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ABSTRACT 
Modeling user interfaces (UIs) from visual information allows sys-
tems to make inferences about the functionality and semantics 
needed to support use cases in accessibility, app automation, and 
testing. Current datasets for training machine learning models are 
limited in size due to the costly and time-consuming process of 
manually collecting and annotating UIs. We crawled the web to 
construct WebUI, a large dataset of 400,000 rendered web pages 
associated with automatically extracted metadata. We analyze the 
composition of WebUI and show that while automatically extracted 
data is noisy, most examples meet basic criteria for visual UI mod-
eling. We applied several strategies for incorporating semantics 
found in web pages to increase the performance of visual UI un-
derstanding models in the mobile domain, where less labeled data 
is available: (i) element detection, (ii) screen classifcation and (iii) 
screen similarity. 
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1 INTRODUCTION 
Computational modeling of user interfaces (UIs) allows us to under-
stand design decisions [15, 28], improve their accessibility [55], and 
automate their usage [7, 31, 32]. Often, these systems must interact 
with UIs in environments with incomplete or missing metadata (e.g., 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

CHI ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9421-5/23/04. 
https://doi.org/10.1145/3544548.3581158 

mobile apps authored with inaccessible UI toolkits). This presents 
many challenges since it necessitates that they reliably identify and 
reason about the functionality of the UI to support downstream 
applications. Visual modeling of UIs, which has shown to be a 
promising solution, predicts information directly from a screen-
shot using machine learning models and introduces no additional 
dependencies. 

Building the datasets needed to train accurate visual models 
involves collecting a large number of screenshots paired with their 
underlying semantic or structural representations. Recent eforts to 
collect datasets [15, 55] for data-driven modeling have focused on 
mobile apps, which are typically manually crawled and annotated 
by crowdworkers since they are often difcult to automate. This 
process is both time-consuming and expensive — prior work has 
estimated that collecting a dataset of 72,000 app screens from 10,000 
apps took 5 months and cost $20,000 [15]. Because of this, datasets 
for visual UI modeling are limited in size and can be prohibitively 
expensive to keep updated. 

The web presents a possible solution to UI data scarcity since 
web pages are a promising source of data to bootstrap and enhance 
visual UI understanding. In contrast to mobile UIs, web UIs (i.e., web 
pages) are much easier to crawl since they are authored in a unifed 
parsable language (i.e., HTML) that typically exposes semantics 
(e.g., links and listeners) necessary for automated navigation. The 
same web page can also be viewed in many diferent viewports 
and display settings, which makes it possible to collect a large 
dataset of UIs rendered on a variety of devices (e.g., a smartphone or 
tablet). In addition, web browsers ofer several facilities to extract 
visual, semantic, and stylistic information programmatically. In 
particular, web conventions, such as the semantic HTML and the 
ARIA initiatives, while not always adopted, constitute a large, if 
potentially noisy, source of annotations for UI elements. Finally, 
the web ofers a virtually unlimited supply of data and has already 
been employed as a data source for large-scale machine learning 
[23, 52, 53]. We explore the possibility of automatically collecting 
and labeling a large dataset of web UIs to support visual UI modeling 
in other domains (e.g., mobile). Compared to previous web datasets 
[28], our dataset is much larger, more recent, and contains semantic 
information needed to support common visual UI understanding 
tasks. 

https://doi.org/10.1145/3544548.3581158
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In this paper, we show that a large dataset of automatically 
collected web pages can improve the performance of visual UI 
Understanding models through transfer learning techniques, and 
we verify this phenomenon for three tasks. We frst describe the 
platform that we built to crawl websites automatically and scrape 
relevant visual, semantic, and style data. Our crawler visited a 
total of approximately 400,000 web pages using diferent simulated 
devices. WebUI, the resulting dataset is an order of magnitude larger 
than other publicly available datasets [28]. Next, we analyzed our 
dataset’s composition and estimated data quality using several 
automated metrics: (i) element size, (ii) element occlusion, and 
(iii) layout responsiveness. We found that most websites met basic 
criteria for visual UI modeling. Finally, we propose a framework 
for incorporating web semantics to enhance the performance of 
existing visual UI understanding approaches. We apply it to three 
tasks in the literature: (i) element detection, (ii) screen classifcation 
and (iii) video screen similarity and show that incorporating web 
data improves performance in other target domains, even when 
labels are unavailable. 

To summarize, our paper makes the following contributions: 
(1) The WebUI dataset, which consists of 400,000 web pages 

each accessed with multiple simulated devices. We collected 
WebUI using automated web crawling and automatically 
associated web pages with visual, semantic, and stylistic 
information that can generalize to UIs of other platforms. 

(2) An analyis of the composition and quality of examples in 
WebUI for visual UI modeling in terms of (i) element size, (ii) 
element occlusion, and (iii) website layout responsiveness. 

(3) A demonstration of the usefulness of the WebUI dataset 
through three applications from the literature: (i) element 
detection, (ii) screen classifcation and (iii) screen similarity. 
We show that incorporating web data can lead to perfor-
mance improvements when used in a transfer learning set-
ting, and we verifed its improvement for our three tasks. We 
envision that similar approaches can be used for other tasks 
common in visual UI understanding. Furthermore, we show 
that models trained on only web data can often be directly 
applied to other domains (e.g., Android app screens). 

All code, models, and data will be released to the public to encourage 
further research in this area. 

2 RELATED WORK 

2.1 Datasets for UI Modeling 
There have been several datasets collected to support UI modeling, 
mostly in the mobile domain. Several datasets have been collected to 
support training specialized models [26, 40, 44] . The AMP dataset 
consists of 77k screens from 4,068 iOS apps and was originally used 
to train Screen Recognition, an enhanced screen reader [55], but 
has also been extended with additional pairwise annotations to 
support automated crawling applications [20]. 

The largest publicly available dataset Rico, which consists of 
72K app screens from 9.7K Android apps, was collected using a 
combination of automated and human crawling [15]. It captures 
aspects of user interfaces that are static (e.g., app screenshots) and 
dynamic (e.g., animations and user interaction traces). Rico has 
served as the primary source of data for much UI understanding 

research and it has been extended and re-labeled to support many 
downstream applications, such as natural language interaction [7, 
32, 49] and UI retrieval for design [6, 15]. 

