languages.
As mentioned before, the tasks were short (i.e., 7 to 27 source lines of code) and
mainly addressed algorithmic problems. However, we based some of our samples
on existing open-source projects, namely the Apache Common Lang project and
Guava. Particularly, we used code of Apache Common Lang for task 6 — where
we inserted a bug into an existing method — and for task 8 — where we ask for an
adaptation of another method.

Within the code snippets, we manually inserted the two types of comments,
implementation and documentation, that we describe in Section 2. We did not
consider the use of existing comments for two reasons: First, for those samples we
partially derived from existing projects, we cannot ensure the correctness of the
existing comments. Since we designed the tasks, which are mainly of an algorith-
mic nature, we feel very confident that the comments are correct and valuable.
We also checked that by testing our study with a preliminary run of the study
with five participants and rectified our comments if necessary. Second, most of
the considered code snippets do not contain both, implementation and JavaDoc
comments, sufficiently and, thus, we need to write the comments on our own.

Due to the small size of the snippets, comment generators (McBurney and
McMillan 2014; Rahman et al 2015) are not applicable, as they mainly benefit from
the source code’s context or an external source. For documentation comments, we
used the JavaDoc syntax and described the purpose of the entire class as well
as its methods. This also encompasses a description of the purpose of input as

4 TTIOBE: https://wwu.tiobe.com/tiobe-index/
RedMonk: http://redmonk.com/sogrady/2017/06/08/langnage-rankings-6-17/
PopularitY: http://pypl.github.io/PYPL.html

https://www.tiobe.com/tiobe-index/
http://redmonk.com/sogrady/2017/06/08/language-rankings-6-17/
http://pypl.github.io/PYPL.html

Commenting Source Code: Is It Worth It For Small Programming Tasks? 13

well as return values with respect to the particular method. In contrast, we used
implementation comments to explain the purpose of a statement, for example, the
meaning of a branch statement or a variable assignment at a particular location.
We obtained the non-commented variant by removing all existing comments. Note
that we created the comments in such a way that they do not just repeat the code
syntax and that they do not contradict the semantics of the code.

Post-Questionnaire Finally, we asked the participants to self-assess the effect of
documentation and implementation comments on their response time in compari-
son to non-commented code. To this end, we utilized a Likert scale (Trochim et al
2016) with five possibilities from significantly slower to significantly faster, con-
taining the possibility that the time could be identical (i.e., no effect of differently
commented code types). Additionally, the participants had the opportunity to give
insights into their used auxiliary material and further feedback as free-text.

4 Results of the Online Study

In this section, we analyze the outcome of our study. We address each research
question by describing the corresponding results and discussing their implications.

4.1 RQ: — Effect of Different Comment Types

First, we investigate the differences between differently commented source code.
In particular, we are interested in the influence of comments on the correctness,
precisely, whether the participants were able to correctly solve the tasks, and, for
the correct solutions, the impact on task execution times. To assess correctness,
one of the authors created a sample solution for every task, which served as a
loose specification to check submissions. This author manually assessed for every
submission if it behaves in the same way as the sample solution. Note that solu-
tions that solve the task were also accepted, even if they differ from the sample
solution. All experiments are conducted under the null hypothesis that there are
no differences between the differently commented code types for every single group
(i.e., novices and professionals). Thus, our analysis considers whether this hypoth-
esis holds or not. If it has to be rejected, we provide a post-hoc analysis to reveal
between which types of code significant differences exist.

Results Unsurprisingly, we obtained different proportions of correct and wrong
submissions, which we depict in Figure 1. We illustrate the correctness based on the
types of commented code — N (non-commented code), I (code with implementation
comments) and D (code with documentation comments) — and, with respect to
RQ2, on the different experience levels — novices and professionals. In addition
to the proportions, we also show the absolute numbers. Note that due to our
rectification process, the number of participants varies per task and group.

With respect to the correctness of answers, we analyze the differences of com-
ment types separately for both experience groups. Due to the small number of
novice participants, we use Fisher’s exact test (o = 0.05) (Fisher 1936) to the x*-
test. If Fisher’s exact test found significant differences between the three differently

14 Sebastian Nielebock et al.

o Task 1 Task 2 Task 3
S 100%- 100%- 100%-
§ 9 {10 7 (1334246 9 [[10|{14] 63|56 || 64 12||12(12]|59]160(48
5 75%- 75% - 75% -
o
8 50% - 50%- 50% -
c
2 25%- 25%- 25%-
8
S o RUSSUESKITUEL o FE RN o L0 il 0
o N I D N I D N I D N | D N I D N | D
Novices Professionals Novices Professionals Novices Professionals
Groups Groups Groups
. Task 4 Task 5 Task 6
S 100%- 100% - 100% -
§ 81 7| 6[48(39(46 41145 |31f31)31 85| 3(35(35]|37
5 75%- 75%- 75%-
o
8 50% - 50% - 50%-
c
S 25%- 250 - 25%-
5]
[oX
© 0%- 0%- 0%-
£ o o a0 a o o oo o
I D N I D N I D N | D N I D N | D
Novices Professionals Novices Professionals Novices Professionals
Groups Groups Groups
o Task 7 Task 8 Task 9
S 100%- 100%- 100%-
= 8| 5[9]s0[47]40 8|71 5 [20]43][46 12 15][13
5 75%- 75%- 75% -
o
8 50%- 50% - 50%-
c
2 250- 25% - 25% -
g
o 0%- 0 0 0lo 0%- 0%-
£ o a0 oo o oo o
N I D N I D N I D N | D N I D N I D
Novices Professionals Novices Professionals Novices Professionals
Groups Groups Groups

Answer I:' Correct . Wrong

Fig. 1: Correctness for each task (N: No comments; I: Implementation comments;
D: Documentation comments).

commented code types, we conducted Fisher’s exact test as a pairwise post-hoc
analysis. In order to deal with family-wise error rate due to multiple statistical
tests, we applied the Bonferroni adaption of the p-value (Dinno 2015). We depict
all results in Table 5.

As we show in Figure 1, the proportions and absolute numbers indicate more
variation in the correctness for novices. However, Fisher’s test does not reveal any
significant differences for this group. Within the group of professionals, only the
difference in the correctness of task 2 is significant. Interestingly, this difference
is between non-commented code (N) and code with implementation comments (1)
(right side in Table 5). Thus, more professionals were able to solve task 2 correctly,

Commenting Source Code: Is It Worth It For Small Programming Tasks? 15

Task 1 - All Groups Task 2 - All Groups
500-
(%] 600-
g 400-
3
L 400-
% 300
< 200- 200
£ < é ST
[100-
. . . . 0-
N | D N N | D
Novices Professmnals Novices Professionals
Groups Groups
Task 3 - All Groups Task 4 - All Groups
500-
[}
2 400- 600-
o
@ 300-
n 400-
£ 200-
g 200-
£ o (83
0- ; . . . 0-
N | |
Novices Professionals Novmes Professmnals
Groups Groups
Task 5 — All Groups Task 6 — All Groups
& 2000~ 500~
2 400-
§ 1500-
3 300-
< 1000-
o 200-
g 50 @ (5) 100
= N2] %
N | D N | D N | D N
Novices Professionals Novices Professmnals
Groups Groups
Task 7 — All Groups Task 8 — All Groups
800-
500-
12)
g 400- 600-
§ <
& 300 400) ¢
£ 200-
g @ 200- AN
i= 100- E
N | D N | D N | D N
Novices Professionals Novices Professmnals
Groups Groups

Task 9 — Only Prof.

1000-

Time in Seconds
wn
o
o

N i D
Professionals
Groups

Fig. 2: Distribution of task answer times for correct solutions regarding experience
and commented code types (N: No comments; I: Implementation comments; D:
Documentation comments).

16 Sebastian Nielebock et al.

Table 5: Results for correctness using Fisher’s exact test (left) and post-hoc test
for task 2 - Professionals (right).

Task Nov. Prof.

0.2609 1.0000
0.6443 0.0598
1.0000 0.6648

1 0.4246 0.2747

g (1)3(8)33 0001%813 Comments p-value for Task 2 Prof.
4 0.3225 0.8720 N-1I 0.0082
5 0.6691 0.6130 N-D 0.2523
6 0.1823 0.4385 I-D 0.5938
7

8

9

Task 3
Task 3 Task 7
Task 4
Task 5 Task 6
Task 5
(a) Novices (b) Professionals
Comments

_— No Comments
-=-- Implementation Comments
------ Documentation Comments

Fig. 3: Comparison of the mean times in seconds between differently commented
code types.

if the code was not commented. This may happen if programmers are confused by
the comments or misunderstand them.

