
Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{stephens,jmg,salls,dutcher,fish,jacopo,yans,chris,vigna}@cs.ucsb.edu

Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named
author (for reproduction of an entire paper only), and the author’s employer
if the paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

causes the branch to be taken and another that does not), they
succumb to “path explosion”, greatly limiting their scalability.

Because of these drawbacks, most bug-triggering input
produced by modern automated analysis systems represents
“shallow” bugs in the software. In the case of fuzzers, this
is because fuzzers randomly generate new inputs to an
application and they likely fail to successfully pass through
input-processing code. Concolic execution engines, on the
other hand, are often able to recreate properly formatted input
to pass through input processing code, but tend to succumb to
path explosion, limiting the “depth” of code that they can an-
alyze. Thus, flaws that lie in the deeper logic of an application
tend to be missed by these tools, and are usually discovered
through manual analysis by human experts [3], [9], [13].

The difference between the types of bugs that can be
found by fuzzing and concolic execution can also be viewed
in terms of the way in which an application processes user
input. We propose two different categories of user input:
general input, which has a wide range of valid values (e.g.,
the name of a user) and specific input, which has a limited set
of valid values (e.g., the hash of the aforementioned name).
An application’s checks for particular values of specific input
effectively split an application into compartments, separated
by such checks. Fuzzing is proficient at exploring possible
values of general input, within a compartment, but struggles
to identify the precise values needed to satisfy checks on
specific input and drive execution flow between compartments.
On the other hand, selective concolic execution is proficient
at determining the values that such specific checks require
and, if the path explosion problem were solved, can push
execution between compartments.

For example, consider an application that processes
commands from the user: the application reads a command
name from the user, compares it against a list of commands,
and passes user-supplied parameters to the appropriate com-
mand handler. In this case, the complex check would be the
comparison of the command name: a fuzzer randomly mutating
input would have a very small chance of sending the correct
input. On the other hand, a concolic execution engine would
be well-suited for recovering the correct command name, but
might suffer a path explosion in the parameter-processing
code. Once the correct command name is determined, a fuzzer
is better-suited for exploring the different command parameters
that could be sent, without encountering a path explosion.

We realized that this observation can be used to combine
multiple analysis techniques, leveraging their strengths while
mitigating their weaknesses. For example, a fuzzer can be
used to explore the initial compartment of an application
and, when it is unable to go further, a concolic execution
engine can be leveraged to guide it to the next compartment.
Once there, the fuzzer can take over again, exploring the
possible inputs that can be provided to the new compartment.
When the fuzzer stops making progress again, the concolic
execution engine can resume and direct the analysis to the
next compartment, and so on. By doing this repeatedly,
execution is driven deeper and deeper into the program,
limiting the path explosion inherent to concolic execution and
ameliorating the incompleteness of dynamic analysis.

Guided by this intuition, we created a system, called

Driller, that is a novel vulnerability excavation system
combining a genetic input-mutating fuzzer with a selective
concolic execution engine to identify deep bugs in binaries.
Combining these two techniques allows Driller to function in
a scalable way and bypass the requirement of input test cases.
In this paper, we will describe the design and implementation
of Driller and evaluate its performance on 126 applications
released as part of the qualifying event of the DARPA Cyber
Grand Challenge.

Driller is not the first work to combine different types
of analyses. However, existing techniques either support very
specific types of vulnerabilities (while Driller currently detects
any vulnerability that can lead to a program crash) [21],
[25], do not take full advantage of the capabilities offered
by dynamic analysis (and, specifically, fuzzing) [19], or are
affected by the path explosion problem [4], [8], [10], [20].
We show that Driller identifies more vulnerabilities in these
binaries than can be recovered separately by either fuzzing
or concolic execution, and demonstrate the efficacy of our
approach by discovering the same number of vulnerabilities,
within the same amount of time, on the same dataset, as the
winning team of the Cyber Grand Challenge qualifying event.
Furthermore, we perform additional evaluations to show that
this would not be possible without Driller’s contribution (i.e.,
using traditional fuzzing or symbolic execution approaches).

In summary, this paper makes the following contributions:

• We propose a new method to improve the effectiveness
of fuzzing by leveraging selective concolic execution
to reach deeper program code, while improving the
scalability of concolic execution by using fuzzing to
alleviate path explosion.

• We designed and implemented a tool, Driller, to
demonstrate this approach.

• We demonstrate the effectiveness of Driller by identifying
the same number of vulnerabilities, on the same dataset,
as the winning team of the Cyber Grand Challenge
qualifying event.

II. RELATED WORK

Driller is a guided whitebox fuzzer which builds on top of
state-of-the-art fuzzing techniques, adding concolic execution
to achieve effective vulnerability excavation. As some other
existing vulnerability excavation tools also combine multiple
techniques, we will use this section to distinguish Driller
from other solutions which draw on related techniques.

A. Guided Fuzzing

Fuzzing was originally introduced as one of several tools
to test UNIX utilities [23]. Since then, it has been extensively
used for the black-box security testing of applications. How-
ever, fuzzing suffers from a lack of guidance – new inputs are
generated based on random mutations of prior inputs, with no
control over which paths in the application should be targeted.

The concept of guided fuzzing arose to better direct
fuzzers toward specific classes of vulnerabilities. For example,
many studies have attempted to improve fuzzing by selectively
choosing optimal test cases, honing in on interesting regions
of code contained in the target binary [21], [25]. Specifically,

2

Dowser [21] uses static analysis to first identify regions of
code that are likely to lead to a vulnerability involving a buffer
overflow. To analyze this code, Dowser applies taint-tracking
to available test cases to determine which input bytes are
processed by these code regions and symbolically explores
the region of code with only these bytes being symbolic.
Unfortunately, Dowser has two drawbacks: it requires test
cases to reach the region of code containing the memory
corruption vulnerability, and it only supports buffer overflow
vulnerabilities. Unlike Dowser, Driller supports arbitrary
vulnerability specifications (though the current implementation
focuses on vulnerabilities that lead to a crash) and does not
require input test cases. Additionally, Dowser still suffers
from the path explosion problem of symbolic execution, while
Driller mitigates this problem through its use of fuzzing.

Similar to Dowser, BuzzFuzz [17] applies taint-tracking
to sample input test cases to discover which input bytes are
processed by ’attack-points’ defined by the auditor, most often
system call arguments and library code. Unlike BuzzFuzz,
Driller does not rely on input test cases that reach vulnerable
code, nor does it rely on auditor defined ’attack-points’.

In another attempt to improve the state of fuzzing,
Flayer [15] allows an auditor to skip complex checks in the
target application at-will. This allows the auditor to fuzz logic
deeper within the application without crafting inputs which
conform to the format required by the target, at the cost of
time spent investigating the validity of crashing inputs found.
Similarly, Taintscope uses a checksum detection algorithm
to remove checksum code from applications, effectively
“patching out” branch predicates which are difficult to satisfy
with a mutational approach [30]. This enables the fuzzer to
handle specific classes of difficult constraints. Both these
approaches, however, either require a substantial amount of
human guidance in Flayer’s case, or manual effort to determine
false positives during crash triaging. Driller does not modify
any code of the target application, meaning crashes discovered
do not require an in-depth investigation, additionally Driller
does not require human intervention, as it attempts to discover
well-formed inputs using its concolic execution backend.

Another approach is Hybrid Fuzz Testing, in which limited
symbolic exploration is utilized to find “frontier nodes” [26].
Fuzzing is then employed to execute the program with random
inputs, which are preconstrained to follow the paths leading
to a frontier node. This method is useful for ensuring that
the fuzzed inputs take different paths early in the execution
of the binary, but it does not handle complex checks, deeper
in the program, which separate compartments. Additionally,
the path explosion problem effectively prevents the symbolic
exploration from solving more than just the shallow checks
in the binary.

B. Whitebox Fuzzing

Other systems attempt to blend fuzzing with symbolic
execution to gain maximal code coverage [6], [7], [19], [20].
These approaches tend to augment fuzzing by symbolically
executing input produced by a fuzzing engine, collecting
symbolic constraints placed on that input, and negating these
constraints to generate inputs that will take other paths.
However, these tools lack Driller’s key insight, that symbolic

execution is best used to recover input for driving code
execution between application compartments. Without this
insight, the unique capabilities of symbolic execution are
wasted on creating divergent paths within compartments.
These tools are, in essence, symbolic execution engines acting
in a serialized manner, one path at a time, and as such, they
are deeply affected by the path explosion problem.