Nevertheless, Rico has several weaknesses [14]. Several works 
have identifed labeling errors and noise (e.g., nodes in the view 
hierarchy do not match up with the screenshot). To this end, eforts 
have been made to repair and flter examples. Enrico frst randomly 
sampled 10,000 examples from Rico then cleaned and provided 
additional annotations for 1460 of them [29]. The VINS dataset [6] is 
a dataset for UI element detection that was created by collecting and 
manually taking screenshots from several sources, including Rico. 
The Clay dataset (60K app screens) was generated by denoising 
Rico through a pipeline of automated machine learning models and 
human annotators to provide element labels [30]. Rico and other 
manually annotated datasets are expensive to create and update, and 
thus, models trained on them may exhibit degraded performance 
on newer design guidelines (e.g., Material Design is an updated 
design look for Android). For example, Rico was collected in early 
2017 and has yet to see any update. Finally, many of these datasets 
focus on one particular platform (e.g., mobile phone) and therefore 
may learn visual patterns specifc to the screen dimensions. For 
example, “hamburger menus” are usually used in mobile apps while 
desktop apps may use navigation bars. 

In our work, we scrape the web for examples of UIs, which 
addresses some drawbacks (high cost, difcult to update, device-
dependent) of current datasets but not others (dataset noise). The 
closest to our work is Webzeitgeist [28], which also used automated 
crawling to mine the design of web pages. To support design mining 
and machine learning applications, Webzeitgeist crawled 103,744 
webpages and associated web elements with extracted properties 
such as HTML tag, size, font, and color. This work is primarily used 
for data-driven design applications and does not attempt to transfer 
semantics to other domains. We also collect multiple views of each 
website and query the browser for accessibility metadata, which 
can further facilitate UI modeling applications. 

2.2 Applications of UI Datasets 
Applications that operate and improve existing UIs must reliably 
identify their composition and functionality. Originally, many relied 
on pixel-based or heuristic matching [1, 18, 43, 54]. The introduc-
tion of large UI datasets, such as those previously discussed, have 
provided the opportunity to learn more robust computational mod-
els, especially those from visual data. The goal of this paper is to 
improve the performance of these computational models by lever-
aging a large body of web data and its associated semantics. There 
have been many eforts to learn the semantics of UIs [37, 49, 50]. In 
this paper, we focus on three modeling tasks at the (i) element (ele-
ment detection), (ii) screen (screen classifcation), and (iii) app-level 
(screen similarity). 

Element detection identifes the location and type of UI widgets 
from a screenshot and has applications in accessibility metadata 
repair [55], design search [6], and software testing [12, 51]. Labeled 
datasets for element detection exist [6, 15, 30, 55]; however they 
are quite small compared to other datasets for object detection [36] 
which contain an order of magnitude more examples (330K). We 
found that incorporating our web UI dataset (400K examples) in a 
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pre-training phase led to performance benefts. Other work involves 
modeling UIs at a higher level (e.g., screen-level) to reason about the 
design categorization [29] and purpose [49] of a screen. Similarly, 
datasets with screen-level annotations of UIs are much smaller than 
others used in the CV literature [17] so we used additional web 
data to improve accuracy. Finally, we investigated screen similarity, 
a task that reasons about multiple UI inputs (e.g., frames of a video 
recording), where no publicly available labeled data exists. We 
found that models trained on related web semantics (e.g., URL 
similarity) were able to successfully generalize to mobile screens. 
In summary, our paper shows that applying examples from the 
web and relevant machine learning techniques can improve the 
performance of computational models that depend on UI data. 

2.3 Related Machine Learning Approaches 
We briefy introduce and summarize three machine learning ap-
proaches that we apply in our paper. Broadly, they fall under a body 
of research known as “transfer learning” which uses knowledge 
from learning one task (e.g., web pages) to improve performance 
on another (e.g., mobile app screens). 

Inductive transfer learning is a technique that improves model 
performance by frst “pre-training” a model on a related task, typi-
cally where a lot of data is available [42]. Once the model converges 
on the frst task, its weights are used as a starting point when train-
ing on the target task. Labeled data is required for both the source 
and target domains, although it is possible that there are fewer 
target examples. 

In some cases, labeled data are missing for either the source or 
target domains. If source labels are unavailable, semi-supervised 
learning (SSL) can be applied to take advantage of unlabeled data to 
improve performance [9]. For example, WebUI doesn’t contain any 
labels for screen type (e.g., login screen, register screen), but we’d 
like to use it to improve prediction accuracy on a small number of 
annotated Android app screens. In our work, we apply a form of 
SSL known as “self-learning” [9], where a UI classifcation model it-
eratively improves its performance by generating pseudo-labels for 
an unlabeled dataset, then re-training itself using high-confdence 
samples. 

Finally, to support use-cases where target labels are unavailable, 
we apply unsupervised domain adaptation (UDA) [22]. In many 
cases, visual UI models trained on web data can be directly used 
on any screenshot (including Android and iOS apps), and UDA 
improves the performance and robustness of models to domain 
changes. This type of knowledge transfer is particularly interesting 
because it enables us to explore the feasibility of new UI under-
standing tasks (without manually annotating a large number of 
examples) and bring some benefts of web semantics (e.g., semantic 
HTML) to other platforms. 

3 WEBUI DATASET 
We introduce the WebUI dataset, which we construct and release 
to support UI modeling. The WebUI dataset is composed of 400,000 
web pages automatically crawled from the web. We stored screen-
shots and corresponding metadata from the browser engine, which 
serve as annotations of UI element semantics. Because the collec-
tion process is highly automated, our fnal dataset is an order of 

Database

Crawling 

Coordinator

Crawler


Web

workers

assign URLs 
to worker

send back 
crawled URLs

Request and 
collect data

Figure 1: Overview of our crawling architecture. A crawling 
coordinator contains a queue of URLs to crawl and assigns 
them to workers in a crawler pool. Workers asynchronously 
process URLs by visiting them in a automated browser, scrap-
ing relevant metadata, then uploading them to a cloud data-
base. 

magnitude larger than other publicly available ones (Figure 4) and 
can be more easily updated over time. 

In this section, we give an overview of our web crawling architec-
ture, analyze the composition of our dataset, and provide evidence 
that it can support visual UI modeling for other platforms. 

3.1 Web UI Crawler 
3.1.1 Crawling Architecture. To collect our dataset, we implemented 
a parallelizable cloud-based web crawler. Our crawler consists of 
(i) a crawling coordinator server that keeps track of visited and 
queued URLs, (ii) a pool of crawler workers that scrapes URLs using 
a headless browser, and (iii) a database service that stores uploaded 
artifacts from the workers. The crawler worker is implemented 
using a headless framework [3] for interfacing with the Chrome 
browser. Each crawler worker repeatedly requests a URL from the 
coordinator server, which keeps global data structures for visited 
and upcoming URLs. The crawler worker includes some simple 
heuristics to automatically dismiss certain types of popups (e.g., 
GDPR cookie warnings) to help it access page content. 