Among all tasks and participants, we cannot see a significant influence of the
differently commented code types on the correctness at all. Instead, Figure 1 in-
dicates that the proportions of correct and wrong answers are mainly driven by
the tasks themselves. For example, tasks 3 and 7 reveal a high ratio of correct an-
swers, while task 9 has a significantly lower one. This may be the result of varying
difficulty levels or participants’ different comprehension of the tasks.

Next, we consider the differences in the answer times among differently com-
mented code of correctly solved tasks. For that purpose, we represent the times of

Commenting Source Code: Is It Worth It For Small Programming Tasks? 17

Table 6: Results for execution times with Kruskal-Wallis test (left) and Dunn-test
for task 8 - Novices (right).

Task Nov. Prof.
1 0.7884 0.9484
2 0.7952 0.7807
3 01699 0.6889 Comments p-value - Task 8 Nov.
4 0.0985 0.9032 N-1I 0.6936
5 0.6623 0.3258 N-D 0.0235
6 0.0787 0.0509 I-D 0.0040
7 0.0568 0.2151
8 0.0082 0.2203
9 — 0.7705

correct submissions with respect to the type of commented code and experience
level as violin plots in Figure 2. Note that we do not depict the results of task
9 for novices since the number of correctly solved tasks is too low (3 out of 15
submissions among all types of commented code) and, thus, they are hardly rep-
resentative. In order to facilitate a comparison, we depict the mean answer times
for novices and professionals as radar charts in Figure 3.

Regarding the answer times, we see more variation in Figure 2 for novices
compared to professionals. In particular, for task 8 with documentation comments,
novices tend to require more time for correctly solving the task compared to the
other types. We apply the Kruskal-Wallis test (Kruskal and Wallis 1952) with the
null hypothesis of equal distributions (o = 0.05) and ascertained the significance
of these differences. Note that we have chosen Kruskal-Wallis, as this test does not
require a normal distribution of the answer times. We show the results in Table 6,
which illustrate that only the differences in task 8 for novices are significant. In
order to assess between which types these differences exist, we conducted the Dunn
test as a post-hoc analysis with conservative Bonferroni adaption (Dinno 2015),
displayed on the right side of Table 6. As the violin plots in Figure 2 show, the
differences between execution times of submissions with documentation comments
is significantly higher than those of the other two code types for this task. Also, in
the radar chart in Figure 3b we can see that the effect of comments for professionals
is almost negligible. For them, we found no significant differences in any answer
time of correct solutions.

We analyzed whether the particular content of a comment or further meta
information, namely, the size of the comments, influence correctness and time. For
that purpose, we consider the respective source lines of code (SLOC) — all lines
without comments and blank lines — and the comment lines of code (CLOC) —
all lines that contain comments.® Note that we obtain this information from the
original source code with German comments, wherefore the numbers may slightly
vary from the code presented in Appendix A. We summarize our results in Table 7.
Since the number of tasks and, thus, the statistical significance is rather low, we
only provide a qualitative discussion of the results. However, this discussion can
motivate further studies that strive for statistical evidence of these results.

5 We did not count lines such as /** or **/ that do not contain any natural words.

18 Sebastian Nielebock et al.

Table 7: Size and content of comments compared to correctness and mean time.

T s ‘ Implementation Comments ‘ Documentation Comments
| C Content Y% Sec. | C Content Yo Sec.
1 15 4 Explaining values 70.0 137.67 7 Explaining purpose of the 58.8 141.75

method and values of in-
put/output variables
2 14 2 Explaining purpose of the 79.6 178.16 7 Explaining purpose of the 86.6 162.84

code method and the validity of
values with input/output
variables
3 27 4 Naming variables and ex- 100.0 168.26 6 Explaining purpose of the 93.7 194.28
plaining purpose of code class, methods, and the va-

lidity of values
4 10 3 Naming variables and ex- 84.1 189.61 4 Explaining purpose of the 82.5 179.75

plaining purpose of code method with input/output
variables
5 9 3 Explaining purpose of the 82.0 410.57 5 Explaining purpose of the 85.7 565.35
variables and the code method based on defi-
nition with input/output
variables

o

6 7 1 Explaining purpose of code 79.0 123.69 Explaining purpose of 76.9 172.11

method with input/output

variables
727 2 Explaining purpose of vari- 98.1 135.56 3 Explaining purpose of 100.0 159.53
ables and code method with input/output
variables
8 21 3 Explaining purpose of vari- 90.1 169.41 6 Explaining purpose of 94.4 243.07
ables and code method with input/output
variables
9 21 7 Explaining purpose of vari- 59.6 378.34 7 Explaining purpose of 32.6 432.81
ables and code class, methods with in-

put/output variables
T: Task, S: SLOC, C: CLOC, %: Correctness in %, Sec.: Mean time in seconds

We can see in Table 7 that the number of CLOC for documentation comments
is usually bigger than for implementation comments. In some cases, namely, tasks
5 and 9, this is correlated with a longer mean time to solve the tasks correctly.
However, in task 5, the percentage of correctly solved tasks is slightly higher in
the case of documentation comments, while in task 9 the percentage is smaller
regarding implementation comments.

Another difference is the scope described within the comments. As explained
before, documentation comments tend to describe more abstract concepts, for
example, on class or method level, while implementation comments describe the
purpose of specific lines. However, we do not see an indicator that these different
concepts influence the correctness or time of any task, as all aspects seem to be
positively as well as negatively correlated with each comment type.

For task 2, we found a significant difference in the correctness for professionals
between non-commented code and code with implementation comments. Particu-
larly, this difference shows a negative impact of implementation comments on this
task. The corresponding 2 CLOC describe the concepts prefiz and suffiz. Due to
the obfuscation of the variables, one may get confused, since the actual two string
variables represent not prefix and suffix, but rather the input and output vari-
ables. More supportive comments may directly name the code parts representing
the prefix and the suffix.

Novices needed more time to correctly solve task 8 with documentation com-

ments, indicating a potentially negative impact. In this comment, we used the esee
JavaDoc annotation to refer to the documentation of the StringBuilder class — a

Commenting Source Code: Is It Worth It For Small Programming Tasks? 19

class from the java.lang package. One reason for the increased answer time could
be that novices try to familiarize themselves with that class. Professionals usually
know this class and, thus, do not need to refer to its documentation.

Overall, the reasons for these significant differences in the two tasks are versa-
tile. Consequently, a study with differently designed comments and combinations
is necessary to reveal what reasons cause the negative effects. For example, such a
study may vary the content, length, or expressiveness of the information provided
in comments.

Discussion Our results reveal that significant variations in using different types of
commented code are sporadic, which makes it hard to judge whether there exists
a common pattern in these differences. Even though the correctness and answer
times for novices tend to vary more than for professionals, we cannot find statis-
tical evidence for most of these phenomena, partly because the number of correct
submissions is too small. Overall, our findings indicate that both, correctness and
answer times, are mostly influenced by the task itself and not by the type of
comments used. We also find no general indicators whether a certain content or
size is positively or negatively correlated with the correctness or time of solving
tasks. Even though, we find some explanations why some tasks reveal significant
differences. Still, we need to validate these with a much larger study of differently
designed comments.

Regarding RQ1, our experiment shows that the effect of different comments
on correctness and time is almost negligible for small programming tasks.
Whether there exists differences for different and more complicated tasks or
differently designed comment sizes and contents remains an open question.

4.2 RQ2 — Novices versus Professionals

Even though the intra-group differences for the differently commented code types
seem insignificant, inter-group differences among novices and professionals may
occur. Similar to the previous research question, we examined the correctness and
answer times of the tasks. In particular, we are interested in differences between
both groups of participants that received the same type of commented code.

Corresponding to prior studies (cf. Section 2.2), we expect that novices ben-
efit from comments, as they are less familiar with programming and can utilize
additional information to comprehend a program. In contrast, professionals of-
ten ignore comments (Salviulo and Scanniello 2014), which is why we assume no
improvements for them. Thus, we expect to observe more significant differences
between novices and professionals when dealing with non-documented code than
with the other kinds of commented code.

