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Abstract

We present a hybrid framework that leverages the trade-off between temporal and
frequency precision in audio representations to improve the performance of speech
enhancement task. We first show that conventional approaches using specific
representations such as raw-audio and spectrograms are each effective at targeting
different types of noise. By integrating both approaches, our model can learn multi-
scale and multi-domain features, effectively removing noise existing on different
regions on the time-frequency space in a complementary way. Experimental results
show that the proposed hybrid model yields better performance and robustness
than using each model individually.

1 Introduction

The trade-off between temporal and frequency resolution is a well-known phenomenon in the signal
processing community, e.g., the window size in discrete Fourier transformation (DFT) [1]. The larger
the time segment, the more frequencies are extracted, thus giving us higher frequency resolution
in the expense of temporal resolution. Therefore, it is obvious that time-series and time-frequency
representations can provide complementary views when investigating a given signal. To the best of
our knowledge, however, existing deep learning-based approaches proposed for speech enhancement
have only taken either time-series (i.e., raw-audio) [7, 8] or time-frequency representation (i.e.,
spectrogram) as an input [4, 11, 16]. In this work, we find that models using different audio
representations each specialize at tackling specific types of noise, and are also complementary to
each other. Grounding on this observation, we propose a hybrid framework which enables the model
to learn multi-scale and multi-domain features, dubbed multi-domain processing via hybrid denoising
networks (MDPhD). We devise a sequential model integrating two modules of both representations
by employing auxiliary loss. Experimental results and ablation studies show that the proposed model
can effectively utilize complementary information of time and time-frequency domains. Although
our hybridizing strategy is rather straightforward, MDPhD shows better denoising performance than
other state of the art (SOTA) algorithms across a variety of noises under multiple measures. Note that
the hybrid framework is general and not restricted to the current specific model. The performance
can be further improved by employing newly developed models from each domain, by equipping a
new loss function, or by designing a better hybridizing strategy.

Our contributions are as follows: 1) We empirically show that the way a model performs denoising
depends on its input representation. 2) We propose a hybrid framework that can exploit multi-scale
and multi-domain features. To the best of our knowledge, this is the first hybrid approach, effectively
utilizing both time and time-frequency domain information. 3) The proposed hybrid model (MDPhD)
outperforms SOTA algorithms in the speech enhancement task.

∗Equal contribution.



2 Model Description

We first describe the objective function and the selected modules that have been reported to show
competitive performance using either raw-audio [6] or spectrogram input [3]. Selected models are
each used later as components of our proposed hybrid model.

2.1 Objective function

We employ the energy-conserving loss function proposed in [8] which simultaneously considers
speech and noise signals. Let the noisy input x consist of clean speech s and noise n. The estimated
speech by the model is referred to as ŝ. Then, our objective function is defined as follows:

L(x, s, n, ŝ) = ‖s− ŝ‖1 + ‖n− n̂‖1, (1)

where n̂ = x− ŝ represents the estimated noise signal and ‖ · ‖1 denotes `1 norm.

2.2 Hybrid Model

We construct the time domain network based on TasNet [6] which employs one-dimensional dilated
convolution to handle long time sequences of raw-audio. TasNet has shown competitive sample quality
for speech source separation, which is a similar task to speech enhancement. In our experiments,
we used a reduced version of TasNet. With a slight abuse of notation, we refer to the network as
"TasNet" for simplicity. For the time-frequency (T-F) domain network, we employ a U-Net structure
based on two-dimensional convolutions which has been widely used in various source separation
tasks [3, 9]. The T-F domain network aims to learn an ideal ratio mask (IRM) of a noisy spectrogram
input [15]. By multiplying the estimated mask to the noisy spectrogram, the model can remove the
noise from the time-frequency space.

We hybridize both time and T-F domain networks in a cascaded way (Fig. 1). To make both
networks contribute to the denoising task equally well, we devise our model with an auxiliary loss
L(x, s, n, ŝi,mid) at the intermediate conjunction, where ŝi,mid is the output of the former network. In
addition, to let both networks have access to the full data information that is not processed (denoised)
by the other, we train the entire model by alternately switching the sequential order of each component.
For inference, we can either use a single path or average the results from both paths. Here, we simply
average the output of the model, which showed the best performance.
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Figure 1: A schematic illustration of the hybrid system (MDPhD). Note that the network of the same
domain (same color) shares the parameters. For the time-frequency (T-F) domain network, we convert
the time-domain input to a spectrogram using the short time Fourier transform (STFT), whose output
is converted back to a waveform using the inverse short time Fourier transform (iSTFT).

