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Abstract

We propose a novel machine learning approach for inferring causal variables of a tar-
get variable from observations. Our goal is to identify both direct and indirect causes
within a system, thereby efficiently regulating the target variable when the difficulty and
cost of intervening on each causal variable vary. Our method employs a neural net-
work trained to identify causality through supervised learning on simulated data. By
implementing a local-inference strategy, we achieve linear complexity with respect to the
number of variables, efficiently scaling up to thousands of variables. Empirical results
demonstrate the effectiveness of our method in identifying causal relationships within
large-scale gene regulatory networks, outperforming existing causal discovery methods that
primarily focus on direct causality. We validate our model’s generalization capability
across novel graph structures and generating mechanisms, including gene regulatory net-
works of E. coli and the human K562 cell line. Implementation codes are available at
https://github.com/snu-mllab/Targeted-Cause-Discovery.

1 Introduction

Identifying causality among variables is a fundamental problem in machine learning, with applications rang-
ing from generative modeling to system explanation and variable control (Schölkopf, 2022). Conventional
approaches for inferring causality from observations often rely on assumptions about generating processes
and utilize independence tests or model fitting (Spirtes et al., 2001; Brouillard et al., 2020). However, these
methods become impractical in large-scale systems with thousands of variables and complex generation mech-
anisms due to the exponential complexity of algorithms or invalidity of assumptions (Zanga et al., 2022).

In this study, we present a scalable method for identifying causes of target variables in large-scale complex
systems, such as gene regulatory networks (GRNs) (Karlebach & Shamir, 2008). Our method aims to identify
all causal variables of a target variable, both direct and indirect (Figure 1). For instance, in GRNs, identifying
causal transcription factors of a target gene facilitates drug development, as it allows for the regulation of the
target gene’s expression (Huynh-Thu et al., 2010). On the other hand, regulating each causal transcription
factor involves varying levels of difficulty and cost (Martin & Sung, 2018). By identifying not only direct
causes but also all causal factors, our approach allows for the prioritization of transcription factors that are
less costly and easier to intervene, thereby streamlining the development process. We refer to this problem
setting as targeted cause discovery.
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Target variable Causes of target

Figure 1: Illustration of targeted cause dis-
covery in a causal graph.

It is worth noting that one can infer all causal variables given
an estimated direct-causal graph of the system by traversing
the ancestors. However, the imperfection of direct-causal dis-
covery methods presents a problem: prediction errors expo-
nentially propagate through the traversal. Due to this critical
issue, existing direct-causal discovery methods fall short in
our setting of identifying all causal variables.

Rather than inferring direct causality, we propose an end-
to-end machine learning approach that identifies all causal
variables of a target variable given observation data including
interventions. Our method trains a deep neural network on
simulated data to learn a causal discovery algorithm that
generalizes to unseen causal structure (Ke et al., 2023). This
data-driven learning approach eliminates the need for explicit assumptions and achieves reduced inference
complexity compared to conventional causal discovery methods with exponential complexity (Zanga et al.,
2022). We employ the Transformer architecture for our causal discovery model (Vaswani et al., 2017),
building on its demonstrated effectiveness in previous works (Lorch et al., 2022). However, the quadratic
complexity of the attention mechanism poses computational challenges in large-scale settings. To address
this, we propose a novel local inference strategy, achieving linear inference complexity with respect to the
number of variables and observations. We provide theoretical validation of our strategy in Section 4.

Empirical evaluations demonstrate our method’s capability to identify causality in systems with thousands
of variables, where existing causal discovery methods suffer from scalability issues even for systems of a
hundred variables (Spirtes et al., 2001; Brouillard et al., 2020; Lorch et al., 2022). We apply our method to
GRN simulation data, demonstrating that our model, trained on random causal-graph structures, effectively
identifies causal relationships within GRNs of E. coli, yeast, and the K562 human cell line (Dibaeinia &
Sinha, 2020; Replogle et al., 2022). We further explore the model’s generalization capability using synthetic
datasets, analyzing performance across different graph structures, generation mechanisms, and noise types,
highlighting its potential for real-world applications.

2 Preliminary and Related Work

2.1 Causality

We consider a set of random variables V = {x1, . . . , xn} that has a causal structure represented by a directed
acyclic graph, G = (V, E). The joint distribution p(V) is defined as

∏
i p(xi | pa(xi)) where pa(xi) means the

set of parent variables of xi in G. Through ancestral sampling, we obtain observations of variables.
Definition 1 (Causality). A variable xj is a cause of xi if and only if ∃c s.t.

p(xi | do(xj = c)) ̸= p(xi).

The operator do(·) represents an intervention that fixes specific variables to predefined values during the
ancestral sampling process (Pearl, 2009). Specifically, the observation for V under do(xj = c) follows
δc(xj)

∏
i ̸=j p(xi | pa(xi)), where δc is a Dirac delta function at c. Definition 1 implies that interventions on

causal variables make a distributional change in the target variable.

We denote the set of causes of xi as ca(xi). We refer to the problem of identifying all causal variables of
a target variable as targeted cause discovery, distinguishing it from the conventional term causal discovery,
which typically refers to the problem of determining the direct-causal graph structure.

2.2 Related Work

Conventional causal discovery approaches aim to infer the causal graph structure G from observations (Zanga
et al., 2022). These approaches can be broadly categorized into constraint-based and score-based methods.
Constraint-based approaches employ conditional independence testing and formalized directional decision
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rules to identify causal relationships (Spirtes et al., 1995; 2001). These approaches require independence
testing over combinatorial sets of variables, resulting in exponential complexity with respect to the number
of variables (Colombo et al., 2014). Score-based approaches optimize the goodness-of-fit of graph structures
on observations while balancing graph complexity (Chickering, 2002; Hauser & Bühlmann, 2012; Zheng et al.,
2018; Brouillard et al., 2020). To navigate the combinatorial graph search space, these approaches rely on
tailored assumptions about graph structures and generation mechanisms (Lopez et al., 2022). An alternative
research direction involves estimating the topological ordering of causal variables to reduce optimization
complexity (Reisach et al., 2021; Sanchez et al., 2023). Additionally, there are efforts to locally identify the
direct causes of a specific variable through conditional independence testing, though these methods still face
exponential complexity (Aliferis et al., 2010; Gao & Ji, 2015).