Results We analyze the differences in correctness once again with Fisher’s exact
test (a = 0.05), whose results we depict in Table 8. Note that we do not perform
a post-hoc test, as we are just comparing two groups, whose differences we can see
in Figure 1. Our findings reveal significant differences between novices and profes-
sionals. However, only in task 2, we observe that professionals perform significantly
better than novices when confronted with non-commented code. Remember that

20 Sebastian Nielebock et al.

Table 8: Results for correctness among novices and professionals with Fisher’s
exact test.

Task N I D

1.0000 0.7731 0.2621
0.0123 0.3439 1.0000
1.0000 1.0000 1.0000
1.0000 0.3608 0.0174
1.0000 0.1383 1.0000
1.0000 0.1985 0.0415
1.0000 0.1132 1.0000
1.0000 1.0000 0.0412
0.5409 0.6317 1.0000

—_

WO oo 1O U k= Wi

we also found a significant difference in professionals’ correctness regarding the
type of commented code for this task. Thus, in this particular task, professionals
seem to perform especially well when no comments are provided.

In the tasks 4, 6, and 8, professionals performed better than novices, when con-
fronted with documentation comments. There could be two possible explanations:
Either, professionals, due to their experience, are superior to novices regarding
interpreting documentation comments, or novices are more confused by documen-
tation comments. As we find no significant differences in the correctness of novices’
submissions among all comment types, we argue that the first option seems to be a
more reasonable explanation. Moreover, the effect of improved correctness among
documentation comments occurs frequently, which can reveal a common effect. In
particular, the tasks 4 and 6 are bug fixing tasks, and, thus, these effects may
be correlated with this aspect. However, bug fixing encompasses many variants
of possible fixes, for example, syntactic versus semantic bugs, which we did not
capture with our study.

Considering the meta-information of comments provided during these tasks (cf.
Table 7), we cannot see a correlation between CLOC and correctness. Regarding
the content of the comments, they briefly describe the purpose of the methods
in tasks 4 and 6. Our results indicate that for bug firing this description is not
sufficient for novices. Considering task 8, novices may perform worse, due to esee
annotations, as mentioned in the previous section. Note that these are only single
observations and we highly recommend to validate these with further studies.

To analyze the effects on answer time, in addition to Figure 2, we also depict
the individual differences of the mean times in single radar charts in Figure 4. Note
that due to the low number of correct submissions by novices, we do not compare
the results of task 9. For most tasks, the differences between the answer times of
both groups are negligible. Interestingly, the mean time we measured for task 5 is
consistently lower for novices compared to professionals.

In order to examine if these differences are significant, we analyze them via
the Kruskal-Wallis test (« = 0.05). The test reveals that there are no signifi-
cant differences among the execution times of correct submissions for novices and
professionals when confronted with the same type commented code. Thus, the
observed improved performance by novices could be only by chance.

Commenting Source Code: Is It Worth It For Small Programming Tasks? 21

Task 3 Task 7 Task 3 Task 7

Task 5 Task 5

Task 3

Task 7

Task 5

(¢) Documentation Comments

Experience

Novices
- - - Professionals

Fig. 4: Comparison of the mean times in seconds between novices and professionals
for differently commented code types.

Discussion Our findings indicate that if professionals are confronted with docu-
mentation comments, they perform significantly better than novices. However, as
this is not a regular phenomenon, it could be that these differences occur only for
particular tasks, such as bug fixing. Because we conducted our experiments only
with three tasks per programming aspect, we cannot give a final answer to this
question, as bug fixing comprises various bug types. With respect to the answer
time for correct submissions, we cannot find any significant differences between
novices and programmers.

22 Sebastian Nielebock et al.

Regarding RQz2, our experiment indicates that professionals perform sig-
nificantly better in correctness than novices if they are confronted with
documentation comments. Still, if this is by chance and which factors
influence this performance has to be answered in future research.

4.3 RQ3 — Programmers’ Assessment

Finally, we asked the participants to subjectively evaluate the impact of comments.
In particular, we were interested in the differences between their assessment of the
impact of the differently commented code types and differences between novices
and professionals. Note that the impact assessment is highly subjective. For in-
stance, one developer may assess comments only as a highly decreasing factor when
they save several hours of programming while another assesses them equally when
saving a couple of minutes. Therefore, we consider these results as a measurement
of how attractive or unattractive comments are. Moreover, we investigate whether
the subjective evaluation is coherent with the findings of RQi1 and RQ2. We
expect that all participants assess comments as slightly beneficial.

Results As we show in Figure 5, most novices and professionals think that com-
ments do not affect or slightly reduce the necessary time for maintenance. In detail,
even though the bar plot visually indicates that novices tend to prefer implemen-
tation to documentation comments, a Wilcoxon-signed-rank test® (Siegel 1956)
reveals no significant differences. Similarly, we cannot ascertain a difference in the
distributions for professionals. Overall, both groups have a slightly positive expec-
tation of comments: 14 to 11 answers of the novices and 132 to 37 answers of the
professionals assessed comments as a moderately or highly time decreasing factor.

This is contrary to the results of the previous research questions, as they re-
veal that comments either have no significant effect or, for instance, in task 2 for
professionals, programmers perform better without comments. Note that we have
to be careful with the negative effect of comments, as this is not a commonly ob-
served pattern within our results. Nonetheless, the results indicate that comments
are seen as a positive support measure in software development. Thus, the im-
portance and usefulness of comments regarding program comprehension may be
higher than we measured, at least for small programs.

Considering this discrepancy, we also asked the participants to state their own
opinions on the study and the topic, which was used by 86 of them. We summa-
rize the responses that are concerned with the usefulness of comments in Table 9.
We see that some participants are convinced that comments are only appropriate
in specific situations. For example, some participants stated that using JavaDoc
is problematic and only useful for interfaces. Other participants wrote that im-
plementation comments are helpful in longer or complex source code. Thus, the
aforementioned discrepancy may be a result of the tasks we designed. For our
purpose of comparing differently commented types of code, we used small and not
too complex examples. Based on these statements, additional studies on suitable
usage scenarios for comments (e.g., documentation for interfaces) seem necessary.

6 We applied this test since we want to compare two distributions from the same population,
but we cannot assume a normal distribution.

Commenting Source Code: Is It Worth It For Small Programming Tasks? 23

Novices " Professionals
12}
9 50%- 10 T 50%-
c k=1
g 8
S 40%- 8 5 40%- o 52
bl o 49
g 7 = 45
@ 30%- 6 S 30%-
L ‘B
> %]
(=] 4 Q
£ 20%- S 20%-
5 3 & e 16 >
£ 10%- 2 S 10%- 11
2 1 1 = 3 .5
o o
£ on- S g
>> > == < <« a > > == < <<
Influence on answer time Influence on answer time
compared to no comments compared to no comments

[Jimplementation Comments
Documentation Comments

Fig. 5: Subjective assessment on the impact of comments on execution time. (>>
high increase, > moderate increase, == no influence, < moderate decrease, << high
decrease).

Table 9: Subjective comments of the participants.

Mentioned
Statement

Novices Professionals

Identifiers are more important than comments 1 13
Mistrusted comments 0 12
Ignored comments 1 6
Comments (would) have been useful 1 6
Use comments (i.e., JavaDoc) for their purpose 0 5
Tests are more important than comments 0 4
Input/output helpful, but of limited value 0 2
Comments rather disruptive than helpful 0 2
Do not repeat yourself 0 2
Examples are useful 0 1
Comments tempt to implement long methods 0 1

In addition, we also received statements that criticized the usage of comments
or the design of our tasks. We remark, however, that many issues raised in our
experiment are due to us reducing the impact of other variables than comments
(e.g., anonymized identifiers). Also, we received positive feedback on the design
and tasks and the overall critics indicate that the tasks varied in difficulty.

While the critics we present in Table 9 are hardly representative, they still
provide insights into the usage of comments in practice. The main critic we re-
ceived were the anonymized identifier names. As it is also indicated in other ex-
periments (Takang et al 1996; Anquetil and Lethbridge 1998; Lawrie et al 2007;
Hofmeister et al 2017), clean code development and self-explaining identifiers are
seen as more important than comments to support software comprehension:

“According to the clean code motto, comments have to be avoided. After work-

ing with legacy code for years, I can only tell to do so.”
Despite missing identifiers, developers often mistrust and ignore comments:

24 Sebastian Nielebock et al.

Table 10: Results of previous studies compared to our study.