While Driller is similar in a number of implementation
details, we propose that we can offload the majority of unique
path discovery to an instrumented fuzzing engine. We limit
our costly symbolic execution invocations to satisfy conditions
that will allow us to enter additional compartments for fuzzing.
Since we only use symbolic execution for generating the basic
block transitions that the fuzzer has not been able to generate
itself, the symbolic execution engine handles a manageable
number of inputs. Conversely, the aforementioned tools
repetitively negate constraints using concolic execution, slowly
analyzing an exponentially increasing number of transitions,
most of which can be analyzed more efficiently by a fuzzer.

C. Concolic Execution

With the continuing increase of computing power in
recent years, concolic execution (also known as dynamic
symbolic execution) has risen in popularity. Introduced with
EXE [5], refined with KLEE [4], and applied to binary code
with Mayhem [8] and S2E [10], concolic execution engines
interpret an application, model user input using symbolic
variables, track constraints introduced by conditional jumps,
and use constraint solvers to create inputs to drive applications
down specific paths. While these systems are powerful, they
suffer from a fundamental problem: if a conditional branch
depends on symbolic values, it is often possible to satisfy
both the taken and non-taken condition. Thus, the state has to
fork and both paths must be explored. This quickly leads to
the well-known path explosion problem, which is the primary
inhibitor of concolic execution techniques.

Various approaches have been attempted to mitigate the
path explosion problem. Veritesting [1] proposed an advanced
path merging technique to reduce the number of paths being
executed, Firmalice [29] performs extensive static analysis
and limits symbolic execution to small slices of code, and
under-constrained symbolic execution exchanges precision for
scalability [16], [27]. However, these techniques either fail
to mitigate the path explosion problem (Veritesting delays
the explosion, but such explosion still eventually occurs) or
produce inputs that are not directly actionable (for example,
the slicing done by Firmalice produces inputs that satisfy the
constraints of a particular slice, but no input is provided to
reach the code in the first place).

Driller attempts to mitigate this by offloading most of the
path exploration task to its fuzzing engine, using concolic
execution only to satisfy complex checks in the application
that guard the transition between compartments.

III. DRILLER OVERVIEW

A core intuition behind the design of Driller is that
applications process two different classes of user input:
general input, representing a wide range of values that can
be valid, and specific input, representing input that must

3

take on one of a select few possible values. Conceptually,
an application’s checks on the latter type of input split the
application into compartments. Execution flow moves between
compartments through checks against specific input, while,
within a compartment, the application processes general input.
This concept is explored in more depth in Section VI-G in
the context of an actual binary in our experimental dataset.

Driller functions by combining the speed of fuzzing with
the input reasoning ability of concolic execution. This allows
Driller to quickly explore portions of binaries that do not
impose complex requirements on user input while also being
able to handle, without the scalability issues of pure concolic
execution, complex checks on specific input. In this paper, we
define “complex” checks as those checks that are too specific
to be satisfied by input from an input-mutating fuzzer.

Driller is composed of multiple components. Here, we
will summarize these components and provide a high-level
example of Driller’s operation. In the rest of the paper, we
will describe these components in depth.

Input test cases. Driller can operate without input test cases.
However, the presence of such test cases can speed up
the initial fuzzing step by pre-guiding the fuzzer toward
certain compartments.

Fuzzing. When Driller is invoked, it begins by launching
its fuzzing engine. The fuzzing engine explores the
first compartment of the application until it reaches the
first complex check on specific input. At this point, the
fuzzing engine gets “stuck” and is unable to identify
inputs to search new paths in the program.

Concolic execution. When the fuzzing engine gets stuck,
Driller invokes its selective concolic execution
component. This component analyzes the application,
pre-constraining the user input with the unique inputs
discovered by the prior fuzzing step to prevent a path
explosion. After tracing the inputs discovered by the
fuzzer, the concolic execution component utilizes its
constraint-solving engine to identify inputs that would
force execution down previously unexplored paths. If
the fuzzing engine covered the previous compartments
before getting stuck, these paths represent execution
flows into new compartments.

Repeat. Once the concolic execution component identifies
new inputs, they are passed back to the fuzzing
component, which continues mutation on these inputs to
fuzz the new compartments. Driller continues to cycle
between fuzzing and concolic execution until a crashing
input is discovered for the application.

A. Example

To elucidate the concept behind Driller, we provide an
example in Listing 1. In this example, the application parses a
configuration file, containing a magic number, received over an
input stream. If the received data contains syntax errors or an
incorrect magic number, the program exits. Otherwise, control
flow switches based on input between a number of new com-
partments, some of which contain memory corruption flaws.

Driller begins its operation by invoking its fuzzing engine
and fuzzing the first compartment of the application. These
fuzzed nodes are shown shaded in a control-flow graph of

the program in Figure 1. This fuzzing step explores the first
compartment and gets stuck on the first complex check – the
comparison with the magic number. Then, Driller executes
the concolic execution engine to identify inputs that will drive
execution past the check, into other program compartments.
The extra transitions discovered by the concolic execution
component, for this example, are shown in Figure 2.

After this, Driller enters its fuzzing stage again, fuzzing
the second compartment (the initialization code and the check
against keys in the configuration file). The coverage of the
second fuzzing stage is shown in Figure 3. As shown, the
fuzzer cannot find any arms of the key switch besides the
default. When this second fuzzing invocation gets stuck,
Driller leverages its concolic execution engine to discover
the “crashstring” and “set_option” inputs, shown in
Figure 4. The former leads directly to the bug in the binary.

It is important to note that while neither symbolic execution
nor fuzzing by themselves could find this bug, Driller can.
There are several areas in this example where Driller’s hybrid
approach is needed. The parsing routines and initialization
code have a great amount of complicated control flow rea-
soning about highly stateful data, which would lead to path
explosion, slowing down symbolic execution to the point
of uselessness. Additionally, and as noted before, the magic
number check foils traditional fuzzing approaches by requiring
highly specific input, too small to be reasonably found within
its search space. Other common programming techniques that
hinder fuzzing approaches include the use of hash functions to
validate input. For this reason, a composition of concolic exe-
cution and fuzzing has the potential of achieving better results.

1 i n t main (void) {
2 c o n f i g t * c o n f i g = r e a d c o n f i g () ;
3 i f (c o n f i g == NULL) {
4 p u t s (” C o n f i g u r a t i o n s y n t a x e r r o r ”) ;
5 re turn 1 ;
6 }
7 i f (c o n f i g−>magic != MAGIC NUMBER) {
8 p u t s (”Bad magic number ”) ;
9 re turn 2 ;

10 }
11 i n i t i a l i z e (c o n f i g) ;
12
13 char * d i r e c t i v e = c o n f i g−>d i r e c t i v e s [0] ;
14 i f (! s t r cm p (d i r e c t i v e , ” c r a s h s t r i n g ”)) {
15 program bug () ;
16 }
17 e l s e i f (! s t r cm p (d i r e c t i v e , ” s e t o p t i o n ”)) {
18 s e t o p t i o n (c o n f i g−>d i r e c t i v e s [1]) ;
19 }
20 e l s e {
21 d e f a u l t () ;
22 }
23
24 re turn 0 ;
25 }

Listing 1. An example requiring fuzzing and concolic execution to
work together.

IV. FUZZING

Fuzzing is a technique that executes an application with a
wide set of inputs, checking if these inputs cause the applica-
tion to crash. To retain speed of execution, fuzzers are mini-
mally invasive – they perform minimal instrumentation on the
underlying application and mostly monitor it from the outside.

4

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Fig. 1. The nodes initially
found by the fuzzer.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Fig. 2. The nodes found by
the first invocation of concolic
execution.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Fig. 3. The nodes found by
the fuzzer, supplemented with
the result of the first Driller
run.

read config

check magicsyntax error

initializebad magic

defaultothersbug

exit

Fig. 4. The nodes found
by the second invocation of
concolic execution.

Recent years have seen many improvements to fuzzing
engines. In this section, we will detail improvements that are
relevant to Driller’s performance.

To implement Driller, we leveraged a popular off-the-shelf
fuzzer, American Fuzzy Lop (AFL) [31]. Our improvements
mostly deal with integrating the fuzzer with our concolic
execution engine. No changes to the logic of AFL were made.
AFL relies on instrumentation to make informed decisions on
which paths are interesting. This instrumentation can be either
introduced at compile-time or via a modified QEMU [2], we
opted for a QEMU-backend to remove reliance on source
code availability. While we discuss important features of
Driller’s fuzzer-component, AFL, in this section, we do not
claim credit for their invention or implementation.

A. Fuzzer Features

A modern fuzzer implements many features to better
identify crashing inputs. In this section, we will list and
describe the most important AFL features, mentioning how
they are used by Driller.

Genetic fuzzing. AFL carries out input generation through a
genetic algorithm, mutating inputs according to genetics-
inspired rules (transcription, insertion, etc.) and ranking
them by a fitness function. For AFL, the fitness function
is based on unique code coverage – that is, triggering an
execution path that is different than the paths triggered
by other inputs.