We seeded our coordinator using a list of websites that we hy-
pothesized would lead to diverse examples of web pages (e.g., link 
aggregation websites and design blogs) and ones that we expected to 
have high-quality accessibility metadata (e.g., government websites). 
A full list of our seed websites can be found in the supplementary 
materials. 

We explored several crawling policies and eventually settled on 
one that encourages diverse exploration by inversely weighting the 
probability of visiting a URL by its similarity to the visited set. For 
example, if the crawler previously visited http://example.com/user/ 
alpha, it would be less likely to subsequently visit http://example. 
com/user/beta. We set a minimum probability so that it is possible to 
re-visit links to support additional types of analysis (e.g., temporal 
changes). The coordinator organizes upcoming (i.e., queued) URLs 
by their hostname, (i) selects a hostname randomly with uniform 
probability, and then (ii) selects a URL using its assigned probability. 
Empirically, we found this technique to be efective at avoiding 

http://example.com/user/alpha
http://example.com/user/alpha
http://example.com/user/beta
http://example.com/user/beta
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Figure 2: Screenshots from a web page accessed using 6 difer- da
ent devices: 4 desktop resolutions, a smartphone, and a tablet. ro
By requesting a responsive web page at diferent resolutions, co
we induce several layout variations (e.g., navigation and hero ab
button). 
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crawler traps, which are websites that cause automated crawlers to 
get stuck in endless loops navigating within the same site. 

3.1.2 Data Collected from a Web Page. We used a pool of crawler 
workers to crawl web pages in parallel, and we visited each URL 
with multiple simulated devices. We collected several types of se-
mantic information by querying the rendering and accessibility 
engine. We set a timeout limit of 6 minutes for each URL, so some 
web pages were not visited by all simulated devices. 

Simulated Devices. We sampled each web page with 6 sim-
ulated devices: 4 of the most common desktop resolutions [4], a 
tablet, and a mobile phone. Devices are simulated by setting the 
browser window resolution and user agent to match the goal device, 
both of which may afect the page’s content and rendering. 

Screenshots. Our crawler worker captured two types of screen-
shots (i.e., visual data) from websites. We captured a viewport
screenshot, with fxed image dimensions, and a full-page screenshot, 
with variable height. Images were saved using lossy compression 
to save storage. While compression can introduce some artifacts, 
previous work [19] suggests that the efect on deep learning model 
performance is minimal. 

Accessibility Tree. We used a browser automation library to
query Chrome’s developer tools to retrieve an accessibility tree 
for each page [2]. The accessibility tree is a tree-based represen-
tation of a web page that is shown to assistive technology, such 
as screen readers. The tree contains accessibility objects, which 
usually correspond to UI elements and can be queried for properties 
(e.g., clickability, headings).

Compared to the DOM tree, the accessibility tree is simplifed by 
removing redundant nodes (e.g., <div> tags that are only used for 
styling) and automatically populated with semantic information 
via associated ARIA attributes or inferred from the node’s contents. 
The browser generates the accessibility tree using a combination of 
HTML tags, ARIA attributes, and event listeners (e.g., click handlers)
to create a more consistent semantic representation of the UI. For 
instance, there are multiple ways to create a button (e.g., a styled
div) and the accessibility tree is intended to unify all of these to a
single button tag.

Layout and Computed Style. For each element in the accessi-
bility tree, we stored layout information from the rendering engine. 
Specifcally, we retrieved 4 bounding boxes relevant to the “box 
model”: (i) the content bounding box, (ii) the padding bounding

# 
of

 U
Is

0

100,000

200,000

300,000

400,000

500,000

Enrico VINS Clay Rico Screen 
Recognition

Webzeitgeist WebUI

UI Dataset Size

Figure 4: Comparison of WebUI to existing UI datasets. We-
bUI contains nearly 400,000 web pages and is nearly one 
order of magnitude larger than existing datasets available 
for download (Enrico, VINS, Clay, Rico). Each web page also 
contains multiple screenshots captured using 6 simulated 
devices. 

box, (iii) the border bounding box, and (iv) the margin bounding
box. Each element was also associated with its computed style in-
formation, which included font size, background color and other 
CSS properties. 

3.2 Dataset Composition 
The WebUI dataset contains 400K web UIs captured over a period 
of 3 months and cost about $500 to crawl. We grouped web pages 
together by their domain name, then generated training (70%), 
validation (10%), and testing (20%) splits. This ensured that similar 
pages from the same website must appear in the same split. We 
created four versions of the training dataset. Three of these splits 
were generated by randomly sampling a subset of the training split: 
Web-7k, Web-70k, Web-350k. We chose 70k as a baseline size, since 
it is approximately the size of existing UI datasets [15, 55]. We 
also generated an additional split (Web-7k-Resampled) to provide a 
small, higher quality split for experimentation. Web-7k-Resampled 
was generated using a class-balancing sampling technique, and 
we removed screens with possible visual defects (e.g., very small,
occluded, or invisible elements). More information about how this 
set was generated can be found in the appendix. The validation and 
test split was always kept the same. 

3.2.1 Comparison to Existing Datasets. WebUI is an order of magni-
tude larger than existing datasets used for UI understanding (Figure 
4) and provides rich semantic and style information not found in
mobile datasets. WebUI focuses on the static properties of web
pages and does not store page loading times or element animations.
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We analyzed the makeup of web UIs and compared them to 
mobile UIs. The distribution of UI types (e.g. Login, News, Search) 
in WebUI are also likely to be diferent than mobile data, since 
many web pages are primarily hypertext documents. We extracted 
elements from the accessibility tree and categorized them using 
their computed accessibility role and the role of any singleton 
parents. For example, a clickable image is created in HTML by 
surrounding an image (<img>) element with an anchor element 
(<a>). Thus, it is possible for elements to be assigned to multiple 
classes. Figure 3 shows the frequency of element types in our dataset. 
Similar to prior work [55], we fnd that text is the most common 
element in our dataset. However, we fnd limited overlap between 
the rest of the label set, possibly due to the nature of web data and 
the mutually exclusive nature of existing label sets. On average, 
there were 60 elements on a web UI, 30 of which were visible in the 
viewport. This is more than the number of elements on mobile app 
screens, which prior work estimated to be around 25 per screen, 
although this may in part be due to diferences in segmentation 
(e.g., a single Rich Text Field on Android can contain diferently 
formatted text while on HTML they would broken up into diferent 
tags). On average, there were also more clickable elements per web 
page (20 on web pages vs 15 “interactable" elements on Android 
apps), likely due to the prevalence of hyperlinks on the web. 