Previous Study Result Consistent
Sheppard et al (1978) No influence of comments)
Woodfield et al (1981) Improvements only for modularized code (1
Norcio (1982) Improvements only for unindented code q
Dunsmore (1985) Improvements O
Tenny (1985) Marginally significant improvements O
Tenny (1988) Improvements for monolithic code q
Takang et al (1996) Improvements O
Nurvitadhi et al (2003) Improvements O
Salviulo and Scanniello (2014) Improvements for novices, but not for professionals q
Borstler and Paech (2016) No influence of comments (]

O: Not consistent, ¢ : Partly consistent, @: Consistent

“You have to believe.”
Both points are strongly connected to experiences that comments are not updated,
of poor quality, or misleading. Several participants prefer to rely on other mecha-
nisms to ensure that the code works as intended, mainly testing and debugging:

“Don’t trust the comment ... only the debugger tells the truth!”
The core message of several responses is the explicit statement that:

“In doubt, the comment is not helpful, as the code comprises the final truth
of what is happening.”

Nonetheless, several of our participants also stated that the comments have been
useful, or would have been useful. They especially argued that they are necessary,
due to the missing identifiers challenging their code comprehension.

Discussion The subjective assessment of our participants indicates that they see
a more positive impact of comments than we found. Some participants revealed
that they mistrust or deliberately ignore comments and concentrate their focus
on the code itself, usually identifiers. Nevertheless, some participants stated that
particular comments support program comprehension in certain situations, for ex-
ample, documentation comments help to understand interfaces. The investigation
of these phenomena will be part of future work.

Regarding RQs, the subjective assessments indicate that developers have a
more positive anticipation of comments than there may actually be. In con-
trast, the open responses also reveal several concerns that can guide further
research to make comments more valuable and reliable.

4.4 Comparing the Results to Previous Studies

In this section, we finally compare the results of the previously identified studies
(cf. Section 2.2). To this end, we summarize the findings again within Table 10 and
compare these to our own results. Thus, we provide a direct, explicit comparison,
as is recommended by Carver (2010). We remark again that this comparison is
mainly concerned with RQ1 and only for a single study (Salviulo and Scanniello
2014) with RQa2.

Commenting Source Code: Is It Worth It For Small Programming Tasks? 25

We can see in Table 10 that we obtain the same results as Sheppard et al
(1978) and Borstler and Paech (2016) who find no influence of comments at all,
neither in correctness nor time. Moreover, Borstler and Paech (2016) indicate the
same effect that we found: Comments seem to be positively associated, while we
cannot find any evidence for this.

Other studies find positive impacts of comments for specific situations, for
example, on unintended or monolithic code (Norcio 1982; Tenny 1988) — which
we cannot derive. Identical to Salviulo and Scanniello (2014), we find no influence
of comments on professionals, but are not consistent for novices. All the previous
studies discuss (e.g., Borstler and Paech (2016)) and indicate that there are several
factors that can hardly be separated, but have an impact on core comprehension.
Thus, more extensive studies seem still necessary.

Our results are conflicting with those of four other studies. However, as afore-
mentioned, these studies comprise also other factors that may threaten their valid-
ity. The partial and full overlaps to other studies still give us confidence that our
results are valid. Considering our results and comparing them to these studies, we
argue that especially the qualitative insights may be of high value to understand
program comprehension in software engineering: Several factors influence program
comprehension and — despite being considered positively — comments may have
only a small impact in general. This may be a result of the subjectively identified
problems of comments (e.g., consistency, currentness, usage scenario).

5 Threats to Validity

In this section, we discuss threats to the validity of our work. We follow common
classifications (Cook and Campbell 1979; Perry et al 2000; Wohlin et al 2012) and
consider threats to construct, internal, and external validity.

Construct Validity A potential threat to the construct validity of our experiment
are participants misinterpreting our survey tasks and questions. In particular, the
online survey did not allow participants to ask for clarification. We addressed
this threat by asking the participants questions on their opinions on comments in
general to gain more qualitative insights.

Another threat is the type of commented code we provided. Since developers
use different styles, length, and languages to comment code, they may not have
been ideal for all participants. However, in an industrial setting, developers are
also forced to understand code and comments of others. For this reason, we argue
that this poses no threat to the results of our work.

Internal Validity A first threat to the internal validity is that our participants got
disturbed while answering the online survey. This may result in longer answering
times and distort the measured time. However, we encountered this problem by
removing conspicuous submissions (i.e., with too long/short answer times) or those
participants who stated they were interrupted. Even though some results could
be distorted by shorter interruptions, we argue that the effect on our results is
negligible and represents real-world scenarios.

Due to the unsupervised structure of our study, it may be possible that par-
ticipants participated multiple times in our study. This may distort our results.

26 Sebastian Nielebock et al.

However, neither our recorded data nor the checked submissions indicate that any
participant did so.

Another threat is the difference in the participants’ knowledge. To overcome
this, we assessed the programmers’ experience automatically and split participants
into groups of novices and professionals. Moreover, we mentioned at the beginning
of the study that the programming tasks are based on Java so that only program-
mers familiar with Java would participate. Thus, we were able to distinguish and
compare the influence of their experience.

Finally, participants could have become familiar with the tasks and learned
while they were solving tasks. Thus, the time to find the solution may be lower
for later tasks and bias our findings. Even though we provided the same order of
the tasks, we think that due to the varying task types — applying, bug-fixing, and
extending — and differences in the tasks, there exists no learning effect. Moreover,
our results do not indicate such an effect.

External Validity One threat to the external validity is the type of code examples.
Because we did not use real-world examples, due to their length and their non-
sufficient implementation and JavaDoc comments at the same time, our findings
may not be completely transferable into practice. In particular, the results may
look quite different if we apply the tasks on a large scale code basis or if we
analyze a larger set of tasks. In the latter case, we may also derive more statistically
significant results when considering the size or the particular content of comments.
To address this threat, we performed an additional qualitative study to discuss and
verify the results.

In our experiments we target only German developers, and, thus, provided
comments and tasks in German as well. This may restrict our results just on this
particular set of developers. However, using the native language to describe some-
thing is more suitable to improve comprehension and avoid misunderstandings.
Thus, we argue that this does not threaten our results. To enable repetitions of
this experiment and check this threat, we added the translated tasks and comments
in the appendix of this article.

Another threat is that we used only code examples in Java. For this reason,
some participants may be better based on their experience in this programming
language. Also, we think it is questionable if the results will be similar for other pro-
gramming languages (cf. Section 2.2). Those may not support the same paradigms,
comments, or are harder to understand. Still, the findings of this study provide
reliable insights into the influence of comments.

6 Conclusions

In this article, we explored the impact of comments on program comprehension. To
this end, we conducted an online study, in which participants were asked to perform
different and small maintenance tasks with varying types of commented code and
to give their subjective assessment on comments. We applied three different types
of commented code: implementation comments describing the purpose of code
lines, documentation comments describing the purpose of a class or a method, and
non-commented code. In total, 277 participants (50 novices and 227 professionals)
participated in our study. Based on that, we analyzed three research questions.

Commenting Source Code: Is It Worth It For Small Programming Tasks? 27

With RQ1, we analyzed if there exists a difference in the performance when
programmers are confronted with differently commented code. We analyzed the
correctness of all and the answer times of correct submissions. Our results revealed
that differences in both, correctness and answer times are more sporadic than reg-
ular. In particular, for professionals, the effect of comments on program compre-
hension seems to be negligible. Even though existing studies found improvements
for novice programmers, we were not able to replicate this consistently.

In RQ2, we considered differences between novices and professionals, when
confronted with the same type of commented code. We found that, if confronted
with documentation comments, in 3 out of 9 tasks professionals achieved a signifi-
cantly higher proportion of correct answers than novices. This indicates that pro-
fessionals and novices behave differently when dealing with documentation com-
ments. These findings are coherent with those by Salviulo and Scanniello (2014)
and pose the question, whether studies comprising only novice programmers are
representative for practice.