Recent efforts have shifted from traditional statistical modeling of graph structures and generation mecha-
nisms to learning-based approaches that leverage large amounts of data and computational power (Lopez-Paz
et al., 2015; Löwe et al., 2022; Lorch et al., 2022; Ke et al., 2023; Wu et al., 2024). These methods involve col-
lecting synthetic data with known ground-truth causal graphs and training neural networks to predict graph
structures, given the observations (Ke et al., 2023). In this work, we analyze the generalization performance
of these data-driven approaches in large-scale, complex systems. Specifically, we propose a novel strategy
that identifies both direct and indirect causes with linear complexity, efficiently scaling to accommodate
thousands of variables.

3 Targeted Cause Discovery versus Causal Discovery
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Figure 2: Targeted cause discovery error rate
as a function of shortest path length between
variables. Direct cause denotes an approach
that infers causes from an estimated direct-
causal graph, while Cause refers to our method
that directly estimates causes of a variable. We
provide detailed experimental setting in Ap-
pendix B.5.

Targeted cause discovery offers several technical advantages
over direct-causal discovery, suggesting that conventional
causal discovery methods can be ineffective in scenarios
where identifying all causes of a target is the primary ob-
jective.

1) Error propagation mitigation: Inferring causes from an
inaccurately estimated direct-causal graph leads to expo-
nentially propagated errors. For a direct-causal discovery
algorithm with an expected prediction error rate of e, the
error rate for estimating causes at a distance d from the tar-
get on the graph is approximately 1 − (1 − e)d. Our cause
discovery method circumvents this issue by directly infer-
ring causality among distant variables. Figure 2, shows em-
pirical measurements of prediction error rates over varying
distances between the target variable and its causes. The
results demonstrate that our method maintains consistent
error rates regardless of the distances, while error rates in
the direct-causal discovery method increase with distance.

Table 1: Averaged ratio of causes (or direct
causes) per node, i.e., |ca(x)|/n (or |pa(x)|/n).
We draw statistics from 10 graphs, each with
1000 nodes and an average in-degree of 2.

Graph type Direct cause Cause
Erdős–Rényi 0.2% 1.1∼1.2%
Scale-free 0.2% 0.4∼2.2%
Gene regulatory 0.2% 0.5∼1.1%

2) Addressing sparsity: Targeted cause discovery mitigates
the sparsity issue of identifying direct causes in large-scale
settings. For example, in the E. coli GRN, there are ap-
proximately 2.3 direct causes per gene among 1,565 genes
(Dibaeinia & Sinha, 2020). This severe sparsity leads to
imbalanced classification and poses challenges for machine
learning algorithms (Kaur et al., 2019). As shown in Ta-
ble 1, converting the problem from identifying direct causes
to identifying all causes alleviates this sparsity, thereby eas-
ing the associated technical challenges.

3) Local inference guarantee: Targeted cause discovery theoretically ensures local inference, allowing for the
inference of relationships between variables using only a subset of the system’s variables (Proposition 1).
This property is especially useful in large-scale settings where processing data from all variables becomes
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computationally prohibitive. Leveraging this property, we propose an efficient algorithm capable of scaling
to thousands of variables, as detailed in Section 4.2. It is worth noting that, as described in Proposition 1,
the local inference does not hold for direct-causal discovery. We provide a proof in Appendix A.
Proposition 1. For a variable subset V = {xi} ∪ {xj | j ∈ I} where I ⊆ {1, . . . , n}, let ca(xi; V ) indicate
the set of causal variables of xi in the system consisting of V (i.e., the causal graph with variables not in
V marginalized out). Similarly, we define pa(xi; V ) as the set of direct causes within V . Then, ca(xi; V ) =
ca(xi) ∩ V . However, a counter-example exists for direct causes: pa(xi; V ) ̸= pa(xi) ∩ V .

4 Method

In this section, we present our method for Targeted Cause Discovery with Data-driven Learning, termed
TCD-DL. We consider a system with n variables {x1, . . . , xn} having an underlying causal structure G. We
denote the observation data as X ∈ Rn×m, where m is the number of observations. In the interventional
setting, we define a boolean matrix M ∈ {0, 1}n×m, where 1 indicates the occurrence of interventions.

Our problem objective is as follows: Given a target variable xi, predict a label li ∈ {0, 1}n from the
observation X and intervention matrix M , where li[j] = 1 means xj is a cause of xi, i.e., xj ∈ ca(xi).
We approach this problem from a probabilistic view, estimating a continuous cause score vector si ∈ Rn,
where si[j] measures the relative likelihood of xj being a cause of xi. Here, a higher score indicates a
higher likelihood of causality. This continuous relaxation allows for the use of gradient-based optimization
techniques, which are well-suited for large-scale settings (Bottou, 2010).

4.1 Data-Driven Learning

A straightforward approach to discovering causality involves conducting interventions on every single variable
with a statistically sufficient number of trials to confirm the hypothesis. However, it is often impractical
to intervene at every single variable due to experimental limitations and the high costs associated with
conducting a sufficient number of trials (Addanki et al., 2020).

To address this challenge, we develop a parameterized model fθ capable of inferring causality among variables
from observations X of arbitrary size. Specifically, given the index i of the target variable, the model processes
the entire dataset X ∈ Rn×m with intervention matrix M and returns a cause score vector si ∈ Rn as

si = fθ(X, M, i). (inference)

By leveraging the entire dataset, the model processes relational information among all variables.

We implement fθ as a deep neural network and train this model on simulated dataD = {(Xk, Mk,Gk) | k ∈ I}
to learn a causal discovery algorithm that generalizes to unseen causal structure (Ke et al., 2023). Here, I
denotes an index set and Xk represents an observation dataset sampled from a synthetic causal graph Gk with
intervention matrix Mk. We generate synthetic datasets by using a simulator with predefined generation
mechanisms on random graphs, as detailed in Section 5. For a causal graph Gk with nk variables, we compute
a label lk,i ∈ {0, 1}nk for each variable i = 1, . . . , nk, where lk,i[j] = 1 means that the j-th variable is the
cause of the i-th variable in Gk. Our training objective is

minimize
θ

Ek∼IEi∼{1,...,nk}[L(fθ(Xk, Mk, i), lk,i)], (training)

where L is the loss function. In this study, we use binary cross-entropy with logits for L (Wei et al., 2022).

