Results from the Java EE 8 Community Survey

Our Java EE 8 Community Survey generated several thousand responses! Our thanks to
all of you who contributed!

Due to the large number of questions that we wanted to ask, we ran the survey in two
parts. Here is a summary of the results.

Part 1

The first part of the survey covered topics in the areas of :
* New JSRs
* Web tier / HTML 5
* (DI alignment
* NoSQL

New JSRs

Which of these APls do you think is important to be included into Java EE 87

M Yes B No B Not sure (%)

JCACHE (JSR 107)

Data Grid API (JSR 347)

State Management API (JSR 350)
Identity API (JSR 351)

Java API for JSON Binding

Java EE Configuration
0 25 50 75 100
Approximately 79% of you thought that we should provide a Java API for JSON Binding

and 67% thought that we should include JCache into the Java EE platform. A JSR for
Java EE Configuration also received a strong showing at 64%.

Copyright © 2014, Oracle and/or its affiliates. All Rights Reserved.



Respondents were less sure about the inclusion of the Identity API, Data Grid, or State
Management. Responses for these JSRs showed a high "Not Sure" rate, which for Data
Grid and State Management exceeded the "Yes" rate.

Many of the comments echoed support for the APIs listed in this question, some with
further qualifications. For example, people wanted to make sure that caching, state
management, and data grids were well aligned.

A number of respondents also cautioned us against proliferating the number of
specifications and APIs, against redundant ways of doing things, and against

introducing complexity. Several people advised that APIs should be well integrated
with CDI. A few people asked us to add support for modularity.

Server-sent events

Should we also standardize a Java API for server-sent events?

M Yes H No B Not sure (%)
0 25 50 75 100

Respondents were clearly strongly in favor of adding support for server-sent events.

JavaScript on the Server

Should we define APIs to support use of JavaScript on the server (e.g.,
Project Avatar)?

M Yes B No M Not sure (%)

0 25 50 75 100

With only a 42% "Yes" rate, support for this was quite reserved.



HTML5

What should we add to better enable HTML5 mobile apps?
Responses to this open-ended question were fairly diverse.

One group of responses focused on suggestions that take action mostly or entirely in the
user agent. Within this group, one third suggested standardizing a JavaScript
framework or anointing one particular framework and building integration that
assumes that framework. The remainder were split among suggestions to offer some
kind of direct binding between one or more particular pieces of Java EE and the user
agent, suggestions to standardize one of the client adapter layers such as Sencha touch
or Apache Cordova, and suggestions to put more Java on the user agent.

Another group of responses were focused on JSF. Most suggested building further on
JSF's existing HTML5 support. Many liked the ability of JSF to cleanly address

responsive web design concerns by virtue of its renderkit concept. The remainder
suggested improvements to the markup generated by JSF.

MVC Support

Should Java EE provide support for MVC, alongside JSF?

M Yes H No M Not sure (%)

0 25 50 75 100

Is there any one de-facto standard technology in this space to which we
should look for inspiration?

M Yes B No M Not sure (%)

0 25 50 75 100



While 61% of respondents answered "Yes" to the question as to whether we should
provide MVC support alongside ]JSF, only 26% felt they could identify an existing
technology here. Although this weak "Yes" response rate somewhat devalues the
answers that we received, suggestions around Spring MVC or an approach similar to
that of Spring MVC accounted for about 42% of the responses to the "If so, which?” part
of this question. Angular and Play! were the next most frequently mentioned.

Client API for TSA

Should we investigate standardizing a client API for Thin Server Architecture?

M Yes M No M Not sure (%)
0 25 50 75 100

A weak (52%) majority of the respondents thought that we should investigate this area.

Templating

The next group of questions focused on templating frameworks. Support here was
fairly weak and for two of the questions the "Not Sure" rates rivaled or exceeded the
"Yes" rates.

Should we define a (new) standard templating framework?

M Yes B No B Not sure (%)

0 25 50 75 100




Should we extract Facelets from JSF as the standard template engine for
Java EE?

B No

B Yes

B Not sure (%)

0 25 50 75 100

Should we standardize on another existing technology?

M Yes H No B Not sure (%)
0 25 50 75 100

Only a small fraction of respondents answered the open-ended "If so, which?" part of
this last question. Thymeleaf, Freemarker, and Velocity were the most frequently
mentioned here.

CDI

The next four questions focused on continued CDI alignment. This was one of the focus
areas of Java EE 7.

Should we consider adding Security Interceptors in Java EE 87

M Yes B No B Not sure (%)

0 25 50 75 100



Should we consider replacing @Resource with Implicit Producers?