Finally, in RQ3 we asked the participants to self-assess comments and com-
pared their responses to our findings. Most participants consider comments as
slightly beneficial for programming, even though our measured results do not
replicate this. This indicates that comments may be considered more important for
program comprehension than they really are. Overall, the key message reported by
some professionals is: “Only the code explains the code.” Consequently, other
factors, such as code complexity, identifiers, and tooling, seem more important
than comments.

All in all, the provoking question remains, whether comments are useful at
all? Despite the negligible effect in our findings, we think they are — but we
should not ask for too much. Firstly, as was stated by participants, some comment
types may be only beneficial in certain situations, for example, documentation
comments for interface descriptions. Secondly, our code samples were small (<30
SLOC) and algorithmic, wherefore they may require less explanation than more
complex code samples. We encourage to study whether comments may be more
supportive if the code reaches a fairly large size or a certain level of complexity.
Finally, comments can serve for further purposes, such as communication among
developers (Ying et al 2005) or to enable traceability (Ali et al 2015; Ji et al
2015). The importance of comments in such scenarios is interesting and helpful
future work. If the commented code is correlated with higher quality, will be part
of the further research. Moreover, we considered the type of the commented code
as a source of differences. However, we suggest for further research to investigate
varying features of comments, for example, length or quality. The assessment of
“quality” of comments is in our opinion very complex and subjective to developers
and the particular tasks. Finding criteria of “high quality” comments remains an
open question for future work. Regarding this, our observations on certain negative
effects of comments, for example, the @see annotation on novices’ performance,
can be the origin for future studies investigating the effects of certain comment
elements, such as annotations versus natural language.

Acknowledgments

This research is supported by DFG grant LE 3382/2-1.

28 Sebastian Nielebock et al.

References

Ali N, Sharafi Z, Guéhéneuc YG, Antoniol G (2015) An Empirical Study on the Importance
of Source Code Entities for Requirements Traceability. Empirical Software Engineering
(EMSE) 20(2):442-478

Anquetil N, Lethbridge T (1998) Assessing the Relevance of Identifier Names in a Legacy
Software System. In: Proceedings of the 8th Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON), IBM, pp 213-222

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering Traceability Links
Between Code and Documentation. IEEE Transactions on Software Engineering (TSE)
28(10):970-983

Basili VR, Shull F, Lanubile F (1999) Building Knowledge Through Families of Experiments.
IEEE Transactions on Software Engineering (TSE) 25(4):456-473

Beck F, Moseler O, Diehl S, Rey GD (2013) In Situ Understanding of Performance Bottlenecks
through Visually Augmented Code. In: Proceedings of the 21st International Conference
on Program Comprehension (ICPC), IEEE, pp 63-72

Bezerra RMM, da Silva FQB, Santana AM, Magalhaes CVC, Santos RES (2015) Replication
of Empirical Studies in Software Engineering: An Update of a Systematic Mapping Study.
In: Proceedings of the 9th International Symposium on Empirical Software Engineering
and Measurement (ESEM), IEEE, pp 1-4

Boehm BW (1981) Software EngineeringEconomics. Prentice-Hall

Borstler J, Paech B (2016) The Role of Method Chains and Comments in Software Readability
and Comprehension—An Experiment. IEEE Transactions on Software Engineering (TSE)
42(9):886-898

Briand L, Bunse C, Daly J, Differding C (1997) An Experimental Comparison of the Main-
tainability of Object-Oriented and Structured Design Documents. In: Proceedings of the
5th International Conference on Software Maintenance (ICSM), IEEE, pp 130-138

Buse RP, Weimer WR (2010) Learning a Metric for Code Readability. IEEE Transactions on
Software Engineering (TSE) 36(4):546-558

Carver JC (2010) Towards Reporting Guidelines for Experimental Replications: A Proposal.
In: Proceedings of the 1st International Workshop on Replication in Empirical Software
Engineering (RESER)

Chikofsky EJ, Cross JH (1990) Reverse Engineering and Design Recovery: A Taxonomy. IEEE
Software 7(1):13-17

Cook TD, Campbell DT (1979) Quasi-Experimentation: Design & Analysis Issues for Field
Settings. Houghton Mifflin

Corazza A, Maggio V, Scanniello G (2015) On the Coherence Between Comments and Imple-
mentations in Source Code. In: Proceedings of the 41st Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), IEEE, pp 76-83

Cornelissen B, Holten D, Zaidman A, Moonen L, van Wijk JJ, Van Deursen A (2007) Un-
derstanding Execution Traces using Massive Sequence and Circular Bundle Views. In:
Proceedings of the 15th International Conference on Program Comprehension (ICPC),
IEEE, pp 49-58

Dinno A (2015) Nonparametric Pairwise Multiple Comparisons in Independent Groups using
Dunn’s Test. Stata Journal 15(1):292-300

Dunsmore HE (1985) The Effect of Comments, Mnemonic Names, and Modularity: Some
University Experiment Results. In: Empirical Foundations of Information and Software
Science, Springer, pp 189-196

Elshoff JL, Marcotty M (1982) Improving Computer Program Readability to Aid Modification.
Communications of the ACM 25(8):512-521

Feigenspan J, Késtner C, Liebig J, Apel S, Hanenberg S (2012) Measuring Programming Ex-
perience. In: Proceedings of the 20th International Conference on Program Comprehension
(ICPC), IEEE, pp 73-82

Feigenspan J, Kistner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck M, Leich T,
Saake G (2013) Do Background Colors Improve Program Comprehension in the# ifdef
Hell? Empirical Software Engineering (EMSE) 18(4):699-745

Fisher RA (1936) Statistical Methods for Research Workers, 6th edn. Oliver and Boyd Edin-
brug, Tweeddale Court London: 33 Paternoste R Row, E.C.

Fluri B, Wursch M, Gall HC (2007) Do Code and Comments Co-Evolve? On the Relation
Between Source Code and Comment Changes. In: Proceedings of the 14th Working Con-

Commenting Source Code: Is It Worth It For Small Programming Tasks? 29

ference on Reverse Engineering (WCRE), IEEE, pp 70-79

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley

Gosling SD, Vazire S, Srivastava S, John OP (2004) Should we Trust Web-Based Studies?
A Comparative Analysis of Six Preconceptions about Internet Questionnaires. American
Psychologist 59(2):93

Hanenberg S, Kleinschmager S, Robbes R, Tanter E, Stefik A (2014) An Empirical Study on
the Impact of Static Typing on Software Maintainability. Empirical Software Engineering
(EMSE) 19(5):1335-1382

Hofmeister J, Siegmund J, Holt DV (2017) Shorter Identifier Names Take Longer to Compre-
hend. In: Proceedings of the 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), IEEE, pp 217-227

Host M, Regnell B, Wohlin C (2000) Using Students as Subjects - A Comparative Study of Stu-
dents and Professionals in Lead-Time Impact Assessment. Empirical Software Engineering
(EMSE) 5(3):201-214

Jalali S, Wohlin C (2012) Systematic Literature Studies: Database Searches vs. Backward
Snowballing. In: Proceedings of the 6th International Symposium on Empirical Software
Engineering and Measurement (ESEM), ACM, pp 29-38

Jbara A, Feitelson DG (2015) How Programmers Read Regular Code: A Controlled Experiment
Using Eye Tracking. In: Proceedings of the 23rd International Conference on Program
Comprehension (ICPC), IEEE, pp 244-254

Ji W, Berger T, Antkiewicz M, Czarnecki K (2015) Maintaining Feature Traceability with
Embedded Annotations. In: Proceedings of the 19th International Software Product Line
Conference (SPLC), ACM, pp 61-70

Jiang ZM, Hassan AE (2006) Examining the Evolution of Code Comments in PostgreSQL.
In: Proceedings of the 3rd Working Conference on Mining Software Repositories (MSR),
ACM, pp 179-180

Juristo N, Vegas S (2009) Using Differences Among Replications of Software Engineering
Experiments to Gain Knowledge. In: Proceedings of the 24th International Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE, pp 356-366

Khamis N, Witte R, Rilling J (2010) Automatic Quality Assessment of Source Code Com-
ments: The JavadocMiner. In: Proceedings of the 9th International Conference on Natural
Language Processing and Information System (NLDB), Springer, pp 68-79