State transition tracking. AFL tracks the union of control
flow transitions that it has seen from its inputs, as tuples
of the source and destination basic blocks. Inputs are pri-
oritized for “breeding” in the genetic algorithm based on
their discovery of new control flow transitions, meaning
that inputs that cause the application to execute in a dif-
ferent way get priority in the generation of future inputs.

Loop “bucketization”. Handling loops is a complicated
problem for fuzzing engines and concolic execution
engines alike. To help reduce the size of the path space
for loops, the following heuristic is performed. When
AFL detects that a path contains iterations of a loop, a
secondary calculation is triggered to determine whether
that path should be eligible for breeding. AFL determines
the number of loop iterations that were executed and

compares it against previous inputs that caused a path to
go through the same loop. These paths are all placed into
“buckets” by the logarithm of their loop iteration count
(i.e., 1, 2, 4, 8, and so on). One path from each bucket
is considered for breeding in the genetic algorithm. This
way, only log(N) paths must be considered for each
loop as opposed to the naive approach of N paths.

Derandomization. Program randomization interferes with
a genetic fuzzer’s evaluation of inputs – an input that
produces interesting paths under a given random seed
might not do so under another. We pre-set AFL’s QEMU
backend to a specific random seed to ensure consistent
execution. Later, when a crashing input is discovered,
we use our concolic execution engine to recover any
“challenge-response” behavior or vulnerabilities that
rely on leaking randomness. For example, a “challenge-
response” process in a binary echoes random data to
the user and expects the same data echoed back to it.
Without removing randomization, the fuzzing component
would likely fail this check every time and explore very
few paths. If the randomness is instead constant, the
program accepts the same input each time, leaving the
fuzzer (or the concolic execution component) free to
find this one value and subsequently explore further.
After a crash is found, the randomness can instead be
modeled symbolically, as described in section V-D4, and
the crashing input can be patched accordingly.

These features allow AFL to rapidly discover unique
paths through an application, performing the brunt of the path
discovery work within a given compartment of the application.
However, the limitations of fuzzing are well-known.

B. Fuzzer Limitations

Because fuzzers randomly mutate input, and genetic
fuzzers, in turn, mutate input that has, in the past, generated
unique paths through a binary, they are able to quickly discover
different paths that process “general” input (i.e., input that has
many different values that can trigger meaningful program
behavior). However, the generation of “specific” input to
pass complex checks in the application (i.e., checks that
require inputs with one of very few specific values) is very
challenging for fuzzers.

Consider the example in Listing 2.

5

1 i n t main (void)
2 {
3 i n t x ;
4 r e a d (0 , &x , s i z e o f (x)) ;
5
6 i f (x == 0x0123ABCD)
7 v u l n e r a b l e () ;
8 }

Listing 2. A difficult program to fuzz.

This application reads a value from the user and compares
it against a specific value. If the correct value is provided, the
application will crash. However, due to the nature of fuzzing,
it is extremely unlikely that a fuzzer will ever satisfy the
predicate. For a non-instrumented fuzzer (i.e., one that chooses
random values for the input), the likelihood that the fuzzer
will discover the bug is the infinitesimal 1 out of 232. For an
instrumented fuzzer, the control flow layout of this binary will
result in a single path being discovered. Without the ability to
prioritize new paths (as there are none), an instrumented fuzzer
will be reduced to applying random mutations on the existing
paths which is, in essence, the same as the non-instrumented
case, with the same infinitesimally small chance of success.

C. Transition to Concolic Execution

Driller aims to complement the fundamental weakness
of fuzzing, determining specific user input required to pass
complex checks, by leveraging the strength of concolic
execution. When the fuzzing component has gone through
a predetermined amount (proportional to the input length)
of mutations without identifying new state transitions, we
consider it “stuck”. Driller then retrieves the inputs that the
fuzzer has deemed “interesting” in the current compartment
and invokes the concolic execution engine on them.

The fuzzer identifies inputs as interesting if one of two
conditions holds:

1) The path that the input causes the application to take
was the first to trigger some state transition.

2) The path that the input causes the application to take
was the first to be placed into a unique “loop bucket”.

These conditions keep the number of inputs that are
handed to the concolic execution component down to a
reasonable number, while retaining a high chance of passing
along inputs that the concolic execution can mutate to reach
the next compartment in the application.

V. SELECTIVE CONCOLIC EXECUTION

When Driller determines that the fuzzer is unable to find
additional state transitions, the concolic execution engine is in-
voked. The insight behind Driller’s use of concolic execution is
as follows: one of the main causes of fuzzers failing to find new
state transitions in a program is the inability of fuzzers to gen-
erate specific input to satisfy complex checks in the code. The
concolic execution engine is used to leverage a symbolic solver
to mutate existing inputs that reach but fail to satisfy complex
checks into new inputs that reach and satisfy such checks.

When Driller invokes the concolic execution engine,
it passes all of the “interesting” inputs (as defined in
Section IV-C) that were identified by the fuzzing engine.

Each input is traced, symbolically, to identify state transitions
that the fuzzing engine was unable to satisfy. When such a
transition is identified, the concolic execution engine produces
input that would drive execution through this state transition.

After the concolic execution engine finishes processing
the provided inputs, its results are fed back into the fuzzing
engine’s queue and control is passed back to the fuzzing
engine, so that it can quickly explore the newly found
compartments of the application.

The remainder of this section will describe Driller’s
implementation of concolic execution and the specific
adaptations that we made for Driller’s problem domain.

A. Concolic Execution

We leveraged angr [29], a recently open-sourced symbolic
execution engine, for Driller’s concolic execution engine. The
engine is based on the model popularized and refined by
Mayhem and S2E [8], [10]. First the engine translates binary
code into Valgrind’s VEX [24] intermediate representation,
which is interpreted to determine the effects of program
code on a symbolic state. This symbolic state uses symbolic
variables to represent input that can come from the user
or other data that is not constant, such as data from the
environment. A symbolic variable is a variable (such as X)
that can yield a number of possible concrete solutions (such as
the number 5). Other values, such as constants hardcoded in
the program, are modeled as concrete values. As the execution
progresses, symbolic constraints are added to these variables.
A constraint is a limiting statement on the potential solutions
of the symbolic value (for example, X < 100). A concrete
solution is any value of X that will satisfy these constraints.

The analysis engine tracks all concrete and symbolic
values in memory and registers (the aforementioned symbolic
state) throughout execution. At any point in the program that
the engine reaches, a constraint resolution can be performed to
determine a possible input that satisfies the constraints on all
symbolic variables in the state. Such an input, when passed to
a normal execution of the application, would drive the applica-
tion to that point. The advantage of concolic execution is that
it can explore and find inputs for any path that the constraint
solver can satisfy. This makes it useful for identifying solutions
to complex comparisons (up to and including certain hash
functions) that a fuzzer would be unlikely to ever brute force.

Driller’s symbolic memory model can store both concrete
and symbolic values. It uses an index-based memory model in
which read addresses may be symbolic, but write address are
always concretized. This approach, popularized by Mayhem,
is an important optimization to keep the analysis feasible:
if both read and write addresses were symbolic, a repeated
read and write using the same symbolic index would result
in a quadratic increase in symbolic constraints or, depending
on the implementation details of the symbolic execution
engine, the complexity of the stored symbolic expressions.
Thus, symbolic write addresses are always concretized to a
single valid solution. Under certain conditions, as proposed
by literature in the field, symbolic values are concretized to
a single potential solution [8].

The symbolic memory optimizations increase the
scalability of the concolic execution engine, but can result in

6

an incomplete state space, where fewer solutions are possible.
Unfortunately, this is a trade-off that must be made to make
analysis of real-world binaries realistic.

B. Example

Concolic execution is good at solving different problems
than fuzzing. Recall the example demonstrating the drawback
of fuzzing, from Section IV-B, reproduced in Listing 3..
Because of the exactness of the input required to pass the check
guarding the call to the vulnerable function, fuzzing is
unable to explore that piece of code in a reasonable time frame.

1 i n t main (void)
2 {
3 i n t x ;
4 r e a d (0 , &x , s i z e o f (x)) ;
5
6 i f (x == 0x0123ABCD)
7 v u l n e r a b l e () ;
8 }

Listing 3. A program that yields to concolic execution.

However, a concolic execution engine will be able to easily
satisfy this check and trigger the vulnerable function.
For this example, concolic execution only needs to explore a
small number of paths to find one which reaches the bug in
this example, but for bigger binaries and real-world examples,
there will be far too many paths to explore in the same manner.