The final objective of the hybrid model with auxiliary loss becomes

min
θ

∑
i=1,2

L(x, s, n, ŝi,mid) +
∑
i=1,2

L(x, s, n, ŝi), (2)

where θ denotes the network parameter.

3 Experiments

3.1 Data and Experimental Setup

Dataset We used the dataset [13] that has been used in the recent speech enhancement studies
[7, 8]. The dataset was produced by synthesizing the clean speech of Voice Bank corpus [14] and the
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noise data of Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [12]. The
training dataset consists of audio from 28 speakers, and the test dataset is composed of the recordings
from two speakers. Each speaker’s data contains 400 sentences with four noise levels. To deal with
signals without voices, we added noise-only data to the training dataset, which is a quarter of the
total number. In our experiments, all audio samples recorded at 48kHz were subsampled to 16kHz.

Experimental Setup During training and testing, we split speech waveforms with a sliding window
of approximately one second (16384 samples) every 500 ms (50% overlap). To obtain the spectro-
grams, we used the short time Fourier transform (STFT) of 512 window size and 256 hop size with
Hanning window. The output spectrogram is converted back to the time domain using the inverse
STFT. For training, we used batch renormalization to cope with a small batch size of 16 and Adam
optimizer with the initial learning rate of 2e-4. The learning rate was decayed by half every 100,000
iterations. All of the experiments were performed on NAVER Smart Machine Learning (NSML)
platform [5]. For more details, please refer to the supplementary material.

3.2 Experimental Results

Hybrid Framework Validation To show the complementary characteristic of the time and T-F
domain networks, we additionally synthesized noisy signals consisting of speech signals from the test
dataset and noises which are either babbles (DEMAND), high frequency sinusoidal noise of 1000 ∼
5000 Hz, or both. Note that the networks did not see any of these noises during the training phase.
As shown in figure 2, while the spectrogram approach (U-Net) successfully removes high frequency
noise that is prominent in the spectrogram, it suffers from dealing with babble noise which is hardly
distinguishable from the frequency components of speech signals. On the other hand, the raw-audio
approach (TasNet) shows superior results on denoising babble noise, which were even better than
that of U-Net with doubled parameter size (Table 1). Note that, however, TasNet fails to remove high
frequency noise, which is supposedly hard to capture in the time domain (Fig. 2 red arrow).

Table 1 summarizes these observations along with ablation studies. Our hybrid model (MDPhD)
showed the best performance by combining the strength of each model. While the other methods had
a noticeable weak domain, MDPhD showed comparable performance across all noise types. Note
that MDPhD showed the best performance when the noises are mixed, which is more practical in real
world applications. When we only trained a single path of MDPhD, the model failed to fully utilize
the complementary information from both domains. Interestingly, we found that the performance of
the model tends to follow the characteristics of the network that comes first in order. For example,
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Figure 2: Comparison of denoised results for inputs with babble and high frequency noise. For
clarity, the output results of the boxed region (red dotted line) of the noisy input is demonstrated in
two perspectives. The top row shows the estimated noise and the bottom row displays the estimated
speech signal. Some noticeable distortions of U-Net and TasNet in the spectrogram are marked by
red arrows.
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Table 1: Ablation study performed on various types of noises (babble, high frequency and a mixture
of both) with two signal-to-noise ratios (SNRs) (5 and 10 dB). We evaluated the SNR of each model
output in decibel (dB) scale. D and U denotes TasNet using one-dimensional dilated convolution
and U-Net, respectively. The number of parameters is noted next to the model (e.g., 1.5 M = 1.5
million). U → D and D → U represent single path models without alternately switching training
procedure. Our hybrid model is referred to as H (1.5 M + 1.5 M), where the model exploits both
pathways (U → D and D → U ) during the training and testing. The best result for each noise type
is given in bold style.

babble high freq. babble + high freq.
SNR 5 SNR 10 SNR 5 SNR 10 SNR 5 SNR 10

D (1.5 M) 13.69 16.83 4.86 11.21 11.47 15.23
D∗ (3 M) 14.25 17.12 6.27 11.88 12.74 15.84
U (1.5 M) 10.55 14.51 17.84 20.68 11.44 15.41
U∗ (3 M) 11.48 15.46 17.60 21.03 12.29 16.08
U → D 11.96 15.50 15.08 18.37 12.49 16.01
D → U 14.09 16.97 11.13 17.59 13.42 16.95

H (Ours) 13.81 16.78 15.10 19.09 14.02 17.08

the U → D model shares the weakness of U-Net and vice versa. We conjecture that this happens
because the latter network cannot reconstruct the information that is already lost from the former
network. In addition, we tested various objective functions and confirmed that the complementary
nature of the two approaches does not come from a specific choice of the objective function (see the
supplementary material).