Knuth DE (1984) Literate Programming. The Computer Journal 27(2):97-111

Kobayashi K, Kamimura M, Yano K, Kato K, Matsuo A (2013) SArF Map: Visualizing Soft-
ware Architecture from Feature and Layer Viewpoints. In: Proceedings of the 21st Inter-
national Conference on Program Comprehension (ICPC), IEEE, pp 43-52

Koenemann J, Robertson SP (1991) Expert Problem Solving Strategies for Program Compre-
hension. In: Proceedings of the 9th Conference on Human Factors in Computing Systems
(CHI), ACM, pp 125-130

Kosar T, Mernik M, Carver JC (2012) Program Comprehension of Domain-Specific and
General-Purpose Languages: Comparison using a Family of Experiments. Empirical Soft-
ware Engineering (EMSE) 17(3):276-304

Kramer D (1999) API Documentation from Source Code Comments: A Case Study of Javadoc.
In: Proceedings of the 17th Annual International Conference on Computer Documentation
(SIGDOC), ACM, pp 147-153

Kriiger J, Gu W, Shen H, Mukelabai M, Hebig R, Berger T (2018) Towards a Better Un-
derstanding of Software Features and Their Characteristics: A Case Study of Marlin. In:
Proceedings of the 12th Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS), ACM, pp 105-112

Kriiger J, Wiemann J, Fenske W, Saake G, Leich T (2018) Do You Remember This Source
Code? In: Proceedings of the 40th International Conference on Software Engineering
(ICSE), ACM, pp 764-775

Kruskal WH, Wallis WA (1952) Use of Ranks in One-Criterion Variance Analysis. Journal of
the American Statistical Association 47(260):583-621

Lawrie D, Morrell C, Feild H, Binkley D (2007) Effective Identifier Names for Comprehension
and Memory. Innovations in Systems and Software Engineering 3(4):303—-318

Miéder P, Egyed A (2015) Do Developers Benefit from Requirements Traceability When
Evolving and Maintaining a Software System? Empirical Software Engineering (EMSE)
20(2):413-441

30 Sebastian Nielebock et al.

Martin RC (2009) Clean Code: A Handbook of Agile Software Craftsmanship. Pearson Edu-
cation

Martinez M, Monperrus M (2015) Mining Software Repair Models for Reasoning on the Search
Space of Automated Program Fixing. Empirical Software Engineering (EMSE) 20(1):176—
205

von Mayrhauser A, Vans AM (1995) Program Comprehension During Software Maintenance
and Evolution. IEEE Computer 28(8):44-55

McBurney PW, McMillan C (2014) Automatic Documentation Generation via Source Code
Summarization of Method Context. In: Proceedings of the 22nd International Conference
on Program Comprehension (ICPC), ACM, pp 279-290

McBurney PW, McMillan C (2016) An Empirical Study of the Textual Similarity between
Source Code and Source Code Summaries. Empirical Software Engineering (EMSE)
21(1):17-42

Norcio AF (1982) Indentation, Documentation and Programmer Comprehension. In: Proceed-
ings of the 1st Conference on Human Factors in Computing Systems (CHI), ACM, pp
118-120

Nurvitadhi E, Leung WW, Cook C (2003) Do Class Comments Aid Java Program Under-
standing? In: Proceedings of the 33rd Annual Frontiers in Education, IEEE, vol 1, pp
T3C-T3C

Perry DE, Porter AA, Votta LG (2000) Empirical Studies of Software Engineering: A Roadmap.
In: Proceedings of the Conference on The Future of Software Engineering, ACM, pp 345—
355

Rahman MM, Roy CK, Keivanloo I (2015) Recommending insightful comments for source
code using crowdsourced knowledge. In: Proceedings of the 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), IEEE, pp 81-90

Ratol IK, Robillard MP (2017) Detecting Fragile Comments. In: Proceedings of the 32nd
International Conference on Automated Software Engineering (ASE), IEEE Press, pp 112—
122

Runeson P (2003) Using Students as Experiment Subjects — An Analysis on Graduate and
Freshmen Student Data. In: Proceedings of the 7th International Conference on Evaluation
and Assessment in Software Engineering (EASE), Lund University, pp 95-102

Salviulo F, Scanniello G (2014) Dealing with Identifiers and Comments in Source Code Com-
prehension and Maintenance: Results from an Ethnographically-Informed Study with Stu-
dents and Professionals. In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE), ACM, p 48

Schroter I, Kriiger J, Siegmund J, Leich T (2017) Comprehending Studies on Program Compre-
hension. In: Proceedings of the 25th International Conference on Program Comprehension
(ICPC), IEEE, pp 308-311

Seiler M, Paech B (2017) Using Tags to Support Feature Management Across Issue Track-
ing Systems and Version Control Systems. In: Requirements Engineering: Foundation for
Software Quality, Springer, pp 174-180

Shakeel Y, Kriiger J, von Nostitz-Wallwitz I, Lausberger C, Campero Durand G, Saake G, Leich
T (2018) (Automated) Literature Analysis - Threats and Experiences. In: Proceedings of
the International Workshop on Software Engineering for Science (SE4Science), ACM, pp
20-27

Sharon D (1996) Meeting the Challenge of Software Maintenance. IEEE Software 13(1):122—
125

Sheppard S, Borst M, Curtis B, Love L (1978) Predicting Programmers’ Ability to Modify
Software. Tech. Rep. TR—7a—3B8100 3, General Electric

Siegel S (1956) Nonparametric Statistics For The Behavioral Sciences. McGraw-Hill Ko-
gakusha, LTD, Tokoyo, Japan

Siegmund J (2016) Program Comprehension: Past, Present, and Future. In: Proceedings of
the 23rd International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, pp 13-20

Siegmund J, Siegmund N, Apel S (2015) Views on Internal and External Validity in Empirical
Software Engineering. In: Proceedings of the 37th International Conference on Software
Engineering (ICSE), IEEE, vol 1, pp 9-19

Sommerlad P, Zgraggen G, Corbat T, Felber L (2008) Retaining Comments When Refactoring
Code. In: Proceedings of the 23rd Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), ACM, pp 653-662

Commenting Source Code: Is It Worth It For Small Programming Tasks? 31

Sridhara G (2016) Automatically Detecting the Up-To-Date Status of ToDo Comments in
Java Programs. In: Proceedings of the 9th India Software Engineering Conference (ISEC),
ACM, pp 16-25

Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards Automatically
Generating Summary Comments for Java Methods. In: Proceedings of the 25th Interna-
tional Conference on Automated Software Engineering (ASE), ACM, pp 43-52

Standish TA (1984) An Essay on Software Reuse. IEEE Transactions on Software Engineering
(TSE) (5):494-497

Steidl D, Hummel B, Juergens E (2013) Quality Analysis of Source Code Comments. In:
Proceedings of the 21st International Conference on Program Comprehension (ICPC),
IEEE, pp 83-92

Storey MAD (2005) Theories, Methods and Tools in Program Comprehension: Past, Present
and Future. In: Proceedings of the 13th International Workshop on Program Comprehen-
sion (IWPC), IEEE, pp 181-191

Storey MAD, Wong K, Muller HH (1997) How do Program Understanding Tools Affect how
Programmers Understand Programs? In: Proceedings of the 4th Working Conference on
Reverse Engineering (WCRE), IEEE, pp 12-21

Svahnberg M, Aurum A, Wohlin C (2008) Using Students As Subjects - an Empirical Evalu-
ation. In: Proceedings of the 2nd International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), ACM, pp 288-290

Takang AA, Grubb PA, Macredie RD (1996) The Effects of Comments and Identifier Names
on Program Comprehensibility: An Experimental Investigation. Journal of Programming
Languages (JPL) 4(3):143-167

Tan SH, Marinov D, Tan L, Leavens GT (2012) @tComment: Testing JavaDoc Comments to
Detect Comment-Code Inconsistencies. In: Proceedings of the 5th International Conference
on Software Testing, Verification and Validation (ICST), IEEE, pp 260-269

Tenny T (1985) Procedures and Comments vs. The Banker’s Algorithm. ACM SIGCSE Bul-
letin 17(3):44-53

Tenny T (1988) Program Readability: Procedures versus Comments. IEEE Transactions on
Software Engineering (TSE) 14(9):1271-1279

Tiarks R (2011) What Maintenance Programmers Really Do: An Observational Study. In:
Proceedings of the 13th Workshop on Software Reengineering, pp 36-37