C. Limitations

The traditional approach to concolic execution involves
beginning concolic execution from the beginning of a program
and exploring the path state with the symbolic execution
engine to find as many bugs as possible. However, this
approach suffers from two major limitations.

First, concolic execution is slow. This is caused by the
need to interpret application code (as opposed to natively
executing it, as with a fuzzer) and by the overhead involved
in the constraint solving step. Specifically, the latter operation
involves the solution of an NP-complete problem, making the
generation of potential inputs (and the determination of which
conditional jumps are feasible) time-consuming.

Worse, symbolic execution suffers from the state explosion
problem. The number of paths grows exponentially as the
concolic execution engine explores the program, and it quickly
becomes infeasible to explore more than a tiny fraction of the
paths. Consider the example in Listing 4. In this program, the
vulnerable() is triggered when the user enters exactly
25 B characters, but this is a condition difficult to express in
a symbolic execution framework. Symbolic execution of this
program will cause a huge state explosion as the simulated
CPU steps down the recursive calls into the check()
function. Each execution of the ternary conditional comparing
a character to the literal B splits every simulated state into
two, eventually resulting in 2100 possible states, which is an
infeasible amount to process.

A genetic fuzzer that selects inputs based on state
transitions, on the other hand, does not reason about the
whole state-space of a program, but only on the state
transitions triggered by inputs. That is, it will focus chiefly

on the number of times, for example, the check on line 5
succeeds. That is, regardless of where the B characters are in
the input, states will be judged based on the number of them
in the input, avoiding the path explosion problem.

While progress has been made toward reducing this
problem with intelligent state merging [1], the general
problem remains.

1 i n t check (char *x , i n t d e p t h) {
2 i f (d e p t h >= 100) {
3 re turn 0 ;
4 } e l s e {
5 i n t c o u n t = (* x == ’B ’) ? 1 : 0 ;
6 c o u n t += check (x +1 , d e p t h +1) ;
7 re turn c o u n t ;
8 }
9 }

10
11 i n t main (void) {
12 char x [1 0 0] ;
13 r e a d (0 , x , 100) ;
14
15 i f (check (x , 0) == 25)
16 v u l n e r a b l e () ;
17 }

Listing 4. A program that causes a path explosion under concolic
execution.

D. Concolic Execution in Driller

In most cases, fuzzing can adequately explore a large
portion of paths on its own, simply by finding them with
random bit flips and other mutation strategies. By utilizing
native execution, it will outperform concolic execution in most
cases where it can randomly trigger the paths. Thus, most
of the work is offloaded from the concolic execution engine
to the fuzzer, which will find many paths quickly, letting the
concolic engine just work on solving the harder constraints.

When fuzzing is unable to discover inputs that result in new
execution paths, the concolic execution engine is invoked. It
traces the paths discovered by the fuzzing, identifies inputs that
diverge into new program components, and performs limited
symbolic exploration. Additionally, when a crashing input is
found by the fuzzing component, the concolic execution engine
“re-randomizes” it to recover the parts of a crashing input that
are dependent on randomness and other environmental factors.

1) Pre-constrained Tracing: Driller uses concolic execu-
tion to trace the interesting paths from the fuzzer and generate
new inputs. A key factor in the effectiveness of this approach
is that it allows Driller to avoid the path explosion inherent in
concolic exploration, because only the path representing the
application’s processing of that input is analyzed.

When traces are passed from the fuzzer to the symbolic
execution, the goal is to discover new transitions that fuzzing
had not previously found. Driller’s concolic execution engine
traces the input, following the same path that was taken by
the fuzzer. When Driller comes upon a conditional control
flow transfer, it checks if inverting that condition would result
in the discovery of a new state transition. If it will, Driller
produces an example input that will drive execution through
the new state transition instead of the original control flow.
By doing this Driller’s concolic execution engine guides the
fuzzing engine to new compartments of the application. After

7

producing the input, Driller continues following the matching
path to find additional new state transitions.

2) Input Preconstraining: Driller uses preconstraining to
ensure that the results of the concolic execution engine are
identical to those in the native execution while maintaining
the ability to discover new state transitions. In preconstrained
execution, each byte of input is constrained to match
each actual byte that was output by the fuzzer, e.g.,
/dev/stdin[0] == ’A’. When new possible basic
block transitions are discovered, the preconstraining is briefly
removed, allowing Driller to solve for an input that would
deviate into that state transition. Preconstraining is necessary
to generate identical traces in the symbolic execution engine
and make the limited concolic exploration feasible.

To demonstrate how input preconstraining works in
Driller, we use the example in Listing 5, which is similar to
the example from Section V-C with the addition that, to reach
the vulnerable function, we must provide a magic number
(0x42d614f8) at line 18. After fuzzing the input, Driller
eventually recognizes that it is not discovering any new state
transitions, since the fuzzer alone cannot guess the correct
value. When concolic execution is invoked to trace an input,
Driller first constrains all of the bytes in the symbolic input to
match those of the traced input. As the program is symbolically
executed, there is only one possibility for each branch, so
exactly one path is followed. This prevents the path explosion
that was described in Section V-C. When execution reaches
line 18, however, Driller recognizes that there is an alternate
state transition that has never been taken during fuzzing.
Driller then removes the preconstraints that were added at the
beginning of the execution not including the predicates placed
by symbolically executing the program with the traced input.
The bytes in the character array x are partially constrained
by the path, and the value of magic is constrained by
the equality check if (magic == 0x42d614f8). The
concolic execution engine thus creates an input that contains
25 instances of B and a magic value of 0x42d614f8. This
passes the check in line 18 and reaches the vulnerable function.

1 i n t check (char *x , i n t d e p t h) {
2 i f (d e p t h >= 100) {
3 re turn 0 ;
4 } e l s e {
5 i n t c o u n t = (* x == ’B ’) ? 1 : 0 ;
6 c o u n t += check (x +1 , d e p t h +1) ;
7 re turn c o u n t ;
8 }
9 }

10
11 i n t main (void) {
12 char x [1 0 0] ;
13 i n t magic ;
14 r e a d (0 , x , 100) ;
15 r e a d (0 , &magic , 4) ;
16
17 i f (check (x , 0) == 25)
18 i f (magic == 0 x42d614f8)
19 v u l n e r a b l e () ;
20 }

Listing 5. An application showcasing the need for pre-constraining
of symbolic input.

3) Limited Symbolic Exploration: In an attempt to reduce
the number of expensive concolic engine invocations we also
introduce a symbolic exploration stub to discover more state

transitions lying directly after a newly discovered state transi-
tion. This symbolic exploration stub explores the surrounding
area of the state transition until a configurable number of basic
blocks has been traversed by the explorer. Once this number
of blocks has been discovered, Driller concretizes inputs for
all paths discovered by the explorer. We reason that doing
this prevents the fuzzer from getting “stuck” quickly after
being provided with a Driller-generated input. In a number
of cases, Driller generates a new input that gets only partway
through a multi-part complex check and must immediately be
retraced to allow the fuzzer to proceed deeper into the binary.
The symbolic exploration stub is a small optimization which
allows Driller to find further state transitions, before they are
requested, without having to retrace its steps.

4) Re-randomization: Random values introduced during
a program run can disrupt fuzzing attempts as described
earlier. Listing 6 displays a small program which challenges
the user to reflect back a random input. This makes fuzzing
unstable because we can never know the concrete value of
challenge without monitoring the program output.

1 i n t main (void) {
2 i n t c h a l l e n g e ;
3 i n t r e s p o n s e ;
4
5 c h a l l e n g e = random () ;
6
7 w r i t e (1 , &c h a l l e n g e , s i z e o f (c h a l l e n g e)) ;
8 r e a d (0 , &r e s p o n s e , s i z e o f (r e s p o n s e)) ;
9 i f (c h a l l e n g e == r e s p o n s e)

10 a b o r t () ;
11
12 }

Listing 6. A program which requires re-introducing randomness.

Once a vulnerability is discovered, we use symbolic execu-
tion to trace crashing inputs and recover input bytes that need
to satisfy dynamic checks posed by the target binary (such
as the challenge-response in the example of Listing 6). By
inspecting the symbolic state at crash time and finding the rela-
tionships between the application’s output and the crashing in-
put, Driller can determine the application’s challenge-response
protocol. In this example, we can see that the symbolic bytes
introduced by the call to read are constrained to being equal
to the bytes written out by the call to write. After determin-
ing these relationships, we can generate an exploit specification
that handles randomness as it occurs in a real environment.

VI. EVALUATION

To determine the effectiveness of our approach, we
performed an evaluation on a large dataset of binaries. The
goal of our evaluation is to show two things: first, Driller
considerably expands the code coverage achieved by an
unaided fuzzer, and, second, this increased coverage leads to
an increased number of discovered vulnerabilities.