3.3 Comparison with Other Methods

Using the test dataset, we compared our results to recent studies of speech enhancement field. With
the same training and test dataset split, our model showed the best performance quantitatively and
qualitatively among the others under various measures [2] (Table 2).

For the qualitative results, please refer to the web demo page (https://mdphdnet.github.io),
where we have uploaded several denoised examples using the models introduced in the table (except
MMSE-GAN whose code is unavailable).

Table 2: Comparison with other methods. Note that, the indicators that are not reported in the original
paper are marked as dash (-). The predicted rating of speech distortion (CSIG), background distortion
(CBAK) and overall quality (COVL) are reported (from 1 to 5, higher is better). PESQ (from -0.5 to
4.5, higher is better) stands for perceptual evaluation of speech quality and SSNR (higher is better) is
segmental SNR. The best result for each measure is given in bold style.

CSIG CBAK COVL PESQ SSNR
Wiener [10] 3.23 2.68 2.67 2.22 5.07
SEGAN [7] 3.48 2.94 2.80 2.16 7.73
Wavenet [8] 3.62 3.23 2.98 - -
MMSE-GAN [11] 3.80 3.12 3.14 2.53 -
TasNet (3M) 3.80 3.29 3.18 2.57 9.65
U-Net (3M) 3.65 3.21 3.05 2.48 9.34
MDPhD (3 M + 3 M) 3.85 3.39 3.27 2.70 10.22

4 Conclusion

We demonstrated that the conventional speech enhancement models have limitations due to using
specific representations. Based on this observation, we proposed a hybrid approach that exploits
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multi-domain features for speech enhancement, dubbed multi-domain processing via hybrid denoising
networks (MDPhD). With respect to five metrics, MDPhD achieved the best performance compared
to the other concurrent models. Because MDPhD is a general framework, future work may include
developing a more elegant way of hybridizing and extending this framework to other signal processing
tasks, such as music and speech source separation.
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A More Experimental Results

To show that the complementary nature of the time domain and T-F domain networks does not
come from a specific choice of the objective functions, we trained each network module with
various objective functions. Table 3 summarizes the results. We found that the performance was not
significantly different.

Table 3: SNR evaluation of models with various objective functions. D and U denote the TasNet
(reduced) using one-dimensional dilated convolution and U-Net, respectively. The type of objective
functions are noted next to the model name. `1 represents our baseline objective function. `2
represents an objective function that substitutes the `1 term of equation (1) with `2. SNR indicates an
objective function that directly optimizes the SNR. SPEC represents the `2 distance between a clean
speech spectrogram and the estimated spectrogram.

babble noise high frequency band
SNR 5 SNR 10 SNR 15 SNR 5 SNR 10 SNR 15

D-`1 13.69 16.83 19.57 4.96 11.31 16.54
D-`2 13.53 16.57 19.26 6.67 12.82 16.94
D-SNR 13.45 16.71 19.51 4.48 10.90 16.38
U -`1 10.55 14.51 18.11 17.87 20.68 21.92
U -`2 10.54 14.48 17.97 17.89 20.65 22.32
U -SPEC 10.47 14.38 18.01 19.73 21.47 22.27

B Model Architecture

In this section, we present the detailed configuration of the models we used. In the following figures,
each block consists of a convolutional operation, normalization and an activation function. Note
that, normalization is not used at the first and the last layer of each model. The operation � means
element-wise multiplication and the preceding layer of this operation uses sigmoid as an activation
function.

Figure 3: U-Net (1.5M) architecture. 2D Conv means a two-dimensional convolution block consisting
of a two-dimensional convolution operation with filter size F (height, width), stride size S (height,
width) and output channel size C followed by batch renormalization and leaky-RELU activation
function. 2D t-Conv means a two-dimensional transposed convolution block. Our baseline models
used in experiments process the log-magnitude of the input spectrogram.

Figure 4: U-Net (3M) architecture.
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Figure 5: TasNet (1.5M) architecture. 1D Conv means a one-dimensional convolution block and
1D d-Conv stands for a one-dimensional dilated convolution block. The dilation rate of each dilated
convolution block is doubled as it goes forward. The convolution operation of the dilation convolution
block follows the non-causal method, which takes the value of both ahead and back of the current
time step. 1D t-Conv means a one-dimensional transposed convolution block.

Figure 6: TasNet (3M) architecture.
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