3.2.2 Dataset Qality. Compared to manually labeled examples, 
automatically extracted annotations can contain errors that impact 
modeling performance. We conducted an analysis on a small, ran-
domly sampled data from our dataset (1000 web pages). While there 
are numerous possible defects, we focus on three that we believe are 
most relevant to data quality: (i) element size, (ii) element occlusion, 
and (iii) website responsiveness. Our analysis is primarily focused 
on quantifying possible defects but not reparing them. Previous 
work [30, 44] has explored automated methods for correcting mis-
matched labels and occluded elements, and we expect the overall 
quality of WebUI could be improved if these were applied.. 

Element Size. Element size refers to the dimensions of an anno-
tated object in an image. For example, if a bounding box annotation 
surrounds an object that is too small relative to the image resolution, 
it may be difcult for a model to identify the object. The average 
area of bounding boxes in our data is approximately 14000��2, but 
this may have been infuenced by short segments of text. The Web 
Content Accessibility Guidelines (WCAG) guideline for target size 
also recommends that interactable elements have a minimum size 
of 44 by 44 pixels, so that they can be easily selected by users. In our 
dataset, one third of interactable elements (e.g., elements tagged as 
links or button) were smaller than this threshold. 

Element Occlusion. Element occlusion occurs when one object 
partially or completely covers another in a screenshot. Occluded el-
ements are detrimental to visual modeling since they may represent 
targets that can be impossible to predict correctly. We quantifed the 
occlusion rate by counting the number of screens with overlapping 
leaf elements. We found that 18% of screens in our sampled split 
contained overlapping leaf elements. However, of the overlapping 
elements, only a third of them were occluded by more than 20% of 
their total area. 

Responsive Websites. Website responsiveness relates to how 
well a web page adapts to diferent screen viewports. Since we sim-
ulated multiple devices for each web page, responsive websites are 
likely to produce more variation in their layouts than unresponsive 
ones. To measure responsiveness, we automatically computed met-
rics included in the Chrome Lighthouse tool for estimating layout 
responsiveness: (i) responsiveness of content width to window size 
and (ii) the use of a viewport meta tag, which is needed for proper 
mobile rendering. From our analysis we found that 70% and 80% of 
processed web pages met the frst, and second criteria, respectively. 

In summary, our analysis suggests that most web pages in our 
dataset meet some basic requirements for visual UI modeling. Given 
the reliance of our data collection on extracted accessibility meta-
data, we expect high quality examples to adhere to good accessibility 
practices, such as those outlined by WCAG. However, considering 
the inaccessibility of the web and that many criteria are difcult 
to verify automatically, we also expect many web pages to vio-
late some of these criteria. There are other desirable properties for 
dataset quality that we did not check, e.g., the accurate use of se-
mantic HTML tags, ARIA tags, and tightness of element bounding 
boxes. These properties were harder to verify automatically, since 
they require knowledge of developer intention and associated tasks. 
In our analysis, we only attempt to identify possible defects, and 
we did not attempt to remove or repair samples. This could be a 
direction for future work to improve dataset quality [8, 30]. 

4 TRANSFERRING SEMANTICS FROM WEB 
DATA 

We hypothesized that web data is similar and relevant to modeling 
other types of UIs from their pixels. In this paper, we are specif-
ically interested in the mobile domain, as mobile apps often lack 
metadata and can only be reliably understood from their visual 
appearance. In many cases, manually-annotated mobile datasets 
are small, and in some cases, labels are completely unavailable. We 
used transfer learning to apply our dataset to three existing tasks 
in the UI understanding literature: (i) element detection, (ii) screen 
classifcation, and (iii) screen similarity. Table 1 shows downstream 
applications where UI understanding tasks can beneft from web 
data. Because each task contains diferent constraints (e.g., presence 
of labeled target data) it is difcult to apply a single strategy to 
serve all use-cases. For example, inductive transfer learning typi-
cally requires labels in both the pre-training and fne-tuning phase 
is impossible to apply to a setting where target labels are unavail-
able (e.g., screen similarity). We expect our three transfer learning 
strategies to be applicable to most future use-cases, since they span 
all combinations of labeled data availability (Table 1). 

4.1 Element Detection 
Element detection requires a machine learning model to identify 
the locations and types of UI elements from a screenshot. Often 
these models are based on object detection frameworks. 

Element detection is an example of a task where labeled data is 
available in both the source and target domain (albeit fewer exam-
ples of mobile screens), so it is possible to employ inductive transfer 
learning. The WebUI dataset contains the locations of elements that 
we scraped from the website accessibility tree. Element types are 
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Table 1: Table of strategies for transferring semantics from web pages to other types of UIs. We explored scenarios where 
labeled data is missing in either domain by applying three strategies: (i) fnetuning, (ii) semi-supervised learning, and (iii) 
domain adaptation. 

Approach Finetuning Semi-supervised Learning Domain Adaptation 

Application Element Detection Screen Classifcation Screen Similarity 

Web (Source) Y N Y 
Mobile (Target) Y Y N 

Web 
Data

VINS
Element 
Detector

Element 
DetectorStep 1:


Pre-training
Step 3: 

Fine-tuning

Step 2: Weight initialization

Figure 5: We applied inductive transfer learning to improve 
the performance of a element detection model. First, we pre-
trained the model on web pages to predict the location of 
nodes in the accessibility tree. Then, we used the weights of 
the web model to initialize the downstream model. Finally, 
we fne-tuned the downstream model on a smaller dataset 
consisting of mobile app screens. 

inferred from the HTML tags and the ARIA labels [2]. We show that 
this training strategy results in improvements to element detection 
performance. 

4.1.1 Model Implementation. We primarily followed the details 
provided by VINS [6] to implement our element detection model. 
The VINS dataset, which we used for training, is composed of 
4800 annotated UI screenshots from various sources such as design 
wireframes, Android apps, and iOS apps. Since the authors did not 
release ofcial data splits, we randomly partitioned the data into 
training (70%), validation (15%), and testing (15%) sets. This specifc 
split ratio was chosen since it has been used in other UI modeling 
work [50]. The paper identifes 11 primary UI component classes; 
however the released raw dataset includes a total of 22 class labels. 
For the extraneous labels, we either tried to merge them with the 
11 primary labels (e.g., “Remember Me" merged with “Check Box") 
or assigned them to an “Other" class (e.g., “Map") if no good ft was 
found. Instead of the SSD object detection model [38] used by VINS, 
we opted to start from the more recent FCOS model architecture 
[48], since we found it was easier to modify to support multi-label 
training. Previous element detection work [6, 12, 55] trained models 
to assign one class label (e.g., Button, Text feld) to each detected 
element in the screenshot. To take advantage of multiple, nested 
defnitions of web elements in our dataset, we trained the object 
detection model to predict multiple labels for each bounding box. 