A. Dataset

We evaluated Driller on applications from the qualifying
event of the DARPA Cyber Grand Challenge (CGC) [11], a
competition designed to “test the abilities of a new generation
of fully automated cyber defense systems” [11]. During the
event, competitors had 24 hours to autonomously find memory

8

corruption vulnerabilities and demonstrate proof by providing
an input specification that, when processed by the application
in question, causes a crash. There are 131 services in the CGC
Qualifying Event dataset, but 5 of these involve communica-
tion between multiple binaries. As such functionality is out of
scope for this paper, we only consider the 126 single-binary
applications, leaving multi-binary applications to future work.

These 126 applications contain a wide range of obstacles
that make binary analysis difficult, such as complex protocols
and large input spaces. They are specifically created to stress
the capabilities of program analysis techniques, and are not
simply toy applications for hacking entertainment (unlike
what is generally seen at Capture The Flag hacking competi-
tions [22]). The variety and depth of these binaries allow for
extensive testing of advanced vulnerability excavation systems,
such as Driller. Furthermore, the results of the top competitors
are available online, providing a litmus test for checking the
performance of analysis systems against verified results.

B. Experiment Setup

We ran our experiments on a computer cluster of modern
AMD64 processors. Each binary had four dedicated fuzzer
nodes and, when the fuzzer requires concolic execution
assistance, it sent jobs to a pool of 64 concolic execution
nodes, shared among all binaries. Due to constraints on the
available memory, we limited each concolic execution job
to 4 gigabytes of RAM. In all of our tests, we analyze a
single binary for at most 24 hours, which is the same amount
of time that was given to the teams for the CGC qualifying
event. We analyzed each binary until either a crash was found
or the 24 hours had passed.

All crashes were collected and replayed using the
challenge binary testing tools to verify that the reported
crashes were repeatable in the actual CGC environment. Thus,
these results are real, verified, and comparable to the actual
results from the competition.

C. Experiments

We ran a total of three experiments in our evaluation.
First, to evaluate Driller against the baseline performance of
existing techniques, we attempted vulnerability excavation
with a pure symbolic execution engine and a pure fuzzer.
Then, we evaluated Driller on the same dataset.

The experiments were set up as follows:

Basic fuzzing. In this test, each binary was assigned 4
cores for fuzzing by AFL, but the concolic execution
nodes were deactivated. The fuzzer had no assistance
when it was unable to discover new paths. Note that
changes were made to AFL’s QEMU backend to improve
performance on CGC binaries, however, as mentioned
previously no core changes to AFL’s logic were made.

Symbolic execution. We used an existing symbolic execution
engine, based heavily on the ideas proposed by
Mayhem [8], for the concolic execution test. To ensure
a fair test against the state of the art, advanced state
merging techniques were used to help limit the effects
of state explosion, as proposed in Veritesting [1].

We analyze each binary by symbolically exploring the
state space, starting from the entry point, checking for
memory corruption. When a state explosion did occur,
we used heuristics to prioritize paths that explored deeper
into the application to maximize code coverage.

Driller. When testing Driller, each binary was assigned 4
cores for the fuzzing engine, with a total of 64 cores
for the concolic execution component. The concolic
execution pool processed symbolic execution jobs in a
first-in-first-out queue as traces were requested by the
fuzzing nodes when Driller determined that the fuzzers
were “stuck”. Symbolic execution traces were restricted
to a one-hour period and a 4 gigabyte memory limit to
avoid resource exhaustion from analyzing large traces.

We will discuss several different facets of our evaluation
of Driller. We will start by discussing the results of the three
experiments in terms of Driller’s contribution to the number
of vulnerabilities that we were able to find in the dataset.
Next, we will discuss Driller’s contribution in terms of code
coverage over existing techniques. Finally, we will focus on
an example application from the CGC dataset for an in-depth
case study to discuss how Driller increased code coverage
and identified the vulnerability in that application.

D. Vulnerabilities

In this subsection, we will discuss the number of
vulnerabilities that were discovered by the three experiments,
and frame Driller’s contribution in this regard.

The symbolic execution baseline experiment faired poorly
on this dataset. Out of the 126 applications, symbolic
execution discovered vulnerabilities in only 16.

Out of the 126 Cyber Grand Challenge applications in
our experimental dataset, fuzzing proved to be sufficient to
discover crashes in 68. Of the remaining 58 binaries, 41
became “stuck” (i.e., AFL was unable to identify any new
“interesting” paths, as discussed in Section IV, and had to
resort to random input mutation) and 17, despite continuing
to find new interesting inputs, never identified a crash.

In Driller’s run, the fuzzer invoked the concolic execution
component on the 41 binaries that became “stuck”. Figure 7
shows the number of times that concolic execution was
invoked for these binaries. Of these, Driller’s concolic
execution was able to generate a total of 101 new inputs
for 13 of these applications. Utilizing these extra inputs,
AFL was able to recover an additional 9 crashes, bringing
the total identified crashes during the Driller experiment to
77, meaning that Driller achieves a 12% improvement over
baseline fuzzing in relation to discovered vulnerabilities.

Of course, most of the applications for which crashes
were discovered in the Driller experiment were found with the
baseline fuzzer. In terms of unique crashes identified by the
different approaches, the fuzzer baseline discovered 55 crashes
symbolic execution failed to discover. 13 of its vulnerabilities
were shared with the symbolic execution baseline. A further
3 symbolic execution baseline vulnerabilities overlap with
vulnerabilities recovered by Driller, leaving application
for which the symbolic execution baseline alone found a
vulnerability, and leaving 6 applications for which Driller’s

9

approach was the only one to find the vulnerability. Essentially,
Driller effectively merges and expands on the capabilities
offered by baseline fuzzing and baseline concolic execution,
achieving more results than both do individually. These results
are presented in Figure 5.

In total, Driller was able to identify crashes in 77 unique
applications, an improvement of 6 crashes (8.4%) over the
union of the baseline experiments. This is the same number
of crashes as identified by the top-scoring team in the
competition (and significantly higher than any of the other
competitors), in the same amount of time. Without Driller
(i.e., with the two baseline approaches), we would not have
achieved these results. Note that we are well-aware that the
comparison to a participating team is only indicative and it
is not meant to be qualitative. The participating team was
operating under strict time constraints, with little or no space
for errors. Our experiments benefit from additional time to
prepare and our techniques could be refined throughout the
course of Driller’s development.

These results demonstrate that enhancing a fuzzer with
selective concolic execution improves its performance
in finding crashes. By advancing the state of the art in
vulnerability excavation, Driller is able to crash more
applications than the union of those found by fuzzing and
by symbolic execution separately. While a contribution of
6 unique vulnerabilities might seem low compared to the
total number of applications in the CGC qualifying event,
these crashes represent vulnerabilities deep in their respective
binaries, many of which require multiple concolic execution
invocations to penetrate through several compartments.

E. State Transition Coverage

Selective symbolic execution is able to overcome a
fundamental weakness of fuzzers when dealing with “magic”
constants and other complex input checks. That means that,
after the fuzzer is unable to identify new interesting inputs
(for example, due to a failure to guess a hash or a magic
number), the concolic execution engine can generate an input
allowing the fuzzer to continue exploring paths beyond where
it had become stuck. This aspect of Driller can be observed in
Table I, which shows the breakdown of how state transitions
were found during execution. In applications in which the
symbolic execution was able to find a new path, fuzzing alone
had only found an average of 28.5% of the block transitions.

As expected, the symbolic traces account for only a small
amount of new state transitions in these binaries (about 15.1%
on average), as the symbolic exploration is limited in scope and
reserved mostly for identifying and passing interesting checks.
However, the inputs produced by the concolic execution engine
help the fuzzing engine in successfully penetrating these state
transitions. The fuzzing engine’s subsequent modifications of
these inputs allow it to find, on average, an additional 56.5%
of state transitions. In total, for the applications in which the
fuzzer eventually gets stuck and symbolic execution found
a new path, 71.6% of the state transitions resulted from the
inputs based on those that were generated during symbolic
traces. The fact that the small numbers of concolically-
contributed inputs result in a much larger set of state transitions
that the fuzzer can explore demonstrates that the inputs

Binaries

D

S

F

Method Crashes Found
Fuzzing 68

Fuzzing ∩ Driller 68
Fuzzing ∩ Symbolic 13

Symbolic 16
Symbolic ∩ Driller 16

Driller 77

Fig. 5. The makeup of the experimentation results. The Venn Diagram shows
the relative coverage of Basic Fuzzing (AFL), Symbolic Execution, and
Driller in terms of finding crashes in the CGC dataset. The circle labeled F
represents crashes found by fuzzing, S represents crashes found by symbolic
execution, and D represents crashes found by driller. The table presents these
results in terms of the relative effectiveness of the different methods and their
improvement relative to each other. The attentive reader can see that Driller
identifies a super-set of the crashes found by Fuzzing and Symbolic Execution.

generated by Driller’s concolic execution engine stimulated
a much deeper exploration of the application. It is important
to keep in mind that this number only applies to 13 of the 41
applications which became ”stuck” and were able to have a
new path identified by symbolic execution. These percentages
are normalized over the total amount of basic blocks that
we saw over the course of the experiment, as generating a
complete Control Flow Graph statically requires heavyweight
static analysis that is outside of the scope of this paper.