Trochim WM, Donnelly JP, Arora K (2016) Research Methods The Essential Knowledge Base,
2nd edn. Cengage Learning, 20 Channel Center Street, Boston, MA 02210, USA

Trumper J, Dollner J, Telea A (2013) Multiscale Visual Comparison of Execution Traces.
In: Proceedings of the 21st International Conference on Program Comprehension (ICPC),
IEEE, pp 53-62

Vermeulen A (2000) The Elements of Java (TM) Style. Cambridge University Press

Wohlin C (2014) Guidelines for Snowballing in Systematic Literature Studies and a Repli-
cation in Software Engineering. In: Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering (EASE), ACM, pp 1-10

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
Software Engineering. Springer

Wong E, Yang J, Tan L (2013) Autocomment: Mining Question and Answer Sites for Au-
tomatic Comment Generation. In: Proceedings of the 28th International Conference on
Automated Software Engineering (ASE), IEEE, pp 562-567

Woodfield SN, Dunsmore HE, Shen VY (1981) The Effect of Modularization and Comments on
Program Comprehension. In: Proceedings of the 5th International Conference on Software
Engineering (ICSE), IEEE, pp 215-223

Ying AT, Wright JL, Abrams S (2005) Source code that talks: An Exploration of Eclipse
Task Comments and their Implication to Repository Mining. ACM SIGSOFT Software
Engineering Notes (SEN) 30(4):1-5

32 Sebastian Nielebock et al.

A3 > A
- T
.i | /l‘ﬂ | m (/
Sebastian Nielebock is a PhD student at the Otto-von-Guericke University of
Magdeburg. He received his B.Sc. and M.Sc. degrees in Computer Systems in En-
gineering from there as well. Since October 2013 he is a member of the Chair of
Software Engineering. His research focuses on empirical and automated software

engineering, i.e., programming language analysis, automated error detection and
automated program repair.

Dariusz Krolikowski is a software developer at IBM Client Innovation Center
Germany GmbH in Magdeburg. He received his B.Sc. and M.Sc. degrees in Com-
puter Science at the Otto-von-Guericke University of Magdeburg.

Jacob Kriiger is a PhD student and associated researcher at the Databases and

Commenting Source Code: Is It Worth It For Small Programming Tasks? 33

Software Engineering group of the Otto-von-Guericke University of Magdeburg. He
received his M.Sc. degree in Business Informatics at the University of Magdeburg
in February 2016, has been working as research associate at the Harz University
of Applied Sciences Wernigerode, and visited Chalmers University of Technology |
University of Gothenburg in Sweden. His research focuses on software-product-line
engineering, with particular interests on reverse engineering, code comprehension,
costs, and human factors.

Thomas Leich is Professor for Requirements Engineering at Harz University
of Applied Sciences in Wernigerode, Germany. He is also Executive Director of
METOP GmbH, an affiliate institute to the University of Magdeburg. Since 2001
he worked for several DAX 30 companies as consultant and software architect. In
2004, he initiated FeatureIDE as a part of the FeatureC++ project at the Uni-
versity of Magdeburg. Until today he is responsible for industrial extensions and
consulting of FeatureIDE.

Frank Ortmeier is a full professor and head of the “Chair of Software Engi-
neering (CSE)” at the Otto-von-Guericke University of Magdeburg, Germany. He
received his Ph. D. degree from the University of Augsburg in 2005. After three
years employed as a Post-Doc in Augsburg, he became an associate professor for
“Computer Systems in Engineering” in Magdeburg in 2008. Since 2013 he is hold-
ing the Chair fo Software Engineering at OvGU. Currently, he is leading several
research projects, coordinating the Bachelor’ degree program “Computer Systems
in Engineering” as well as the Master’s degree program “Digital Engineering”. He

34 Sebastian Nielebock et al.

is a founding member of the university’s Center for Digital Engineering, Manage-
ment and Operations (CeDEMO). His research is driven by the idea of improving
engineering tasks with methods from computer science — with a special focus on
methods from Software Engineering, formal specification techniques, mobile assis-
tance, and robotics.

Commenting Source Code: Is It Worth It For Small Programming Tasks?

35

A Appendix

In the following, we present our 9 tasks and their solutions. To indicate the comment type,
we always use single-line marks (//) for implementation comments and multi-line marks (/**

#/) for documentation comments. Versions with no comments contained none of the lines
marked this way. The solutions were used as exemplary sketches, but we checked each solution
individually.

A.1 Apply Code (Tasks 1-3)

Task 1: Call method foo() in such a way that it returns 7.

© 00~ O U W

00~ O U W~

public class Usel {
/* %
* Sums up all values of the given Strings where

* the Strings are defined by the following numbers:
x min o> 1

x "y" _> 5

* "x" -> 10

*

*

Q@param strings a String array

* Qreturn sum of all String values

*/

public int calculateNumber (String[] strings) {

int number = 0; // sum of all String values

for (int i = 0; i < strings.length; i++) {
if (strings[i].equals("i")) {

number = number + 1; // "in =1

} else if (strings[il].equals("v")) {
number = number + 5; // “"v" =5

} else if (strings[il.equals("x")) {
number = number + 10; // "x" = 10
H

}

return number;

}

}

Listing 2: Task 1

public static void main(String[] args) {

int number = new Usel().calculateNumber (new String[I{"v", "i

System.out.println(number);

String numbers = "vii";

System.out.println(new Usel().calculateNumber (numbers.split("")));

}

niny);

Listing 3: Task 1 Solution

Task 2: Call method foo() in such a way that it returns "doremi®.

T W N =

public class Use2 {

/* %
* Returns the suffix starting at index <code >number</code>. If

* <code>bool</code> is true, the omitted prefix is appended at the end.

36 Sebastian Nielebock et al.
6 *
7 * @param stringl a String which must not be null
8 * Q@param number starting index
9 * @param bool true if the omitted prefix should be appended at the end
10 ¥ Q@return suffix; followed by the prefix if <code>bool</code> is true
11 */
12 private String foo(String stringl, int number, boolean bool) {
13
14 String string2 = "";
15
16 for (int i = number; i < stringl.length(); i++) {
17 // suffix starting at number
18 string2 = string2 + stringl.charAt(i);
19 }
20
21 if (bool) {
22 // if bool is true, then append the omitted prefix to the string
23 for (int j = 0; j < number; j++) {
24 string2 = string2 + stringl.chardt(j);
25 }
26 }
27 return string2;
28 }
29 |}
Listing 4: Task 2
1 public static void main(String[] args) {
2 System.out.println(new Use2().foo("midore", 2, true));
3 System.out.println(new Use2().foo("doremi", 0, false));
4 |}

Task 3: Change (only) the list objectList in the method bar so that the call of this method

Listing 5: Task 2 Solution

returns "Amy".

© 00~ O U W R

© 00~ O T W N

public void bar() {
List<Classl> objectList = new ArrayList<>();
objectList.add(new Classl("Steve", 25));
objectList.add(new Class1("John", 42));
objectList.add(new Classl("Claudia", 19));

Classl object = foo(objectList);

System.out.println(object.string);
}

public class Use3 {

/%%

* Contains the name and the age of a person
*/

class Classl {

/** name */
String string; // name

/k % age %/

int number; // age

37

Commenting Source Code: Is It Worth It For Small Programming Tasks?
13

14 public Classl1(String string, int number) {

15 this.string = string;

16 this.number = number;

17 }

18 }

19

20 /%%

21 * Returns the oldest person

22 *

23 * Q@param objectList list of persons; must contain at least one person
24 * Q@return the oldest person

25 */

26 public Classl foo(List<Classl> objectList) {

27 Classl object = objectList.get (0);

28

29 for (int i = 1; i < objectlList.size(); i++) {

30 // compare the age and store the oldest person
31 if (objectList.get (i).number > object.number) {
32 object = objectList.get(i);

33 ¥

34 }

35 return object;

36 }

37 |}

Listing 6: Task 3

1 | objectList.add(new Classi("Amy", 50));

Listing 7: Task 3 Solution

A.2 Bug Fixing (Tasks 4-6)

Task 4: The foo() method throws a runtime exception for the following input. Fix the error

so that the expected result [3, 8] is returned.

foo(new int[J{1, 3, 4, 5, 8, 11, 13},
new int[1{2, 3, 5, 7, 8, 9});

>> [3,8]
/* %
2 * Returns a list of numbers that are equal at the same position in 2

arrays

3 *
4 * Q@param numbersl first array
5 * @param numbers2 second Array
[§ * Q@return list of equal numbers
7 */

8 public List<Integer> foo(int[] numbersil, int[] numbers2) {

9 List<Integer> numberList = new ArrayList<>(); // result list

10 int max = numbersl.length; // number of elements to be iterated

11

12 for (int i = 0; i < max; i++) {

13 if (numbers1[i] == numbers2[il) {

14 // if the i-th values of both arrays are equal, add it to result list
15 numberList.add (numbersi[i]);

16 }

17 }

18 return numberList;

19 |}

Listing 8: Task 4

38 Sebastian Nielebock et al.

1 |int max = Math.min(arrayl.length, array2.length);

Listing 9: Task 4 Solution

Task 5: The foo() method contains an error. Fix it so that the expected results are returned:

foo("abed", "acbd")

>> 1

foo("abecd", "badc")
>> 2

foo("abcdef", "defabc")
>> 3

It can be assumed that both strings have the same length and are not null.