The model fθ comprises two sequential modules, a feature extractor and a score calculator, designed to
optimize compute efficiency. The feature extractor gθ processes the stack [X, M ] ∈ Rn×m×2 to produce
features F ∈ Rn×2×d where each variable corresponds to two d-dimensional features. We employ a multi-layer
axial Transformer for the feature extractor (Ho et al., 2019), a widely adopted architecture in prior studies
(Lorch et al., 2022; Ke et al., 2023). In this study, we evaluate the basic form of the model architecture without
positional encoding to ensure permutation equivariance, while noting that general model architectures for
tensor inputs are applicable to our framework. We provide a detailed model architecture in Appendix B.1.
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Figure 3: Overview of our method. The left figure illustrates a single training step. For simplicity, we
exclude the intervention matrix in the figures, which is also an input to the model fθ.

The score calculator h computes the cause score vector si for a target index i using dot-product between
features as h(F, i) = F [:, 0]F [i, 1] ∈ Rn, where F [:, 0] ∈ Rn×d and F [i, 1] ∈ Rd. To sum up, fθ(X, M, i) =
h(gθ(X, M), i) = h(F, i). This design allows for the reuse of feature F across multiple target indices i,
enhancing training efficiency with batch data processing.

4.2 Local Inference for Scaling Up

The axial Transformer comprises three main operations: two attention layers over each variable and obser-
vation dimension, and a feed-forward layer (Ho et al., 2019). For an input X ∈ Rn×m, the complexities of
attention layers are O(n2m) and O(nm2), while the complexity of the feed-forward layer is O(nm). The
quadratic complexity of the attention mechanism poses challenges for large-scale data processing in terms of
computational time and memory usage.

To address this issue, we propose a local inference strategy (Figure 3), supported by Proposition 1. Initially,
we specify sizes n′ (< n) and m′ (< m) for variables and observations, respectively, suiting the computing
resources. Given a target variable xi, we randomly subsample a set of variables V ⊂ {x1, . . . , xn} with
|V | = n′ and xi ∈ V . We then extract the corresponding observation matrix XV ∈ Rn′×m and intervention
matrix MV ∈ {0, 1}n′×m. Next, we subsample observations from XV . However, some observations in XV

(i.e., columns) may have unobserved intervened variables, which provide false causal signals among V . Thus,
we select observations in XV where no variables outside of V are intervened, and randomly subsample m′

observations from the selected observations. We denote the resulting subsampled inputs as XV,O ∈ Rn′×m′

and MV,O ∈ {0, 1}n′×m′ , where O denotes the set of subsampled observations. We refer to this subsampling
process as V, O ∼ S(X, M, i).

We locally estimate the causality between variables in V and the target variable xi as fθ(XV,O, MV,O, i) ∈ Rn′ .
By aggregating and averaging the predictions over multiple subsamplings of variables and observations, we
compute the entire cause score vector si. For xj ∈ V , let fθ(XV,O, MV,O, i)[j] mean the cause score value of
xj to xi, calculated with V and O. The ensembled estimation is then

si[j] = EV,O∼S(X,M,i)
[
fθ(XV,O, MV,O, i)[j] | xj ∈ V

]
. (ensembled local-inference)

We provide details of the ensembling process in Algorithm 2. Our algorithm reduces the complexity from
quadratic to linear with respect to the number of variables n. We leave the proof in Appendix A.
Proposition 2 (Algorithm complexity). Let n′ and m′ denote the subsampled variable and observation
sizes, and let T denote the ensemble size. For a dataset X with n variables, the inference complexity of our
algorithm is O(nm′T (n′ + m′)).

For training, we apply the identical random subsampling strategy on inputs and target labels. For Xk and
a target variable index i, we denote the subsampled data as Xk,V,O ∈ Rn′,m′ and the corresponding target
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label as lk,i,V ∈ Rn′ . The local version of our training objective becomes

minimize
θ

Ek∼IEi∼{1,...,nk}EV,O∼S(Xk,Mk,i)[L(fθ(Xk,V,O, Mk,V,O, i), lk,i,V )]. (local training)

We optimize fθ using stochastic gradient descent with the AdamW optimizer (Loshchilov & Hutter, 2019).
Algorithms 1 and 2 describe pseudo codes of our training and inference algorithms. We leave detailed
hyperparameters in Appendix B.2.

Algorithm 1 Training (batch version)
inputs: D = {(Xk, Mk,Gk) | k ∈ I}
parameters: subsample sizes n′ and m′, batch
size b
initialize θ
repeat
X ,Y ← ∅, ∅
for j = 1 to b do

k ← sample from I
V, O ← subsample given Xk, Mk

X ← X ∪ {(Xk,V,O, Mk,V,O, i) | xi ∈ V }
Y ← Y ∪ {lk,i,V | xi ∈ V }

end for
g← calculate gradients ∇θL(fθ(·), ·) on X ,Y
θ ← update using gradients g

until convergence
return θ

Algorithm 2 Inference
inputs: X ∈ Rn×m, M ∈ {0, 1}n×m, target in-
dex i
parameters: subsample sizes n′ and m′, #en-
semble T
initialize si ← 0n

for t = 1 to T do
I ← permute({1, . . . , n} \ {i})
split I = ∪b

j=1Ij where b = ⌈ n
n′ ⌉ and |Ij | ≤ n′

for j = 1 to b do
Ij ← Ij ∪ {i} and V ← {xk | k ∈ Ij}
O ← subsample given V, X, M
si[Ij ]← si[Ij ] + fθ(XV,O, MV,O, i)

end for
end for
si ← si/T
return si

5 Experiment

We provide experimental results for our method on targeted cause discovery. In Section 5.1, using a gene
expression simulator, we verify that our model trained on random graphs effectively identifies causality in
biological networks. In Section 5.2, we examine the generalization capability of our model across varying
graph structures and generation mechanisms using synthetic datasets. In Section 5.3, we evaluate the impact
of key design choices in our ensembled local-inference strategy.