As discussed in Section IV, we consider a state transition
to be an ordered pair of basic blocks (A,B) where block B
is executed immediately following block A. In other words,
a state transition is an edge in a Control Flow Graph where
each node represents a basic block in the program. It is clear
that if we find every state transition that we have complete
code coverage. Similarly, if we find few state transitions, than
we likely have very low coverage. Thus, it is reasonable to
use the number of unique state transitions as a measure of
code coverage. In Figure 6, we show how Driller improved
the basic block coverage over time, by showing how many
additional basic blocks were discovered as a result of Driller,

10

that the fuzzer was unable to find on its own.

Fig. 6. The number of additional basic blocks found by Driller over time,
that the fuzzer was unable to find on its own. Execution time is shown
normalized to the execution time of the binary, which varies depending on
if/when it crashed. This graph includes the 13 binaries that invoked, and
benefited from, concolic execution.

F. Application Component Coverage

A goal of the symbolic traces in Driller is to enable
the fuzzer to explore the various compartments in a binary,
where the compartments may be separated by complex
checks on user input. We expect to see inputs generated by
invocations of the concolic tracer correspond to finding new
compartments in the application. That is, the inputs generated
by the concolic execution engine should enable the fuzzer to
reach and explore new areas of code.

Fig. 7. Graph showing how many times concolic execution was invoked in
binaries where fuzzing could not crash the binary on its own.

As shown in Figure 5, 68 of the 126 applications in the data
set did not have any difficult checks that needed Driller’s sym-
bolic execution. These correspond to applications for which the
fuzzing component independently found crashing inputs or for
which it never became “stuck”. These applications tend to be
the ones with simple protocols and fewer complex checks. On
the other hand, Driller was able to satisfy at least one difficult
check in 13 of the binaries and multiple difficult checks in
4 of the binaries. These compartments are difficult for basic
fuzzers to enter because of the specific checks separating them,
but solvable by the hybrid approach employed by Driller.

Each invocation of concolic execution has the potential
to guide execution to a new compartment in the application.
This can be measured by analyzing the basic block coverage
of Driller before a fuzzing round gets “stuck” and invokes
concolic execution versus the coverage achieved by the
subsequent round of fuzzing, after the concolic execution
component pushed execution through to the next compartment.
We present this in Figure 8, by showing the fraction of basic
blocks, normalized to the total number of basic blocks
discovered throughout the experiment, for each binary on
which concolic execution was invoked, at each stage of
the analysis. The graph demonstrates that Driller does drive
execution into new compartments in applications, allowing the
fuzzer to quickly explore a greater amount of code. We present
an in-depth example in this for our case study in Section VI-G.

Fig. 8. Graph showing how each invocation of concolic execution lead
to more basic block transitions found. Only shown for binaries in which
symbolic execution identified additional inputs.

G. Case Study

Fig. 9. For the binary 2b03cf01, which Driller crashed in about 2.25 hours,
this graph shows the number of basic blocks found over time. Each line
represents a different number of invocations of symbolic execution from zero
to three invocations. After each invocation of symbolic execution, the fuzzer
is able to find more basic blocks.

This section will focus on a single application to explain,
in-depth, Driller’s operation. We will focus on the CGC
qualifying event application whose identifier is 2b03cf01.

11

Percentage of discovered blocks Percentage of discovered blocks
Type of State Transition across all binaries across binaries where concolic

execution found at least one input
Initial Fuzzing Run 84.2 28.4

Identified by Concolic Execution 3.3 15.1
Post-Concolic Fuzzing Runs 12.5 56.5

Total 100 100
TABLE I. BREAKDOWN OF WHAT PERCENTAGE OF DISCOVERED STATE TRANSITIONS WERE FOUND BY WHAT

METHOD, AMONG BINARIES WHICH INVOKED CONCOLIC EXECUTION AND BINARIES FOR WHICH CONCOLIC EXECUTION IDENTIFIED AT LEAST ONE INPUT.

1 enum {
2 MODE BUILD = 13980 ,
3 MODE EXAMINE = 809110 ,
4 } ;
5
6 . . .
7
8 RECV(mode , s i z e o f (u i n t 3 2 t)) ;
9

10 sw i t ch (mode [0]) {
11 case MODE BUILD:
12 r e t = d o b u i l d () ;
13 break ;
14 case MODE EXAMINE:
15 r e t = do examine () ;
16 break ;
17 d e f a u l t :
18 r e t = ERR INVALID MODE ;
19 }

Listing 7. The first complex check in the 2b03cf01 application.

The interested reader can find the source code for this
application on DARPA’s github repository [12] under the
public name NRFIN_00017. Additionally, we present the
call graph of this binary, which we will refer to throughout
this case study, in Figure 10. This graph demonstrates the
performance of successive invocations of Driller’s fuzzing
and concolic execution components – the nodes discovered
by successive fuzzing invocations are drawn in progressively
darker colors and the transitions recovered by the concolic
execution component are illustrated with differently-drawn
edges. The different colors of nodes represent different
compartments in this binary – within the compartment,
fuzzing successfully produces inputs to trigger new interesting
paths while concolic execution is needed to satisfy the complex
checks and guide execution flow between compartments.

This application represents a power testing module, in
which the client provides the server an electrical design and
the server builds a model of the electrical connectivity. This
is not a simple binary: it provides a variety of complex
functionality to the user and requires properly formatted
input, against which there are a number of complex checks.

When Driller fuzzes this binary, the first of these complex
checks causes the fuzzer to get stuck almost immediately
after finding only 58 basic blocks across a fairly small
compartment of the application, consisting of a handful of
functions containing initialization code. The fuzzing engine
gets stuck on a check on user input. For convenience, the
snippet in question, corresponding to node “A” in Figure 10, is
reproduced in Listing 7, although, of course, Driller operates
directly on binary code.

Looking at the source code, we see that the two primary

commands called from the main loop require the user to give
a specific 32-bit number to select a “mode of operation”. To
call the function do build(), the user must provide the number
13980, and to call the function do examine(), the user must
provide the number 809110. Although, these checks appear
simple to a human, a fuzzer must essentially brute force
them. Thus, the chance that the fuzzer will guess these magic
numbers is minuscule, and, as a result, the fuzzing component
gets stuck.

After the fuzzer is unable to identify new interesting
paths, Driller invokes the concolic execution component to
trace the inputs that the fuzzer has collected thus far, and
find new state transitions. Driller finds inputs which will
drive execution to both of the aforementioned functions, and
returns them to the fuzzer for exploration. Again, the fuzzer
gets stuck fairly quickly, this time at node “B” in Figure 10
at another complex check. Driller’s concolic execution engine
is invoked a second time, generating enough new inputs to
pass these checks. From this point, the fuzzer is able to find
271 additional basic blocks within a large compartment of
the application that processes generic input which, for this
application, consists of parsing code relating to analysis of the
user-provided electrical design. Eventually, the fuzzer finds
all of the interesting paths that it can in that compartment
and decides that it is not making further progress, leading to
another invocation of Driller’s concolic execution engine.

This time, Driller finds 74 new basic blocks and generates
inputs that reach them by successfully passing checks on
the input that the fuzzer had not previously satisfied. These
additional basic blocks (represented by the black nodes in
Figure 10) comprise the functionality of adding specific circuit
components. For the interested reader, Listing 9 presents one
of the functions that contains specific checks against user
input with which fuzzers have trouble. Input representing
these components must adhere to an exact specification of
a circuit component, and the checks of these specifications
is what the third invocation of Driller’s concolic execution
engine finds. These constants that are used in this function’s
checks are defined in the code reproduced in Listing 8.
A fuzzer cannot guess these constants without exhausting
a huge search space, as they are specific values of 32-bit
integers. Driller’s symbolic execution, however, can find these
constants easily, since the comparisons in the code produce
easy-to-solve-for conditions on paths taking these branches.

1 t y p e d e f enum {
2 FIFTEEN AMP = 0 x0000000f ,
3 TWENTY AMP = 0 x00000014 ,
4 } CIRCUIT MODELS T ;

Listing 8. An enum definition with explicit constants. In order to
guess these constants, these specific values must be guessed from a
search space of 232 numbers.