Figure 5 illustrates the overall training process. In the pre-training 
phase, the element detection model is trained on a split of the We-
bUI dataset. Due to cost and time constraints, we trained all element 
detection models for a maximum of 5 days. We also used early stop-
ping on the validation metric to reduce the chance of overftting. 
Afterwards, a specifc part of the model was re-initialized (the ob-
ject classifcation head) to match the number of classes in the VINS 

dataset before it was fne-tuned. We found it difcult to modify the 
original SSD architecture to support the multi-label pre-training, 
so we only followed the original training from scratch procedure 
described in the paper as a baseline. 

4.1.2 Results. Table 2 shows the performance of each model con-
fguration on the VINS test set, and we show that our updated 
confgurations lead to signifcant performance improvements. Our 
primary performance metric for this task was the mean average pre-
cision (mAP), which is a standard metric used for object detection 
models that takes into the accuracy of bounding box location (i.e., 
how closely the predicted box overlaps with ground truth) and clas-
sifcation (prediction of object type). The mAP score is calculated 
by computing an individual average precision (AP) score for each 
possible element class (e.g., Text, Check Box), which represents the 
object detector’s accuracy in detecting each object class. The AP 
scores are averaged to produce the mAP score. We calculated the 
mAP score over classes that could be mapped to the original label 
set in the paper [6] i.e., we excluded the “Other" class where there 
was no clear mapping to the original set. We calculated the un-
weighted mean between class APs, which assigns equal importance 
to common and rare element types. Our best model confguration 
performed 0.14 better than the baseline in terms of mAP score. 
While the largest source of improvement over the baseline con-
fguration (SSD) came from the updated FCOS model architecture, 
our fne-tuning procedure contributed to gains as well. Specif-
cally, we note that pre-training with more examples led to better 
performance (around 0.04 mAP). Depending on the downstream 
application of the element detection model, this improvement could 
lead to better user experience but would require further validation. 
For example, a screen reader [55] does not require tight bounding 
boxes; however, it would beneft from detecting more (small) el-
ements on the screen. Query-based design search [6] could also 
retrieve more relevant examples. 

Although we followed the original training procedure as closely 
as possible, we were unable to reach the mAP score reported in the 
original VINS paper. This can be attributed to (i) our use of diferent 
randomized splits and (ii) diferences in mappings between class 
labels from the raw data to the 11 primary classes, which were not 
provided in the previously released code. Nevertheless, since we 
used the same splits and class mappings across all of our model 
confgurations, we expect the relative performance improvements 
to be consistent. 

We also investigated the zero-shot performance of element de-
tectors trained only on web data (i.e., without fne-tuning). It is 
difcult to compute performance quantitatively, since the label sets 
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Table 2: Element detection performance (11 object classes) 
for diferent model confgurations. Pre-training on more web 
screens led to better performance on mobile screens after 
fne-tuning. 

Model Confguration mAP 

SSD (Random Init.) 0.6737 
FCOS (Random Init.) 0.7739 
FCOS (Pre-trained on Web7k) 0.7877 
FCOS (Pre-trained on Web7k-Resampled) 0.7961 
FCOS (Pre-trained on Web70k) 0.7921 
FCOS (Pre-trained on Web350k) 0.8115 

between the web and mobile datasets do not directly overlap. How-
ever, we provide qualitative evidence that zero-shot learning could 
be successful. Figure 6 shows the output of a web model when run 
on mobile app screens from Rico. We conducted minimal prepro-
cessing, such as cropping out the Android system notifcation bar 
and the navigation soft buttons. In many cases, the web analogs 
of mobile text and image elements are detected accurately, which 
suggests that some element classes have consistent appearance 
across platforms. Interestingly, some web classes such as links and 
headings are also detected in the image, which could be used to infer 
new semantics such as clickability [47] and navigation landmarks. 

4.2 Screen Classifcation 
Classifying screen type or functionality from a screenshot can 
be useful for design analysis and automation. Previously, small 
amounts of data have been collected and annotated for this purpose. 
Enrico [29] is an example of a dataset (1460 samples, subset of Rico 
[15]) where each screenshot is assigned to one of 20 mutually-
exclusive design categories. Because of the dataset’s small size, it is 
challenging to train accurate deep learning classifcation models. 
While our web dataset is large, it also does not have the screen-
type annotations, and thus it is not possible to employ the same 
pre-training strategy that was used for element detection. 

Instead, we applied a semi-supervised learning technique known 
as self-training [9]. Self-training is a process that improves model 
performance by iteratively labeling and re-training on a large source 
of unlabeled data. We investigated the efects of using WebUI as the 
unlabeled dataset and show that doing so improves overall screen 
classifcation accuracy. 

4.2.1 Model Implementation. Figure 7 shows our procedure for 
incorporating WebUI data into our model training via self-training. 

First, we trained screen classifer based on the VGG-16 archi-
tecture with batch normalization and dropout [45], as described 
by the Enrico paper [29]. Since ofcial training, validation, and 
testing splits were not provided, we randomly generated our own 
(70%/15%/15%). This model was trained only on data from the Enrico 
training split and served as the teacher classifer. Next, the teacher 
model was used to generate “soft" pseudo-labels for screenshots 
in the WebUI dataset, where each sample was mapped to a vector 
containing probabilities for each class. We followed the procedure 
used by Yalniz et al. [53] to keep only the top K most confdent 

Table 3: Classifcation accuracy (across 20 classes) for dif-
ferent confgurations of our screen classifcation model. In-
creasing the amount of data used with our semi-supervised 
learning method led to increased accuracy. 

Model Confguration Accuracy 

VGG-16 0.4737 
Noisy ResNet-50 0.4649 
Noisy ResNet-50 (Rico) 0.4956 
Noisy ResNet-50 (Web7k) 0.4864 
Noisy ResNet-50 (Web7k-Resampled) 0.4868 
Noisy ResNet-50 (Web70k) 0.5175 
Noisy ResNet-50 (Web350k) 0.5263 

labels for each class. To select K, we frst randomly sampled a small 
subset of 1000 web pages from our dataset and performed a param-
eter search to fnd the optimal value. Based on our experiments, 
we found that a value of 10% of the total dataset size led to good 
performance (e.g., we set K=700 for the Web-7k split). Finally, we 
trained a student classifer on a combination of the original and 
automatically generated labels. We employed a specifc type of 
self-training known as Noisy Student Training [52], which involves 
injecting noise into the student model’s training process so that it 
becomes more robust. Two types of noise are used in this process: 
(i) input noise, which is implemented via random data augmenta-
tion techniques and (ii) model noise, which is implemented with 
dropout [46] and stochastic depth [27]. Because stochastic depth 
can only be applied to model architectures with residual blocks, we 
used an architecture based on ResNet-50 [25] instead of VGG-16. 