5.1 Gene Regulatory Network

5.1.1 Setting

Simulated dataset. We generate the training set D and test set using the SERGIO GRN simulator
(Dibaeinia & Sinha, 2020). This simulator produces single-cell gene expression data, modeling the stochastic
nature of transcription based on a user-provided GRN. We conduct experiments over varying levels of simu-
lator’s observational fidelity, where higher fidelity yields expression data closer to the population parameters.
Details about the simulator, including the generation mechanisms and the definition of fidelity levels, are
provided in Appendix B.3.

For the training dataset, we use random graph structures including Erdős–Rényi (ER), Scale-Free (SF), and
Stochastic Block Model (SBM) with 1,000 variables (Drobyshevskiy & Turdakov, 2019). The test data is
generated from biological GRNs of E. coli (1,565 genes) and yeast (4,441 genes) as obtained from Marbach
et al. (2009). Interventions are simulated by knocking out individual genes, i.e., setting their transcription
rates to zero. We generate 10 samples per intervention with the simulator configuration adopted from Lorch
et al. (2022), along with 500 observational samples (details provided in Appendix B.3). We analyze the
impact of intervention on performance in Appendix C.1.
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Figure 4: Benchmarking results. (a) Performance on E. coli GRN with 1565 genes over varying levels of
simulator’s observational fidelity. We provide AUROC, AP, and F1 score values including standard deviations
in Table 9. (b) Targeted cause discovery error rate as a function of shortest path length between variables.

Baseline. We evaluate methods that are scalable to our setting, allowing for a comprehensive comparison
across different approaches to causal discovery and GRN inference. As baselines, we include a random
guessing model, the absolute correlation score, and the regression-based approach sortnregress (Reisach
et al., 2021). For causal discovery methods discussed in Section 2.2, we consider the score-based approach
DCD-FG (Lopez et al., 2022) and the learning-based approach AVICI (Lorch et al., 2022). Constraint-based
methods like the PC algorithm are not considered in our analysis due to their limited scalability (Spirtes
et al., 1995; 2001). Additionally, we assess GRN inference methods, including the tree-based method GENIE3
(Huynh-Thu et al., 2010) and the linear factor-model PMF-GRN (Skok Gibbs et al., 2024). These methods
compute likelihood scores for (direct) causal relationships between variable pairs. We derive cause score
vectors si of baseline methods using these likelihood scores.

Evaluation metric. We evaluate the targeted cause discovery performance on variables having at least
one causal variable. For each target variable, we compare the predicted cause score vector against the
ground-truth binary label, where 1 indicates a causal relationship between variables. We employ AUROC,
Average Precision (AP), and F1 score for this binary classification task (Rainio et al., 2024). To calculate the
F1 score, we threshold the cause scores to match the number of positive predictions with the ground-truth
labels. We measure average performance across all valid variables (those with at least one cause) in a test
system. We obtain statistics using expression data with 10 different random seeds for sampling.

5.1.2 Analysis

Benchmarking results. Figure 4-a presents the targeted cause discovery performance on E. coli GRN.
Our approach consistently achieves the best performance by a large margin, demonstrating the effectiveness
of our data-driven learning. The results reveal the shortcomings of existing methods relying on specific
assumptions. Linear models (correlation, sortnregress) fail to identify causality in our settings with complex
generation mechanisms. As a sanity check, we observe that correlation achieves 70.7% AUROC on causal
graphs with linear generation mechanisms, showing moderate performance under valid assumptions. The
score-based approach (DCD-FG) performs near randomly, likely due to invalid assumptions about graph
structures and generation mechanisms. Notably, our method significantly outperforms the existing learning
approach (AVICI), demonstrating the effectiveness of our approach for targeted cause discovery.

To gain deeper insight into the performance improvements, we measure the false negative rate as a function
of distance in the ground-truth causal graph (Figure 4-b). We threshold the cause scores of best-performing
methods to ensure an identical number of positive predictions. The results reveal that cause scores of baseline
methods exhibit an increasing error rate as the distance increases, while our method maintains consistent
performance. These findings highlight a key advantage of our approach, identifying both proximal and
distant causes without performance degradation.
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Figure 5: Out-of-distribution performance. Box plots of targeted cause discovery performance on novel
graph structures, mechanism parameters (mech.), and noise configurations unseen during training.

Table 2: AUROC (%) on random graphs
(validation) and E. coli GRN (test).

Data \ Fidelity High Medium Low
Validation 89.6 83.3 70.1
Test 94.6 81.7 71.5

Errors and identifiability. While our model demonstrates
strong performance, there still remain errors, particularly as sim-
ulator fidelity decreases. To investigate the sources of these er-
rors, we compare our model’s performance on random graphs
sampled from the training setting (i.e., validation set) to its per-
formance on E. coli graphs (i.e., test set). Table 2 reveals that
both validation and test performance decline as simulator fidelity
decreases. This parallel degradation suggests that the primary source of error is not a generalization issue,
but rather stems from other factors. This finding raises questions about causal identifiability in low-fidelity
scenarios, indicating that the dataset itself may lack sufficient information for accurate causal inference.
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Figure 6: Causal genes of MYC identified
by our method. Genes are categorized
based on validation from STRING, exist-
ing literature, and top-20 gene expression
correlations, where PTMA and RPS6 are
validated as effects of MYC.

Human cell evaluation. We test our simulator-trained model
in a real-world scenario using a Perturb-seq dataset derived from
the K562 cell line of a patient with chronic myelogenous leukemia
(Replogle et al., 2022). We focus on the gene MYC, a key onco-
gene involved in cell proliferation, growth, and apoptosis, fre-
quently overexpressed in cancers (Dhanasekaran et al., 2022).
We compute cause scores for 1,868 genes and select the top 20
genes as predicted causes of MYC expression (Appendix B.4). We
compare these predicted causes against the STRING database
(Szklarczyk et al., 2023), existing literature (Table 7), and top 20
genes with the highest expression correlations to MYC (Figure 6).
Our model demonstrates strong predictive accuracy, achieving
90% precision compared to STRING and 30% precision against
existing literature. Notably, only the gene EEF1A1 shows high
expression correlation with the target, indicating that our method
identifies novel causal factors not captured by correlation rank-
ing. In Appendix C.3, we quantitatively compare our method
to correlation ranking to support this claim, and provide addi-
tional analysis of our model on leukemia-related genes. These
results highlight our model’s potential for real-world applications
in understanding and manipulating gene regulation, particularly
in the context of personalized medicine and targeted therapies
for cancer.