12

D4 D3

C

D5

D1

A

B

D2

D6

Fuzzed transitions
Concolic #1 transitions
Concolic #2 transitions
Concolic #3 transitions

Compartment 1 (found initially)
Compartment 2 (after concolic invocation #1)
Compartment 3 (after concolic invocation #2)
Compartment 4 (after concolic invocation #3)

Fig. 10. Graph visualizing the progress made by Driller in discovering new compartments. Each node is a function; each edge is a function call, but return
edges are excluded to maintain legibility. Node “A” is the entry point. Node “B” contains a magic number check that requires the symbolic execution component
to resolve. Node “C” contains another magic number check.

B

D6C

D5 D5

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Fig. 11. The sequence of compartments through which execution flows for a trace of the crashing input for CGC application 2b03cf01. Driller’s ability to “break
into” the fourth compartment (represented by the black nodes) was critical for generating the crashing input. The generated, derandomized crashing input was
“A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x18\x04\x00\x00\x18’\x00\x00A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x19\x04\x00
\x00\x14\x00\x00\x00A\x00\xf8\xff\xff\xec\x00d\x96X\x0c\x00\x06\x08\x00\x00\x10\x00\x00\x00A\x00\x00\x00\x00\x00\x00\xfb\x96X
\x0c\x00\x02\x08\x00\x00\x18’\x00\x00A\x00\xebA\x00\x00d\x96X\x0c\x00\x06”. The full exploit specification, conforming to the DARPA CGC
exploit specification format and accounting for randomness, is available in Appendix A.

13

1 i n t 8 t g e t n e w b r e a k e r b y m o d e l i d
(CIRCUIT MODELS T model id , b r e a k e r t *
b r e a k e r s p a c e , u i n t 8 t b r e a k e r s p a c e i d x) {

2 i n t 8 t r e s = SUCCESS ;
3 sw i t ch (model id) {
4 case FIFTEEN AMP :
5 c r e a t e b r e a k e r (1 5 ,

b r e a k e r s p a c e , b r e a k e r s p a c e i d x) ;
6 break ;
7 case TWENTY AMP:
8 c r e a t e b r e a k e r (2 0 ,

b r e a k e r s p a c e , b r e a k e r s p a c e i d x) ;
9 break ;

10 d e f a u l t :
11 / / i n v a l i d mode l id
12 r e s = −1;
13 }
14 re turn r e s ;
15 }

Listing 9. A function with a switch statement testing user input
against a number of specific values

Driller’s new input is then passed back to the fuzzer in
order to quickly assess the new coverage generated by the
change. Listing 10 shows some of the code that executes for the
first time as a result of the new input. The user input that this
new component processes is no longer specific, but general,
making it suitable for the fuzzer. From this point on, the fuzzer
continues to mutate these inputs until it triggers a vulnerability
caused by a missing sanitization check in the application.

1 s t a t i c vo id c r e a t e b r e a k e r
(u i n t 8 t amp ra t ing , b r e a k e r t *
b r e a k e r s p a c e , u i n t 8 t b r e a k e r s p a c e i d x) {

2 b r e a k e r s p a c e−>i d = b r e a k e r s p a c e i d x ;
3 b r e a k e r s p a c e−>a m p r a t i n g = a m p r a t i n g ;
4 b r e a k e r s p a c e−>o u t l e t s = l i s t c r e a t e d u p () ;
5 i f (b r e a k e r s p a c e−>o u t l e t s

== NULL) { t e r m i n a t e (ERRNO ALLOC) ;}
6 }

Listing 10. Code executed as a result of passing the specific check

In a semantic sense, the vulnerability involves initializing
a new breaker object in the circuit the user creates. Later on,
the circuit will be tested for connectivity, among other things,
and component-specific logic will be invoked depending on
the materials of which the circuit is composed. Satisfying the
check to add a breaker will expand the bug-searching coverage
to include breaker-specific code. Triggering this vulnerability
requires the inclusion, in the provided circuit diagram, of
specifically crafted breaker components. The inputs required
to trigger the creation of these components are what Driller
recovers in the third concolic execution invocation, and the
final fuzzing invocation mutates them enough to trigger the
vulnerable edge case.

The final path taken by the crashing input is shown in
Figure 11. Starting at the entry point, this path goes through
progressively harder-to-reach compartments (represented by
the different colors of the nodes) until the condition to trigger
the edge is created. This binary was not crashed in either
baseline experiment – the unaided fuzzer was never able to
reach compartments of the code “protected” by the complex
checks, and the symbolic exploration engine experienced an
almost immediate path explosion in the input-processing code.
By combining the merits of fuzzing and concolic execution,
Driller was able to crash this binary in approximately two

and a quarter hours.

We present the amplification in basic block coverage that
each concolic execution invocation produces in this binary,
plotted over time, in Figure 9.

VII. DISCUSSION

Driller carries out a unified analysis by leveraging both
symbolic execution and fuzzing. This allows Driller to address
some of the drawbacks of each analysis with its complement.
In this section, we will discuss the limitations of Driller and
future directions of research to further augment automated
vulnerability extraction.

A. Limitations

Both a benefit and pitfall of Driller is its borrowing of
state-space interpretation from AFL. AFL represents state
simply by tracking state-transition tuples to rough “hit counts”
(how many times the state-transition was encountered). This
moderately light representation of state is what allows AFL
to be so efficient as each path’s state is only defined by the
collection of state-transition tuples it encountered combined
with how many times they were encountered. Driller uses this
same data structure to determine which state transitions are
worth solving for. We provide an example of how this can
limit Driller in Listing 11

1 i n t s t a t i c s t r c m p (char *a , char *b) {
2 f o r (; * a ; a ++ , b ++) {
3 i f (* a != *b)
4 break ;
5 }
6
7 re turn * a − *b ;
8 }
9

10 i n t main (void) {
11 r e a d (0 , user command , 10) ;
12
13 i f (s t a t i c s t r c m p

(” f i r s t c m d ” , user command) == 0) {
14 cmd1 () ;
15 }
16 e l s e i f (s t a t i c s t r c m p

(” second cmd ” , user command) == 0) {
17 cmd2 () ;
18 }
19 e l s e i f (s t a t i c s t r c m p

(” crash cmd ” , user command) == 0) {
20 a b o r t () ;
21 }
22
23 re turn 0 ;
24 }

Listing 11. An example of minimal state representation limiting
discovery of new state transitions.

This listing demonstrates a state-transition which occurs
in multiple command handlers. Since each branch relies on
static_strcmp, AFL itself will not be able to distinguish
between state-transitions inside different invocations of
static_strcmp. Driller uses the same metric to determine
which state-transitions need to be solved. As such, Driller will
not try to solve for the if statement on line 3 more than once,
even though it is used for different comparisons. Additionally,
inputs which have one or two additional matching characters

14

would not be considered interesting by AFL. Of course if the
entire string was discovered by Driller, AFL would find it
interesting and adopt it. Driller attempts to mitigate the effects
of this problem with the symbolic explorer stub (described
in V-D3) invoked at each new state transition. However, we
believe this is an imperfect solution and ultimately a better
representation of state might be required.

Another limitation of Driller is the case when user input is
treated as generic input in one component and specific input
in another. Consider the program presented in Listing 12.

This application reads a command and a hash from
the user and verifies the hash. This compartment, spanning
lines 1 through 11, treats the command as generic input
and the hash as specific input. After this, however, the
application checks, in multiple stages, that the provided
command was “CRASH!!”. Fundamentally, this reclassifies
the user_command as specific input, as it must be matched
exactly. This triggers a case that reduces Driller to a symbolic
execution engine, as explained below.

1 i n t main (void) {
2 char user command [1 0] ;
3 i n t u s e r h a s h ;
4
5 r e a d (0 , user command , 10) ;
6 r e a d (0 , u s e r h a s h , s i z e o f (i n t)) ;
7
8 i f (u s e r h a s h != hash (user command)) {
9 p u t s (” Hash mismatch ! ”) ;

10 re turn 1 ;
11 }
12
13 i f (s t rncmp (”CRASH” , user command , 5) == 0) {
14 p u t s (”Welcome t o compar tment 3 ! ”) ;
15 i f (user command [5] == ’ ! ’) {
16 p a t h e x p l o s i o n f u n c t i o n () ;
17 i f (user command [6] == ’ ! ’) {
18 p u t s (”CRASHING”) ;
19 a b o r t () ;
20 }
21 }
22 }
23
24 re turn 0 ;
25 }

Listing 12. An example of input being used as generic input in one
place and specific input in another. A crashing input for this binary
is ”CRASH!!” followed by its hash.