M Yes M No M Not sure (%)
0 25 50 75 100

Should we consider expanding the use of CDI stereotypes?

M Yes B No M Not sure (%)
0 25 50 75 100

Should we consider generalization of the EJB Timer Service for use by other
managed beans?

M Yes

B No B Not sure (%)

o

25 50 75 100

Should we consider expanding CDI events and observer methods for other
services (e.g., timeout events, JMS messages, ...)?

M Yes B No M Not sure (%)

o
N
(62}
(o)
o
\l
(o))

100



All of these items received a majority of "Yes" responses, although the strength of these
was significantly higher for security interceptors at 79%, generalization of the EJB
Timer Service at 67%, and expanding the use of CDI events and observer at 67%.
Expanding the use of CDI stereotypes received 55% "Yes" votes and Implicit Producers
received only a weak majority at 51%.

NoSQL

Are you using NoSQL today?

M Yes B No 1 Not yet but | plan to B Not sure (%)

0 25 50 75 100

Is it time yet to standardize in this area?

M Yes B No M Not sure (%)

0 25 50 75 100

Should such NoSQL related standardization be:

M Based on JPA?

M In the form of a new API?

B Just a simple key.value store API?
B Other?

0 25 50 75 100



While relatively few indicated that they were using NoSQL today, approximately 41%
thought it was time yet to standardize in this area.

When asked on what such standardization should be based, a relatively small number
of participants responded. The largest number of these (although not a majority)
thought such standardization should be based on JPA.

We received even fewer responses to our "Other?" option as to whether NoSQL
standardization, if any, should be based on an API other than JPA or a simple key/value
store API. Most of the comments here echoed the existing choices and elaborated on
those options. Some respondents thought that we should offer multiple APIs.

Additional Comments

We concluded Part 1 of our survey with an open-ended question designed to solicit
input on things we might have missed and to enable more general feedback.

By far the most common comment was "thanks" - thanks for Java, thanks for all the
work we do, thanks for the survey, etc.

The most common technical theme in the comments was about security. Many people
want improvements in Java EE security, especially to improve the portability of
applications.

The second most common technical theme was around simplicity - keep it simple, make
it simple, make it simpler, remove X to make it simpler, don't add Y to keep it simple,
don't do Z because that would make it more complicated, etc. Often "simple" was
equated with "smaller”.



Part 2

The second part of the survey covered topics in the areas of :
* (loud (PaaS / SaaS / Multitenancy)

* Logging

* Security

* Testability

* Deployment and Management
* Profiles and/or Pruning

Cloud

The first group of questions addressed the areas of Paa$, Saa$, and multitenancy.

Is it time to standardize support for PaaS?

M Yes B No M Not sure (%)

0 25 50 75 100

Is it time to standardize support for SaaS?

B No

M Yes M Not sure (%)

0 25 50 75 100

Is it time to standardize support for single application deployment with multiple
application runtime instances in a single application server instance?

B No

M Yes M Not sure (%)

0 25 50 75 100



Is it time to standardize support for multiple tenants to run within a single
application instance?

M Yes B No M Not sure (%)

0 25 50 75 100

A relatively weak majority supported standardization in the PaaS and SaaS areas (54%
and 50% respectively).

In response to the question as to whether it was time to standardize support for a single
application deployment with multiple application runtime instances in a single
application server instance, approximately 60% of the respondents thought that we
should. However, only 46% thought that it was time to standardize support for
multiple tenants to run within a single application instance.

In the open-ended comments, a majority felt that Java EE should do more to address the
cloud space, and that starting small and adding features was the right way to go. Some
respondents asked for JVM support (e.g., better isolation, Jigsaw) before tackling
multitenancy. Some commented that customers felt safer with multi-instance
multitenancy, citing concerns around security and isolation. Others thought that we
should start preparing for multi-instance multitenancy now.

Logging

The next set of questions addressed the logging area. All of these questions received a
majority of "Yes" responses.

Should we standardize the use of java.util.logging by applications?

M Yes B No B Not sure (%)




Should we standardize the names of loggers used by the application server?

M Yes B No M Not sure (%)

0 25 50 75 100

Should we standardize the format of log files?

M Yes B No M Not sure (%)

0 25 50 75 100

Should we standardize the management of log files?

B Yes

B No

B Not sure (%)

0 25 50 75 100

Should we standardize the logging configuration for application loggers?

B Yes

B No

B Not sure (%)

0 25 50 75 100



Should we standardize access to log messages by applications?