Out-of-distribution evaluation. We further study the generalization capabilities of our model by testing
on mechanism and noise configurations that differ from the training. We adopt the configurations from Lorch
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Figure 7: Training source ablation analysis. The metric used is the relative AUROC, with 100 indicating
the best model’s performance on each test case and 0 corresponds to random prediction, i.e., 100(p −
prandom)/(pbest − prandom), where p denotes the AUROC score of a given model.

et al. (2022), as described in Appendix B.3. Figure 5 shows that our method largely outperforms the baselines
across all settings, demonstrating robust generalization. Notably, when only the graph structure differs from
training, our model shows high prediction capability. However, as generation mechanisms diverge from the
training setting, the performance variance increases. These findings show both the strengths of our approach
and the challenges inherent in generalizing to diverse generation mechanisms.

Runtime measurement. The runtime of our inference algorithm for processing each target variable is 2.5
seconds for E. coli (1,565 genes) and 7.8 seconds for yeast (4,441 genes), as measured with an NVIDIA RTX
3090 GPU. These results highlight that our model, with ensembled local inference, operates within seconds
for large-scale systems. We provide a comparison of the runtime with baseline methods in Appendix C.2,
where some baselines, such as DCD-FG and PMF-GRN, take several hours for inference.

5.2 Ablation Study: Effect of Training Sources

To analyze the impact of training sources, we conduct ablation studies by removing specific causal graph
types from the training dataset and evaluating the resulting models. In Figure 7-a, we use the simulator from
Section 5.1 with varying graph structures, including Erdős–Rényi (ER), directional Scale-Free (SF-direct),
Scale-Free (SF), and Stochastic Block Model (SBM) (Drobyshevskiy & Turdakov, 2019). For Figure 7-b,
we modify the simulator’s generation mechanism to include analytic functions (linear, non-linear multi-layer
perceptron (MLP), polynomial, and sigmoid), while maintaining a scale-free network structure. We set
function parameters according to Wu et al. (2024).

Figure 7 shows the relative performance ranging from 0 (random) to 100 (best) for each test case. Both
subfigures exhibit similar patterns. Diagonal entries show lower performance, indicating a generalization
gap between train and test data sources. However, relative performances exceed 90, demonstrating the
strong generalization capability. Notably, models trained on all data types consistently achieve near-best
performance. This data scaling effect mirrors observations in large-scale language models (Brown et al.,
2020), indicating that diversifying training sources effectively enhances overall causal discovery performance.

5.3 Design Choice Analysis

We analyze the impact of design choices in our ensembled local-inference strategy by sweeping the ensem-
ble size T and the subsampled variable size n′ in Algorithm 2. Figure 8-a demonstrates that performance
improves as ensemble size increases, plateauing around 25. This result validates the effectiveness of our
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Figure 8: Hyperparameter analysis. Performance on E. coli GRN with varying (a) ensemble sizes T and
(b) input variable subsample sizes n′.

ensembled inference approach. Figure 8-b illustrates the effect of subsampled variable size per input. Per-
formance increases with input size up to 200, suggesting that processing larger variable sets through a single
Transformer forward pass allows the model to utilize richer relational information. However, performance
declines for input sizes exceeding 300, indicating conflicting effects between input complexity and information
richness. These results validate our approach of processing a subset of variables, highlighting its effectiveness
compared to processing all variables simultaneously.

6 Conclusion and Discussion

In this work, we propose an effective and scalable approach for targeted cause discovery, aiming to identify
all causal variables of a target variable. Our approach trains a neural network that learns causal discovery
algorithms from simulated data, offering an alternative to existing causal discovery approaches that rely on
specific assumptions. To address large-scale systems, we introduce a local-inference strategy with theoretical
guarantees. Our approach significantly outperforms causal discovery baselines on gene regulatory networks,
demonstrating strong generalization capability across graph structures and generation mechanisms.

Our method shifts the focus from traditional explicit modeling of assumptions to a data engineering problem,
aligning with recent successes of large-scale generative models. We anticipate further performance improve-
ments through data scaling efforts with our scalable framework. On the other hand, the reliance on data
and black-box models reduces interpretability. Ensuring causal identifiability while leveraging the strengths
of data-driven methods represents an important future direction for targeted cause discovery.
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A Proofs and Definitions

Proposition 1. For a variable subset V = {xi} ∪ {xj | j ∈ I} where I ⊆ {1, . . . , n}, let ca(xi; V ) indicate
the set of causal variables of xi in the system consisting of V (i.e., the causal graph with variables not in
V marginalized out). Similarly, we define pa(xi; V ) as the set of direct causes within V . Then, ca(xi; V ) =
ca(xi) ∩ V . However, a counter-example exists for direct causes: pa(xi; V ) ̸= pa(xi) ∩ V .

Proof. Definition 1 does not rely on what other variables are included in the current system. Thus by
definition, we have ca(xi; V ) = ca(xi) ∩ V . In the case of direct cause, let us consider a chain with three
variables of x1 → x2 → x3. By definition, pa(x3) = {x2}. In the system of V = {x1, x3}, x1 becomes
the direct cause of x3, i.e., pa(x3; V ) = {x1}. On the other hand, pa(x3) ∩ V = ∅. Thus, pa(xi; V ) ̸=
pa(xi) ∩ V .

Proposition 2 (Algorithm complexity). Let n′ and m′ denote the subsampled variable and observation sizes,
and let T denote the ensemble size. For a dataset X with n variables and m observations, the inference
complexity of our algorithm is O(nm′T (n′ + m′)).

Proof. The set of n variables can be partitioned into ⌈ n
n′ ⌉ inputs. For each input, the complexities of

attention layers are O(n′2m′) and O(n′m′2), while the complexity of the feed-forward layers is O(n′m′).
Thus processing each variable once results in a complexity of O( n

n′ (n′2m′ + n′m′2)) = O(nm′(n′ + m′)).
Considering an ensemble size of T , the overall computational complexity becomes O(nm′T (n′ + m′)).