4.2.2 Results. Overall, we found that applying self-training to in-
corporate additional unlabeled data led to consistent performance 
improvements (Table 3). The best classifer using WebUI data was 
5% more accurate than the baseline model, which was only trained 
with the Enrico dataset. Our baseline VGG-16 model performed 
considerably worse than the originally reported results [29] but 
achieved similar accuracy to another reproduction of the work [35]. 
The performance diference could be attributed to diferences in 
randomized splits. Since we used the same splits across all condi-
tions, we expect relative performance diferences to be consistent. 
To investigate the efects of using a new model architecture, we also 
trained a Noisy ResNet-50 (architecture used by the student model) 
on the Enrico dataset. The resulting classifer performed relatively 
poorly (worse than the baseline model), since the modifcations 
introduced (dropout and stochastic depth) require more data to 
train efectively. 

The primary source of improvement stems from the inclusion of 
additional unlabeled data during the training process, which led to 
a more generalizable student model. We observed that the small size 
of the Enrico dataset (1460 samples) quickly led to overftting during 
training and limited overall performance. Semi-supervised learning 
techniques, such as self-training, allow training on a much larger 
number of examples. We found that model accuracy improved when 
we incorporated more unlabeled examples, both from WebUI and 
Rico. 
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Figure 6: Output of our element detection models run on two app screens. In many cases, detections from our web-only model 
(Blue) coincide with ones from our fne-tuned model (Orange), which suggests some zero-shot transfer capabilities. Predicted 
tags from the web-only model also provide additional metadata corresponding to clickability (link) and heading prediction 
(heading); however, the predicted bounding boxes are often less tight than the fne-tuned model. 
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Figure 7: We applied semi-supervised learning to boost screen 
classifcation performance using unlabeled web data. First, a 
teacher classifer is trained using a “gold" dataset of labeled 
mobile screens. Then, the teacher classifer is used to gener-
ate a “silver" dataset of pseudo-labels by running it on a large, 
unlabeled data source (e.g., web data). Finally, the “gold" and 
“silver" datasets are combined when training a student classi-
fer, which is larger and regularized with noise to improve 
generalization. This process can be repeated; however, we 
only perform one iteration. 

4.3 Screen Similarity 

Web
Data

Similarity
Model

RICO

UI Similarity

Mobile Examples
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Figure 8: We used unsupervised domain adaptation (UDA) to 
train a screen similarity model that predicts relationships 
between pairs of web pages and mobile app screens. The 
training uses web data to learn similarity between screen-
shots using their associated URLs. Unlabeled data from Rico 
is used to train an domain-adversarial network, which guides 
the main model to learn features that transferrable from web 
pages to mobile screens. 

Identifying variations within the same screen and detecting tran-
sitions to new screens are useful for replaying user interaction 
traces, processing bug reports [13], and automated app testing 
[33, 34]. To model these properties and understand how multiple 
screens from an application relate to each other, previous work 
[20, 34] has sought to diferentiate between distinct UIs and varia-
tions of the same UI. For example, the same checkout screen may 
appear diferent based on the number and types of products added 
to the cart. Common screen interactions such as scrolling and in-
teraction with expandable widgets (e.g., menus, dialogs, keyboards,
and notifcations) may also alter the visual appearance of a screen. 
Visual prediction reduces system reliance on accessibility metadata, 
which may be missing or incomplete, and further extends the ap-
plications of these models, as they can process video recordings of 
user interactions (e.g., reproducing bug reports) [5, 13].

Previous work [20] opted to manually annotate a dataset of 
more than one thousand iPhone applications that were manually 
“crawled" by crowdworkers; however, the dataset was not released 
to the public. As a weak source of annotation, we used web page 
URLs to automatically label page relations. Since no labeled data is 
available in the mobile domain, we employed domain-adversarial 
network training [22], a type of unsupervised domain adaptation 
(UDA), to encourage the model to learn transferrable features from 
the web domain that might apply to the mobile domain. Note that 
while it is possible to apply the semi-supervised learning strategy 
(which was used for the screen classifcation task) in reverse, it may 
be less efective, since the unlabeled dataset (mobile UIs) is smaller 
than the labeled dataset. 

4.3.1 Model Implementation. We followed previous work [20] and 
used a ResNet-18 [25] model trained as a siamese network [24]. The 
siamese network uses the same model to encode two inputs, then 
compares them in feature space (i.e., their embeddings) to decide if
they are diferent variations of the same UI screen. Our approach is 
diferent from the method proposed by previous work [13], which 
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Table 4: Classifcation performance (same-screen vs new-
screen) of our screen similarity models evaluated on pairs 
of screens from our web data. Performance increased when 
the model was trained on more data and slightly decreased 
when trained with the UDA objective. 

Model Confguration F1-Score 
ResNet-18 (Web7k) 0.7097 
ResNet-18 UDA (Web7k) 0.7184 
ResNet-18 (Web7k-Resampled) 0.7368 
ResNet-18 UDA (Web7k-Resampled) 0.7191 
ResNet-18 (Web70k) 0.8222 
ResNet-18 UDA (Web70k) 0.8193 
ResNet-18 (Web350k) 0.9630 
ResNet-18 UDA (Web350k) 0.9500 

applies random data augmentations (e.g., blurring, rotation, trans-
lation) to screenshots to create same-screen pairs. Instead, we ran-
domly sampled pairs of screenshots from our web data for training, 
with balanced probability for same-screen and new-screen pairs. 
Same-screen pairs were generated by fnding screenshots with the 
same URL but accessed at diferent times or simulating page scrolls 
on a full-page screen capture by sliding a window vertically along 
the image. Note that occasionally, simulated page scrolls and access-
ing the same web page at diferent times still produced identical or 
nearly identical screenshots, so in our test set, we fltered these out 
using perceptual hashing. Diferent-screen pairs were generated 
both by sampling screenshots from within the same domain but 
with diferent URL path, and by sampling screenshots from other 
domains. 

The domain-adversarial training process seeks to simultaneously 
accomplish two objectives: (i) learn an embedding space where two
screenshots are from the same screen if their distance is less than a 
threshold, and (ii) learn an encoding function that applies to both
the web and mobile domains. The frst objective is related to the 
primary task of distinguishing same-screen pairs from new-screen 
pairs and is achieved with a pairwise margin-based loss [20]. The 
second objective aims to align the feature distributions of the two 
domains by maximizing the error rate of a domain classifer, which
is a network that tries to classify whether a sample is from a web 
or mobile UI. For this task, we used only web page screenshots cap-
tured on simulated smartphones, to make the domain classifcation 
objective more challenging. 