1 /* %

2 * Returns the number of transpositions between two strings.
3 *

4 * One transposition is defined as a single switch of two characters.
5 *

6 * @param stringl first string, mnot null

7 * Q@param string2 second string, not null

8 * @return number of transpositions between two strings.

9 */

10 | public int foo(final String stringl, final String string2) {
11 int number = 0; // store the number of different characters
12 for (int i = 0; i < stringl.length(); i++) {

13 if (stringl.charAt(i) != string2.charAt(i)) {

14 // increment number, if two characters are not equal

15 number ++;

16 }

17 }

18 return number; // return the number of transpositions

19 |}

Listing 10: Task 5

1 return number / 2;

Listing 11: Task 5 Solution

After the study was completed, we noticed that our solution handles only strings with an
even number of characters, for example, for "abc" and "cab" the code would calculate only
one transposition due to integer division. However, all participants seemed to be unaware of
this problem as none of the given answers handles this scenario. Thus, we accepted all answers
that solve the task for strings with an even number of characters.

Please notice, that this task does not use the Hamming distance, as a transposition is
defined as a single switch of two characters. Thus, we considered "abcd" and "efgh" as invalid
input, because no chars within the string are switched.

Task 6: Fix the compile-time error in foo().

1| /%

2 * Returns the suffix starting at the first occurrence of the character
ch.

3 *

4 * @param string string

5 * @param ch character to start the suffix with

6 * Qreturn suffix starting at the first occurrence of the character

7 * empty string, if the string does not contain the character

8 */

Commenting Source Code: Is It Worth It For Small Programming Tasks? 39

public String foo(String string, char ch) {
for (int i = 0; i < string.length(); i++) {
if (string.charAt(i) == ch) {
// return suffix starting at the first occurence of the character ch
return string.substring(i + 1);

Listing 12: Task 6

return "";

Listing 13: Task 6 Solution

A.3 Extend Code (Tasks 7-9)

Task 7: Extend the method foo with an int parameter, which is returned if number equals 0.
Example:

foo(new int[1{5,13,31}, 7);

© 00~ ST W N

>> 7

public class Extendl {

/* %
* Adds up all even numbers in an array.
*
* @param numbers int-array
* @return return Sum of all even numbers in the array

*/
public static int foo(int[] numbers) {
int number = 0; // save intermediate results
for (int i = 0; i < numbers.length; i++) {
if (numbers[i]l % 2 == 0) {
// the i-th number is added to the result if it can be divided by 2
number = number + numbers[i];
H
}
return number;
¥
public int foo2(int[] numbers, int other) {
int number = 0;
for (int i = 0; i < numbers.length; i++) {
if (numbers([i] % 2 == 0) {
number = number + numbers[i];
3
}
return number == 0 ? other : number;
H

public void main() {
System.out.println(foo(new int[I{1, -2, 3, 4}));
System.out.println(foo(new int[J{1, 5}));

}

public static void main(Stringl[] args) {
new Extendl().main();

}

}

40 Sebastian Nielebock et al.

Listing 14: Task 7

1 |public static int foo(int[] numbers, int fallback) {

2 int result = 0;

3

4 for (int i = 0; i < numbers.length; i++) {

5 if (numbers[i] % 2 == 0) {

6 result = result + numbers[i];

7 }

8 if (result == 0)

9 return fallback;

10 return result;

11 }

12

13 public void main() {

14 System.out.println(foo_solution(new int[]1{1, -2, 3, 4}, 99));
15 System.out.println(foo_solution(new int[J{1, 5}, 99));
16 }

17 | >

Listing 15: Task 7 Solution

Task 8: Extend method foo() to ignore null Strings for the output.

String[] input = {"Tic", null, "Tac", "Toe"};
join(input, ",");

>> Tic,Tac,Toe

1 public class Extend2 {

2

3 /* %

4 * Concatenates all entries of a String-array to a single String,

5 * separeted by the defined symbol.

6 *

7 * Q@param strings a String-array

8 * Q@param ch separating smybol

9 * @return concatenation of Array-entries

10 * Osee java.lang.StringBuilder

11 */

12 public static String foo(final String[] strings, char ch) {

13 // Resulting String is build with a StringBuilder

14 final StringBuilder builder = new StringBuilder ();

15 for (int i = 0; i < strings.length; i++) {

16 if (i > 0) {

17 // the separating smybol is included before each String - excpet
for the first one

18 builder.append(ch);

19 }

20 builder.append(strings[il); // i-th String is added to the output

21 }

22 return builder.toString();

23 }

24

25 public static void main(Stringl[] args)

26 String outputl = foo(new String[]{"Tic", "Tac", "Toe"}, ?,’);

27

28 System.out.println(outputl);

29

30 String[] input2 = {"Tic", null, "Tac", "Toe"};

31 String output2 = foo(input2, ’,’);

32 System.out.println(output2);

33 String output3 = foo(input2, ’,’);

Commenting Source Code: Is It Worth It For Small Programming Tasks? 41

34 System.out.println(output3);
35 }
36 |}

Listing 16: Task 8

public static String foo(final String[] strings, char separator) {
final StringBuilder builder = new StringBuilder ();
for (int i = 0; i < strings.length; i++) {
if (strings[i] == null)
continue;
if (i > 0) {
builder.append(separator);
¥
builder.append(strings[il);
¥
return builder.toString();
}

© 00~ ST W N

= e
= O

Listing 17: Task 8 Solution

Task 9: Extend Class2 with a method bar() of the return type Integer that reverses the
operation of foo().

1 | public class Extend3 {

2

3 AL

4 * data structure to store a history of numbers

5 */

6 class Class2 {

7 // save numbers in a list

8 LinkedList <Integer> numberList = new LinkedList<>();

9 // pointer to current position in the list

10 int numberl = 0;

11

12 VAT

13 * Insert a number at the current position to the history,

14 * potentially following numbers are removed.

15 *

16 # @param number2 number to that shall be added

17 */

18 public void qux(Integer number2) {

19 while (numberl < numberList.size()) {

20 // all numbers after the pointer are removed

21 numberList.removeLast () ;

22 >

23 // the new number is added at the end and the pointer increased

24 numberList.add (number?2);

25 numberl++;

26 }

27

28 /*x

29 * Removes the last number in the history and returns the previous
number.

30 # If there is no number in the history, return null.

31 *

32 * Qreturn the previous number of the history

33 */

34 public Integer foo() {

35 if (numberl > 0) {

36 // pointer is not at the beginning of the list - decrease pointer by

37 // 1 and return current value

38 numberl --;

39 return numberList.get (numberl);

40 } else {

Sebastian Nielebock et al.

© 00~ O T W N

return null; // pointer is at the beginning - return null
}
1
}
}

Listing 18: Task 9

public Integer barMy() {
if (numberl < numberList.size()) {
numberl ++;
return numberList.get (numberl);
} else {
return null;
H
}

public Integer bar() {

if (numberl <= 0) {

numberl ++;

return numberList.get (numberl);

} else {

return null;

}

H
}

Listing 19: Task 9 Solution

	Introduction
	Commenting Source Code
	Design of the Online Survey
	Results of the Online Study
	Threats to Validity
	Conclusions
	Appendix