B Experimental Settings

B.1 Model Architecture

For feature extractor gθ, we utilize an axial Transformer without positional encoding to ensure permutation
equivariance (Ho et al., 2019). The architecture code is based on the implementation provided by Wu et al.
(2024). Each Transformer layer comprises two attention layers, one along the variable dimension and one
along the observation dimension, followed by a feed-forward layer. Both attention and feed-forward layers
include layer normalization and a skip connection (Ba et al., 2016). Detailed configuration is provided in
Table 3.

As described in Section 4.1, the input to the Transformer is a stack [X, M ] ∈ Rn×m×2, and the output is
a feature matrix F ∈ Rn×2×d. In a basic axial Transformer, the output size for an input of size n×m× 2
is n×m× d, where d is the embedding dimension. We denote this output as H. To obtain the feature
matrix of size n× 2× d, we first average the output H of size n×m× d along the observation dimension
m, resulting in a matrix of size n × d. We then apply two feed-forward layers and concatenate the results
to produce the feature matrix F of size n× 2× d. The total number of trainable parameters of our model
is 62k. We will release the code for our model as open-source.

Table 3: Architecture configuration.

Argument Value
Number of Transformer layers 10
Embedding dimension 16
Number of attention heads 16
Feed-forward layer hidden dimension 96

B.2 Hyperparameter and Computing Environment

Training hyperparameter. We train a neural network using the AdamW optimizer (Loshchilov & Hutter,
2019). The training hyperparameters are detailed in Table 4. We set the batch size to fit our GPU memory
(24GB). We run training for 40,000 steps, with early stopping if validation accuracy does not improve over
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4,000 steps, measured every 200 steps. We tune the learning rate among [6e-4, 8e-4, 1e-3], finding that 8e-4
provides the most stable training performance across all experimental settings. We observe that the optimal
learning rate depends on the model configuration rather than the data types. We employ a cosine learning
rate scheduler, which reduces sensitivity to learning rates during training (Loshchilov & Hutter, 2017). We
do not use dropout, as it empirically reduces performance in our setting. We hypothesize that local training
and inference, predicting answers with partial information, mitigate the need for dropout.

Table 4: Training hyperparameter.

Argument Value
Batch size 32
Training step 40,000
Learning rate 8e-4
Learning rate scheduler cosine
Weight decay 1e-5

Inference hyperparameter. Figure 8 describes the hyperparameters required for our inference procedure
(Algorithm 2). Hyperparameters are selected based on the analysis in Section 5.3. Note that we use the
same sizes, n′ and m′, during training. The observation size is set to 200, identical to the variable size, to
fit within our GPU memory constraints during training.

Table 5: Inference hyperparameter.

Argument Value
Subsampled variable size n′ 200
Subsampled observation size m′ 200
Ensemble size T 50

Computing environment. We conduct all experiments including training and inference, using a NVIDIA
RTX 3090 GPU with 24GB memory. The training time for models in Section 5.1 is approximately 9h, while
inference takes about a few seconds per target (Table 8).

B.3 GRN Simulator

In this section, we describe the SERGIO GRN simulator used in our experiments (Dibaeinia & Sinha, 2020).
Given a user-defined GRN, the simulator generates a gene expression matrix based on a specified cell type
configuration.

Generation mechanism. The simulator samples gene expressions from the steady state of a dynamic
system modeled as stochastic differential equations (Dibaeinia & Sinha, 2020). Master regulators (i.e., root
nodes in the causal graph) operate independently without external regulatory inputs, evolving with fixed
production and decay rates. The regulatory influence of each gene is represented by a Hill function with
pre-determined interaction parameters (Chu et al., 2009). This mechanism captures non-linear relationships
and time-lagged effects, providing a realistic model of gene behavior.

Technical noise. The simulator produces datasets that reflect the statistical properties of real-world
single-cell experimental data, incorporating several types of measurement errors and technical noise:

1. Dropouts: A high proportion of gene expressions (typically 60-95%) are randomly set to zero,
simulating the dropout effect common in single-cell technologies.

2. Outlier genes: Some genes are assigned unusually high expression levels, replicating the presence of
outliers.
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3. Library size: The total expression level for each cell (known as library size) follows a log-normal
distribution, reflecting the variability.

The simulator applies these technical noises sequentially to the expression data sampled from the stochastic
differential equations.

Observational fidelity. To generate the unique molecular identifier (UMI) count expression matrix, a
quantification scheme in single-cell RNA-sequencing, the simulator applies Poisson random sampling to the
expression values λ after incorporating the technical noises (Chen et al., 2018). That is, the final observation
value v is derived as v ∼ Poisson(λ). To evaluate the impact of this Poisson sampling process on targeted
cause discovery performance and to determine the performance ceiling of our method, we control the fidelity
of the Poisson sampling and define three levels:

1. High fidelity: Uses expression λ directly as the observation.

2. Medium fidelity: Uses the mean of 100 samples drawn from Poisson(λ).

3. Low fidelity: Uses a single sample drawn from Poisson(λ).

In Figure 4, we analyze the performance differences across varying levels of the simulator’s observational
fidelity. Unless otherwise specified, we use the high-fidelity setting for our analysis.

Intervention. We use the interventional setting identical to Lorch et al. (2022). Specifically, we perform
gene knockout by setting the expression level of a specific gene to zero. We sample 10 intervened observations
per gene. For example, given a GRN with 1000 genes, this results in an interventional dataset with 10,000
observations. From these observations and variables, we randomly sample subsets of size n′ = 200 and
m′ = 200, as provided in Table 5.

Dataset. This paragraph summarizes the configurations of datasets used in our experiments in Table 6,
adopted from Lorch et al. (2022). We generate training data using random graphs while testing on biolog-
ical GRNs, E. coli (1,565 genes) and yeast (4,441 genes), obtained from Marbach et al. (2009). Figure 9
shows the degree histograms of these graph structures, highlighting the different patterns between biological
graphs and random graphs. We generate interventional data by performing gene knockout on each gene,
obtaining 10 observations per intervention. For yeast, we obtain 5 observations per intervention due to
its larger gene count. We include 500 observational data points, conducting inference using a mixture of
observational and interventional data. We preprocess each observation matrix using log2 counts-per-million
(CPM) normalization following previous works (Lorch et al., 2022).