4.3.2 Results. Since one of the assumptions of our problem is that 
labeled examples of same-screen and new-screen pairs are unavail-
able for mobile apps, we used two alternative methods to evaluate 
our screen similarity model: (i) quantitative evaluation on labeled
pairs of web screens and (ii) qualitative evaluation on a set of unla-
beled Android interaction videos. 

Table 4 shows the quantitative performance of our models evalu-
ated on pairs of web pages from our dataset. Overall, training with 
more data led to signifcantly better performance, an increase of 
over 20%. The inclusion of a domain adaptation objective sometimes 
led to a slight drop in classifcation performance since it introduces 

additional constraints in the learning process. We qualitatively eval-
uated our model’s performance characteristics on mobile screens 
by using them to segment videos of mobile app interaction. We 
used a dataset of screen recordings of bug reproductions [13] for 6 
open-source Android apps and applied our model by sequentially 
sampling frames from the video and evaluating whether a new 
screen was reached. Note our sampling process difers from other 
previous work [7, 15] that segmented crawls at recording time us-
ing accessibility metadata, because we do not have accessibility 
metadata corresponding to the previously collected recordings used 
in our analysis. Figure 9 shows an example of a usage video pro-
cessed by our model. While the web model was efective detecting 
some types of transitions that occurred in mobile apps, it was less 
efective at others, such as software keyboards and dialogs, which 
do not occur frequently in the WebUI dataset. We include more 
model-generated segmentations of the bug reproduction dataset in 
supplementary material. 

In this work, we applied unsupervised domain adaptation, which
does not require any labels from the target domain. Other domain 
adaptation strategies exist, and some are able to incorporate small 
amounts of labeled data, which we expect could improve the accu-
racy of our model by contributing transition types unique to mobile 
apps. 

5 DISCUSSION 

5.1 Performance Impact of Web Data 
Empirically, we showed that automatically crawled and annotated 
web pages, like those available in WebUI, can efectively support 
common visual modeling tasks for other domains (e.g., mobile apps)
through transfer learning strategies. In cases where a small amount 
of labeled mobile data was available, as in element detection and 
screen classifcation, incorporating web data led to better perfor-
mance. Even when labeled data was completely unavailable, as in 
screen similarity, models trained only on web data could often be 
directly applied to mobile app screens. Our results suggest that the 
size of current UI datasets may be a limiting factor, since model 
performance increases consistently when trained on larger splits 
of data. Our observations and analysis of WebUI’s composition 
showed that web pages can difer from mobile app screens in terms 
of complexity (i.e., average number of on-screen elements) and
element types. However, the performance improvements from our 
machine learning experiments suggest that web and mobile UIs are 
similar enough to transfer some types of semantics between them. 

We currently only explored three examples, although we believe 
that other UI modeling works [11, 47, 50] can also beneft from 
similar approaches. We did not evaluate all possible applications of 
WebUI in our paper, due to time and cost constraints. However, the 
three experiments we conducted cover all possibilities of source and 
target domain labels (1), so similar transfer learning techniques are 
likely to apply. Future work that builds upon WebUI can conduct 
more detailed evaluations of other downstream tasks. 

One specifc area that we believe is promising for future work 
is automated design verifcation [41], which could beneft from a 
large volume of web pages containing paired visual and stylistic 
information. Our highly automated data collection process also 
allows WebUI to be more easily updated in the future by re-visiting 
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Figure 9: Examples of interaction videos segmented by our best models trained with UDA (Red) and without UDA (Blue). Videos 
are sampled at 1 fps. The output of both models contain errors, however, we found that the adapted UDA model generally 
produced better segmentations. Common errors include oversegmentation due to app dialogs and soft keyboards, which do not 
occur in the WebUI dataset. 

the same list of URLs. An updated version of the dataset could also 
facilitate longitudinal analysis of the design [14] and accessibil-
ity [21] of web UIs. Nevertheless, WebUI is currently unlikely to 
support other types of modeling, such as user interaction mining 
[15, 16], that require realistic interaction traces, since our crawling 
strategy was largely based on random link traversal. 

5.2 Improved Automated Crawling 
Our crawler was unable to access much of the “deep web" (i.e., 
large part of the web that cannot be indexed), and thus our dataset 
contains few, if any, web pages that are not publicly accessible 
or protected by authentication fows. It also did not attempt to 
interact with all elements on a web page and conducted a very 
limited exploration of any JavaScript-enabled functionality that 
might have been present. Trends in web and app development, 
such as the creation of Progressive Web Apps (PWAs), suggest that 
this type of functionality will become more common, and traditional 
link-based traversal may become less efective at exploring UI states. 

To improve automated crawling and data collection, our crawler 
could beneft from a semantic understanding of web pages. For 
example, it could detect page functionality to explore states that 
require human input and either execute automated routines (e.g. 
detecting login felds) or employ crowdsourcing [15] to allow it to 

proceed in more complex scenarios. Our currently trained models 
could augment or improve this process by identifying tasks associ-
ated with web pages (e.g., screen classifcation) or by augmenting
potentially noisy labels provided by the automatically generated 
accessibility tree. In turn, the crawler could explore more of the 
web, leading to higher quality and more diverse data. If repeated 
iteratively, this process would constitute a form of Never-Ending 
Learning [39], a machine learning paradigm where models learn 
continuously over long periods of time. Instead of learning from a 
fxed dataset, models could constantly improve itself by encounter-
ing new content and designs, both of which are important due to 
the dynamic nature of UIs. 

5.3 Generalized UI Understanding 
Our experiments show that incorporating web data is most efec-
tive for improving visual UI modeling in transfer learning settings 
where a limited amount of target labels are available for fne-tuning. 
A logical next step is to obtain similar benefts without any addi-
tional labeled data. To this end, we identifed several strategies for 
improving generalization. First, unlike existing UI datasets that 
contain examples from one device type, we intentionally simulated 
multiple viewports and devices during data collection. The decom-
position of one-hot labels (where each element type is assigned 
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exactly one type) into combinations of multi-hot tags (each element 
can be assigned multiple labels) may also be useful, since it avoids 
the problem of platform-specifc element types. Figure 6 demon-
strates the zero-shot transfer capabilities of models trained only 
on web data by successfully detecting and classifying elements on 
Android app screens. While the label sets of web and Android data 
do not directly overlap, the web model outputs reasonable analogs 
(e.g., Text, link) for Android widgets (e.g., Text Button). Finally, our 
screen similarity model shows how unsupervised domain adaptation 
can improve the transferrability of learned features across domains 
through an explicit machine learning objective. 

A long-term goal of our automated data collection and modeling 
eforts is achieving a more generalized understanding of UIs — a 
single model that could be used to predict semantics for any UI. This 
is challenging due to difering design guidelines and paradigms, but 
it could ultimately lead to a better understanding of how to solve 
UI problems across platforms. 