Passing through the first stage, into compartment 3, is
straightforward – Driller’s concolic execution engine will
identify an input that starts with “CRASH” and its correspond-
ing hash (as this is a forward-calculation of a hash, there is no
concern with having to “crack” the hash; Driller merely needs
to calculate it). However, after this, the fuzzer will no longer
function for exploring this compartment. This is because any
random mutations to either the hash or the input will likely
cause execution to fail to proceed from compartment 1. Thus,
the fuzzer will quickly get stuck, and Driller will invoke the
concolic execution engine again. This invocation will guide
Driller to compartment 4, on line 16, and hand execution back
to the fuzzer. However, the fuzzer will again fail to proceed,
decide that it is stuck, and trigger concolic execution.

This cycle will continue, making the fuzzing component
useless and essentially reducing Driller to symbolic

exploration. Worse, in this application, compartment 4
calls a function (path_explosion_function) that
causes a path explosion. Without the mitigating effects of
its fuzzing engine, Driller is unable to reach compartment 5
(lines 18 and 19) and trigger the bug.

This represents a limitation in Driller: in certain cases, the
fuzzing component can become effectively disabled, robbing
Driller of its advantage. A potential future step in mitigating
this issue is the ability to generate “semi-symbolic” fuzzing
input. For example, the concolic engine might pass a set of
constraints to the fuzzer to ensure that the inputs it generated
conform to some specification. This would take advantage
of the concept of generational fuzzing [18] to create “input
generators” to aid the fuzzer in reaching and exploring
application compartments.

The limitation exemplified by Listing 12 shows how a
specific input can prevent the fuzzer from effectively mutating
the generic input. However, for other types of specific input,
even with multiple components, AFL can still fuzz the deeper
components. Even in the most difficult cases, such as hash
checks, Driller will still be able to mutate any input that is
unrelated to the hash, such as input after the hash is checked.
We do expect some decrease in performance after Driller
has found multiple components. This is because AFL has no
knowledge of the constraints from the symbolic execution
engine, so there will be a fraction of the fuzzing cycles
wasted trying to mutate specific inputs.

VIII. CONCLUSION

In this paper, we presented Driller, a tool that combines
the best of dynamic fuzzing and concolic execution to
efficiently find bugs buried in a binary. We introduce the
concept of a compartment of a binary, which largely separate
functionality and code. Within Driller, fuzzing provides a fast
and cheap overview of a compartment, effectively exploring
loops and simple checks, but often fails to transition between
compartments. Selective concolic execution gets into state
explosions when considering loops and inner checks, but is
highly effective at finding paths between compartments of
a binary. By combining these two techniques, where each
individually fails, Driller is able to explore a greater space of
functionality within the binary.

We evaluated Driller on 126 binaries from the DARPA
Cyber Grand Challenge Qualifying Event. Driller found
77 crashes, a substantial improvement over basic fuzzing’s
68 crashes. We believe the technique shows promise for
general-purpose bug-finding in all categories of binaries.

ACKNOWLEDGMENTS

We would like to thank all contributors to the DARPA Cy-
ber Grand Challenge organization (for providing an excellent
testing ground for our tool), Michal Zalewski (his public tool,
AFL, and documentation proved immensely useful), Secure
Business Austria, the contributors of angr, and of course, all
our fellow Shellphish CGC team members, donfos in particu-
lar. This material is based on research sponsored by DARPA
under agreement number N66001-13-2-4039. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for

15

Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

REFERENCES

[1] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing
symbolic execution with veritesting. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 1083–1094. ACM,
2014.

[2] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[3] S. Bucur. Improving Scalability of Symbolic Execution for Software
with Complex Environment Interfaces. PhD thesis, École Polytechnique
Fédérale de Lausanne, 2015.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008.

[6] G. Campana. Fuzzgrind: un outil de fuzzing automatique. In Actes du
7ème symposium sur la sécurité des technologies de linformation et
des communications (SSTIC), 2009.

[7] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant, and
D. Song. Transformation-aware exploit generation using a HI-CFG.
Technical report, UCB/EECS-2013-85, 2013.

[8] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
Mayhem on binary code. In Proceedings of the IEEE Symposium on
Security and Privacy, 2012.

[9] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr. Taming compiler fuzzers. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), volume 48. ACM, 2013.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages
265–278. ACM, 2011.

[11] DARPA. Cyber Grand Challenge. http://cybergrandchallenge.com.
[12] DARPA. Cyber Grand Challenge Challenge Repository. https://github

.com/CyberGrandChallenge/samples/tree/master/cqe-challenges.
[13] J. DeMott. Understanding how fuzzing relates to a vulnerability like

Heartbleed. http://labs.bromium.com/2014/05/14/understanding-how-f
uzzing-relates-to-a-vulnerability-like-heartbleed/.

[14] C. Details. Vulnerability distribution of CVE security vulnerabilities
by type. http://www.cvedetails.com/vulnerabilities-by-types.php.

[15] W. Drewry and T. Ormandy. Flayer: Exposing application internals.
In Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT), 2007.

[16] D. Engler and D. Dunbar. Under-constrained execution: Making
automatic code destruction easy and scalable. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2007.

[17] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox
fuzzing. In Proceedings of the International Conference on Software
Engineering (ICSE), 2009.

[18] P. Garg. Fuzzing - mutation vs. generation. http://resources.infosecins
titute.com/fuzzing-mutation-vs-generation/.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
volume 40, pages 213–223. ACM, 2005.

[20] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing
for security testing. Communications of the ACM, 55(3):40–44, 2012.

[21] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing
for overflows: A guided fuzzer to find buffer boundary violations. In
Proceedings of the USENIX Security Symposium, 2013.

[22] LegitBS. DEFCON Capture the Flag. https://legitbs.net/.
[23] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliabil-

ity of UNIX utilities. Communications of the ACM, 33(12):32–44, 1990.
[24] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), volume 42, pages 89–100. ACM, 2007.

[25] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos. The
BORG: Nanoprobing binaries for buffer overreads. In Proceedings of
the ACM Conference on Data and Application Security and Privacy
(CODASPY). ACM, 2015.

[26] B. S. Pak. Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution. Master’s thesis, School of Computer Science,
Carnegie Mellon University, May 2012.

[27] D. A. Ramos and D. Engler. Under-constrained symbolic execution:
Correctness checking for real code. In Proceedings of the USENIX
Security Symposium, 2015.

[28] Secunia. Resources vulnerability review 2015. http:
//secunia.com/resources/vulnerability-review/introduction/.

[29] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.
Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS), 2015.

[30] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the IEEE Symposium on Security and Privacy, 2010.

[31] M. Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

APPENDIX A
EXPLOIT SPECIFICATION FOR CASE STUDY

For the curious reader, we reproduce the exact crashing
input, specified in the Cyber Grand Challenge Proof of
Vulnerability format in Listing 13.

1 <?xml version="1.0" standalone="no" ?>

2 <!DOCTYPE pov SYSTEM "/usr/share/cgc-docs/replay.dtd">

3 <pov><cbid>2b03cf01_01</cbid><replay>

4 <read><length>1</length><assign><var>stdout0</var><slice

begin="0" /></assign></read> <read><length>7</length></read>

5 <write><var>

stdout0</var></write><write><data>\x00\x00\x00\x00\x00\x00\x00

\x9c6\x00\x00\x18\x04\x00\x00\x18\x27\x00\x00</data></write>

6 <read><length>1</length><assign><var>stdout8</var><slice

begin="0" /></assign></read> <read><length>7</length></read>

7 <write><var>stdout8</var></write><write><data

>\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x19\x04\x00\x00\

x14\x00\x00\x00</data></write><read><length>37</length></read>

8 <read><length>1</length><assign><var>stdout16</var><slice

begin="0" /></assign></read> <read><length>7</length></read>

9 <write><var>stdout16</var></write><write

><data>\x00\xf8\xff\xff\xec\x00d\x96X\x0c\x00\x06\x08\x00\x00\

x10\x00\x00\x00</data></write><read><length>37</length></read>

10 <read><length>1</length><assign><var>stdout24</var><slice

begin="0" /></assign></read> <read><length>7</length></read>

11 <write><var>stdout24</var></

write><write><data>\x00\x00\x00\x00\x00\x00\xfb\x96X\x0c\x00\

x02\x08\x00\x00\x18\x27\x00\x00</data></write></replay> </pov>

Listing 13. A Proof of Vulnerability for the case study application.

This input can be run on a Cyber Grand Challenge
machine by executing the command shown in Listing 14.

1 cb− t e s t −−debug −−s h o u l d c o r e −−cb . / NRFIN 00017
−−xml . / POV FROM LISTING . xml −−d i r e c t o r y .

Listing 14. The command to test the provided Proof of Vulnerability.

16