For the out-of-distribution (OOD) analysis in Figure 5, we adopt configurations from Lorch et al. (2022)
(see Table 4). These configurations include different mechanism function parameters, such as Hill function
coefficients and decay rates, which differ from the training settings. We also test OOD technical noise types,
as described in Table 6. These noise types reflect the statistics of different experimental datasets, which have
varying dropout percentages, outlier ratios, and library size distributions (Lorch et al., 2022).

B.4 Human Cell Dataset

This section describes a Perturb-seq dataset used in the human cell experiments (Figure 6). The dataset
contains gene expression data from the K562 cell line, which is derived from a patient with chronic myeloge-
nous leukemia (Replogle et al., 2022). The dataset includes both interventional and observational data on
gene expression. The intervention is performed through gene knockouts, identical to our simulation setting.
From the Perturb-seq dataset, we obtain 1,868 genes that have undergone intervention. We conduct the
inference among these genes. For each intervention, we randomly subsample 10 observations. We also sam-
ple 500 observational data points, consistent with the number used in our training setting (Table 6). Using
this subsampled dataset, we run our TCD-DL inference algorithm to obtain cause scores for the target gene
MYC, applying the same CPM normalization scheme used in our simulation data (Appendix B.3).

16



Table 6: Dataset configuration. Note for abbreviations used: ER (Erdős–Rényi), SF (Scale-Free), SF-
direct (directional Scale-Free), and SBM (Stochastic Block Model) (Drobyshevskiy & Turdakov, 2019). For
the training data, we randomly select the graph structure and edge degree independently from the candidate
sets. We use a slash (/) symbol to separately denote the statistics for E. coli and yeast GRNs.

Argument Training set Test set
Graph structure {ER, SF, SF-direct, SBM} E. coli/yeast
Average edge degree {2,4,6} 2.3/2.1
Dataset size |D| per graph structure 150 10
Variable size (n) 1,000 1,565/4,441
Number of observations per intervention 10 10/5
Observation size (interventional) 10,000 15,650/22,205
Observation size (observational) 500 500
Number of cell types 10 10
Technical noise type 10x-chromium 10x-chromium
Technical noise type (OOD) - {illumina, drop-seq, smart-seq}

0 5 10

101

102

Degree (in)

C
ou

nt

0 5 10

101

102

Degree (out)

C
ou

nt

0 10 20 30

100

101

102

Degree (in)

C
ou

nt

0 10 20 30

100

101

102

Degree (out)

C
ou

nt

0 1 2

100

101

102

103

Degree (in)

C
ou

nt

0 50 100

100

101

102

103

Degree (out)

C
ou

nt

0 100 200

100

101

102

103

Degree (in)

C
ou

nt

0 1 2

101

102

103

Degree (out)

C
ou

nt

0 2 4 6 8

101

102

Degree (in)

C
ou

nt

0 2 4 6 8
101

102

Degree (out)

C
ou

nt

0 5

101

102

Degree (in)

C
ou

nt

0 100 200 300

100

101

102

103

Degree (out)

C
ou

nt

Erdős–Rényi Scale-free

Directional scale-free (out) Directional scale-free (in)

Stochastic block model E. coli

Figure 9: Edge degree histograms of graph structures considered in our experiments. All graphs have an
average degree of 2. Blue represents the in-degree histogram, and red represents the out-degree histogram.
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Table 7: Causal gene interactions for selected target gene MYC.

Target gene Causal gene Supported by

MYC

EEF1A1 TCD-DL, STRING, Literature (Li et al., 2023), (Wilson et al., 2024), Correlation
NPM1 TCD-DL, STRING, Literature (Hong et al., 2023)
PTMA TCD-DL, STRING, Literature (Lin et al., 2015)
RPL26 TCD-DL, STRING, Literature (Gong et al., 2023)
RPL4 TCD-DL, STRING, Literature (Egoh et al., 2010)
RPS14 TCD-DL, STRING, Literature (Zhou et al., 2013)
RPS15A TCD-DL, STRING, Literature (Liang et al., 2019)
RPS6 TCD-DL, STRING, Literature (Ravitz et al., 2007)
RPL23A TCD-DL, STRING
NCL TCD-DL, STRING
HSPA8 TCD-DL, STRING
HIST1H2AE TCD-DL, STRING
RPL13 TCD-DL, STRING
ACTB TCD-DL, STRING
TUBB TCD-DL, STRING
TUBA1B TCD-DL, STRING
RPL26 TCD-DL, STRING
RPS18 TCD-DL, STRING
LST TCD-DL
VPS37C TCD-DL

B.5 Setting for Error Propagation Analysis

This section outlines the experimental setup for Figure 2 (Section 3). We generate scale-free random graphs
comprising 100 nodes and set the causal mechanism using a 2-layer perceptron with a Tanh activation
function (Wu et al., 2024). The root variables follow a Uniform distribution. We estimate the direct causal
graph using the method proposed by Wu et al. (2024). To facilitate a clear comparison of how the false
negative rate (FNR) changes with increasing cause-effect distance, we threshold the cause scores to achieve
similar FNRs at a cause-effect distance of 1.

C Additional Experimental Results

C.1 Impact of Intervention

We quantitatively assess how intervention information impacts model performance. To this end, we conduct
inference by replacing some of the interventional samples in the model’s input XV,O with observational
samples (Algorithm 2). Note, our model achieves an AUROC/AP of 94.5/38.6% on the E. coli GRN. In the
first experiment, we replace samples with interventions performed on the ground-truth causes of the target
gene with the observational samples. The inference results show a performance of 94.4/37.5%. Interestingly,
we observe a slight decrease in performance, indicating that despite the absence of intervention on the ground-
truth causes, our method leverages intervention information from other variables to amortize inference. On
the other hand, when the input XV,O consists solely of observational samples, the performance dropped to
63.2/1.2%, demonstrating the limitations of inferring causality using only observational data.