6 CONCLUSION 
In this paper, we introduced WebUI, a dataset of approximately 
400,000 web pages paired with visual, semantic, and style informa-
tion to support visual UI modeling. Unlike most existing datasets for 
UI research that depend on costly and time-consuming human ex-
ploration and annotation, WebUI was collected with a web crawler 
that uses existing metadata, such as the accessibility tree and com-
puted styles, as noisy labels for visual prediction. Our highly auto-
mated process allowed us to collect an order of magnitude more 
UIs than other publicly released datasets and often associates more 
information (e.g., clickability, responsiveness) with each example. 
We demonstrated the utility of our dataset by incorporating it into 
three visual UI modeling tasks in the mobile domain: (i) element de-
tection, (ii) screen classifcation, and (iii) screen similarity. In cases 
where a small amount of labeled mobile data exists, incorporating 
web data led to increased performance, and in cases without any 
labeled mobile data, we found that models trained on web pages 
could often generalize to mobile app screens. In summary, our work 
shows that the web constitutes a large source of data that can more 
sustainably be crawled and mined for supporting visual UI research 
and modeling. 
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A ADDITIONAL DATASET SAMPLES 
We provide additional samples from the WebUI (Figure 10) to sup-
plement the example in the paper (Figure 2). Our example gallery 
shows several diferent types of websites, including login, landing, 
product, portfolio, and informational pages. Each website is cap-
tured using diferent simulated devices, which shows, among other 
things, how content responds to screen size. We also computed the 
percentile-rank of each web page’s class distribution. 

B CLASS IMBALANCE ANALYSIS 
This section describes analysis of class imbalance of WebUI and 
its efect on transfer learning applications. Similar to other UI 
datasets[55], WebUI exhibits an imbalance of UI element classes, 
where some types of elements (e.g., text) appear much more fre-
quently than others (e.g., images). Several aspects of WebUI (e.g., 
fner-grain text segmentation, multi-hot labels, and prevalence of 
documents on the web) also contributed to class imbalance. 

We used a frequency-based resampling method to generate the 
Web7k-Resampled, which resulted in more examples of infrequent 
element types. Our technique assigned weights to samples to in-
crease the representation of UIs containing rare or infrequent ele-
ment types, and we resampled based on the 10 element types shown 
in Figure 3. Algorithm 1 provides an overview of our resampling 
technique. Note that unlike some class-balancing algorithms (e.g., 
SMOTE [10]), our technique does not generate additional synthetic 
samples and does not include the same screen more than once. 

Web7k-Resampled contains proportionally more examples of 
many infrequent classes (Figure 3). Figure 11 shows the proportional 
increase in screens containing each element type. Figure 12 shows 
the proportional increase in the total number of elements for each 
type. 

The results from our performance evaluations in the main paper 
suggest that this resampled split leads to improvements for each 
of our three tasks when compared to a randomly sampled subset 
of the same size. Notably, the element detector model resampled 
7k split outperformed the one trained on 70k random split, which 
suggests that element balancing was particularly useful for tasks 
where elements types are directly predicted. Tests with other two 
tasks (screen classifcation and screen similarity) also led to im-
provements for the resampled models; however, the gains were 
more modest. The improvements could be because the element 
distribution in the resampled split is closer to that of the target data. 
In addition, we provide a deeper analysis of the Element Detection 
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Figure 10: Samples from WebUI accessed with diferent simulated devices. For each screen, we compute its element type 
distribution (normalized to 1). Then, we computed the percentile-rank of the top 10 classes with respect to the entire dataset. 
For example, the bottom row’s button class has a percentile-rank of 90, meaning the web page’s relative frequency of is greater 
than 90% of others in the dataset. 



1 function SampleSplit (�,�, �); 
Input : Number of samples to choose � , list of element 

classes � , and list of samples � 
Output : Resampled subset of � 
/* Vector containing total frequencies for � ∈ � 

*/ 
2 �� ← total # of elements in � for each class 
/* Matrix where rows are � ∈ � and columns are 

normalized frequency of � ∈ � for � */ 
3 �� ← frequency of classes � ∈ � (columns) for � ∈ � (rows) 
/* Assign sampling weights to � ∈ � inversely 

proportional to frequency */ 
4 �� ← [ 1 | � ∈ �]

�� [� ]
5 samples ← [] 
/* Repeat until desired split size is reached */ 

6 while len(samples) < � do 
7 �� ← Sample(�, �� )
8 �� ← [�� [�, �� ] | � ∈ �] 
9 sample ← SampleWithoutReplace(�,�� )

10 add sample to samples 
11 end 
12 return samples 
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Table 5: Average Precision (AP) of each element class (excluding the “Other" class) for the Element Detection task. 

Element Type SSD (Random) FCOS (Random) FCOS (Web7k) FCOS (Web7k-Re.) FCOS (Web70k) FCOS (Web350k) 

Background Image 0.85 0.88 0.86 0.91 0.85 0.93 
Checked View 0.06 0.28 0.31 0.34 0.32 0.38 
Icon 0.72 0.73 0.75 0.75 0.75 0.77 
Input Field 0.22 0.59 0.7 0.60 0.72 0.69 
Image 0.73 0.8 0.77 0.82 0.78 0.82 
Text 0.66 0.83 0.89 0.84 0.9 0.85 
Text Button 0.57 0.9 0.94 0.94 0.95 0.94 
Page Indicator 0.83 0.76 0.83 0.76 0.79 0.8 
Pop-Up Window 0.85 0.83 0.8 0.85 0.78 0.83 
Sliding Menu 0.95 0.98 0.96 0.98 0.96 0.97 
Switch 0.97 0.93 0.86 0.97 0.91 0.94 

mAP 0.67 0.77 0.79 0.80 0.79 0.81 

Algorithm 1: Pseudo-code for the frequency-based resam-
pling algorithm used to generate the Web7k-Resampled 
split. 
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Change in Screen Frequency after Resampling

Figure 11: We calculated the change in frequency (expressed 
as a ratio) of screens containing at least one of each element 
type after resampling. For example, the number of screens 
containing at least one image element is 2.7x more than in 
the randomly sampled set. 
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Change in Element Frequency after Resampling

Figure 12: We calculated the change in frequency (expressed 
as a ratio) of total number of elements after resampling. For 
example, the average screen in the resampled split contains 
1.3x more images. Note that is possible for most element 
classes to increase in frequency (while not having other 
classes experience a proportional decrease) because element 
classes are not mutually exclusive, and the resampled split 
contains more elements that are assigned multiple tags. 

class, which is most likely to be afected by element type imbal-
ance. Table 5 shows that the Web7k-resampled split has higher AP 
for classes like "Text Button" and "Image", which had increased 
representation after resampling. 
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