C.2 Runtime Comparison

Table 8 compares the inference times of methods for targeted cause discovery. Some baseline methods
(sortnregress and GENIE3) can individually compute a cause score vector for a target, while other baselines
(AVICI, DCD-FG, PMF-GRN) require the calculation of the entire n × n score matrix to obtain a cause
score vector for a target. From the table, our method conducts inference within seconds even for the yeast
gene regulatory network (GRN) comprising 4,441 genes. In contrast, certain baselines encounter memory
issues (AVICI) or require substantial computation time (DCD-FG, PMF-GRN).
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Table 8: Runtime measurement. We measure inference time for identifying the causes of a target variable
with an NVIDIA RTX 3090 GPU. OOM refers to the GPU out-of-memory error.

Species Sortnregress GENIE3 AVICI DCD-FG PMF-GRN TCD-DL (ours)
E. coli (1,565 genes) 0.9s 1.7s 3.1s 1h 55m 3h 2m 2.5s
yeast (4,441 genes) 2.8s 2.7s OOM 98h 31m 10h 46m 7.8s

C.3 Analysis on Human Cells

Comparison to correlation ranking. As illustrated in Figure 6, our method identifies novel causal
factors for the gene MYC that are not captured by correlation ranking. To quantify the disparity between
our model’s predictions and correlation ranking, we analyze statistics across 1,868 genes from the Perturb-seq
dataset. The average rank correlation between our model’s cause scores and correlation-based rankings is
0.068, indicating low ranking similarity. When comparing the top 20 predictions from each approach, on
average only 1.1 genes appear in both sets. Notably, an average of 6.4 genes from our top 20 predictions are
validated by the STRING database, underscoring that our model identifies novel causal factors not captured
by correlation.

Identifying causes of leukemia-related genes. To further validate our predictions from the K562
Perturb-seq dataset, we use the Human Protein Atlas to identify a set of 29 target genes associated with
leukemia (Uhlén et al., 2015). We identify the top 10 causal predictions for each of these target genes,
including those with support from the STRING database, and visualize these interactions in Figure 10. We
further present the resulting GRNs for each leukemia target gene and its predicted causal regulators through
network diagrams in Figures 11 and 12. These visualizations highlight the potential regulatory roles of our
identified causal genes, providing insights into the predicted interactions driving leukemia. Validation against
the STRING database demonstrates that our approach generates well-supported and highly relevant causal
predictions.

Predicted influence of causal genes. We investigate the regulatory influence of each predicted causal
gene over leukemia-related target genes in Figure 13. Notably, nucleophosmin (NPM1) is predicted to
regulate 25 of the 29 leukemia target genes, receiving support from the STRING database for 21 of these
predictions. NPM1 mutations are prevalent in approximately one-third of adult Acute Myeloid Leukemia
(AML) cases, leading to an abnormal cytoplasmic localization of the NPM1 protein (Falini et al., 2020).
Although NPM1 mutations are primarily associated with AML, recent studies have identified them in a
small subset of Chronic Myeloid Leukemia (CML) patients (Young et al., 2021). The prediction that NPM1
regulates a substantial number of leukemia-associated target genes is particularly significant as it provides
insights into potential key regulatory mechanisms underlying leukemia pathology. Understanding how NPM1
influences these target genes in CML could reveal critical pathways involved in leukemia progression and
help identify novel therapeutic targets.
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TCD-DL, STRINGTCD-DL

Figure 10: Predicted causes of leukemia. The matrix illustrates the predicted causality of leukemia-
related target genes by TCD-DL predictions (blue) and TCD-DL predictions supported by STRING (green).
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Target gene

Causal gene 
(TCD-DL, STRING)

Causal gene 
(TCD-DL)

Figure 11: Predicted causes of a leukemia-related gene. GRNs illustrate the causal genes predicted
by TCD-DL (blue) and TCD-DL predictions supported by STRING (green) for each leukemia-related target
gene (pink).
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Target gene

Causal gene 
(TCD-DL, STRING)

Causal gene 
(TCD-DL)

Figure 12: Predicted causes of a leukemia-related gene. GRNs illustrate the causal genes predicted
by TCD-DL (blue) and TCD-DL predictions supported by STRING (green) for each leukemia-related target
gene (pink).
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Figure 13: Predicted influence of causal genes. The histogram shows the number of leukemia-related
target genes predicted to be regulated by each causal gene, with predictions made by TCD-DL (blue) and
TCD-DL supported by STRING (green).

Table 9: Benchmarking results. Targeted cause discovery performance on E. coli GRN with 1565 genes
over varying levels of simulator’s observational fidelity. All measurements are expressed as percentages (%).

Fidelity high Fidelity medium Fidelity low
Method AUROC AP F1 AUROC AP F1 AUROC AP F1
Random 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 50.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0
Correlation 51.1 ± 8.0 0.7 ± 0.2 0.8 ± 0.1 51.0 ± 7.6 0.7 ± 0.2 0.8 ± 0.1 49.8 ± 3.3 0.7 ± 0.1 0.8 ± 0.1
Sortnregress 49.8 ± 0.7 1.4 ± 0.3 1.3 ± 0.4 49.9 ± 0.6 1.4 ± 0.4 1.2 ± 0.4 50.1 ± 0.1 0.7 ± 0.1 0.7 ± 0.2
PMF-GRN 52.6 ± 2.3 0.9 ± 0.1 0.8 ± 0.4 52.9 ± 3.2 1.0 ± 0.2 1.0 ± 0.3 51.5 ± 2.1 1.0 ± 0.1 1.1 ± 0.3
GENIE3 56.0 ± 3.4 2.9 ± 0.8 2.1 ± 0.7 54.3 ± 3.9 2.2 ± 1.1 1.5 ± 0.9 52.2 ± 3.7 1.1 ± 0.2 0.6 ± 0.2
DCD-FG 50.0 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 50.0 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 50.0 ± 0.0 0.5 ± 0.1 1.0 ± 0.0
AVICI 56.5 ± 4.2 1.0 ± 0.2 0.4 ± 0.3 62.7 ± 5.5 3.1 ± 1.7 3.7 ± 2.6 56.5 ± 8.4 1.2 ± 0.9 1.3 ± 1.1

TCD-DL (ours) 94.6 ± 1.8 38.6 ± 6.3 36.3 ± 6.1 81.7 ± 11.3 14.0 ± 11.7 13.4 ± 12.0 71.5 ± 3.7 2.4 ± 1.5 2.0 ± 1.8
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