M Yes B No M Not sure (%)

0 25 50 75 100

Respondents strongly supported standardizing use of java.util.logging by applications,
standardizing the management of log files, and standardizing the logging configuration
for application loggers. A majority of respondents also supported standardizing the
names of loggers used by the application server, the format of log files, and the access to
log messages by applications.

Of the small fraction of participants who added comments, most of these strongly urged

for improvements in logging - either by the revision of java.util.logging, or replacement
of its use by either slf4j, slf4j with LogBack, or log4;.

Security
Most of the suggested improvements in the security area received strong support.

Should we add support for password aliases (including the ability to provision
credentials along with the application)?

M Yes B No M Not sure (%)

0 25 50 75 100

Should we standardize group-to-role mapping?

B Yes

B No B Not sure (%)

0 25 50 75 100



Should we simplify JASPIC?

M Yes B No M Not sure (%)

0 25 50 75 100

Should we simplify authorization by introducing an EL-enabled authorization
annotation?

M Yes M No M Not sure (%)

0 25 50 75 100

Should we standardize on requirements for simple security providers and their
configuration?

M Yes B No B Not sure (%)

0 25 50 75 100

Approximately 58% thought we should add support for password aliases, including the
ability to provision credentials along with the application.

70% thought that we should standardize group-to-role mapping.

53% thought we should simplify JASPIC authentication.

67% thought that we should simplify authorization and make it more flexible by
introducing EL-based authorization annotations, introducing a capability more general
than use of @RolesAllowed and simpler than use of interceptors to do programmatic

authorization.

65% thought we should standardize on requirements for simple security providers and
their configuration.



Embedded Containers and Testability

The next set of questions addressed the area of embedded containers and other means
by which we could improve testability. This area received strong support

Should we define an embedded web container?

B Yes

B No M Not sure (%)

0 25 50 75 100
Should we define an embedded Java EE container?

M Yes B No B Not sure (%)

0 25 50 75 100

The free form suggestions also echoed the desire for embedded containers. Some also
suggested that we standardize in the area of testing frameworks.

Deployment, Management, and Monitoring

The addition of new APIs for deployment, management, and monitoring received strong
support. When forced to choose between REST APIs and JMX APIs, the overwhelming
majority chose REST. In the comments, a number of respondents stated the desire to
have both REST APIs and JMX APIs.

Should we define new APIs to deploy and manage applications?

M Yes B No M Not sure (%)

0 25 50 75 100



Should such new Deployment and Management APls be REST APIs or JMX
APIs?

B REST m JMX B Other (%)

0 25 50 75 100
Should we define new APIs to monitor applications?

M Yes B No M Not sure (%)

0 25 50 75 100

Should such new monitoring APIs be REST APIs or JMX APIs?

B REST B JMX M Other (%)
0 25 50 75 100

The addition of a new trace context API also received strong support:

Should we define a trace context API to track a request as it goes through the
system?

M Yes B No B Not sure (%)

0 25 50 75 100



Profiles
Support for introducing new profiles was very low.

Should we define any additional Java EE profiles?

M Yes B No B Not sure (%)

0 25 50 75 100

Suggestions in the open-ended comments section here were quite diverse, and there
seemed to be no consensus in this area. Some people suggested a profile without a UI
layer, suitable for JavaScript front-end/mobile applications. Some suggested that
general modularity was a better idea than specific profiles. A few wanted a batch
profile, a few a messaging profile, and a few a cloud profile.

Pruning

The next set of questions dealt with "pruning” (i.e., defining that a technology was
optional for a Java EE Platform vendor to implement).

Should we prune CORBA, including support for interoperability by means of
[IOP?

M Yes B No B Not sure (%)

0 25 50 75 100



Should we prune EJB 2.x remote and local client view (EJBObject,
EJBLocalObject, EJBHome, and EJBLocalHome interfaces)?

M Yes B No B Not sure (%)

0 25 50 75 100

Should we prune JSR-77 (J2EE Management)?

M Yes B No B Not sure (%)

0 25 50 75 100

While approximately 62% thought that we should prune CORBA, including support for
[IOP interoperability, an even larger number (74%) thought that we should prune the
EJB 2.x remote and local client view (E]BObject, EJBLocalObject, EJBHome,
E]JBLocalHome). Support was lacking for pruning J2EE Management (JSR 77), with only
a47% yes rate and 42% "Not sure".

Responses to our question as to whether there were other technologies that we should
prune were quite varied. The most frequently mentioned technologies were, in order,
JSF (or parts of JSF), JSP, and CORBA. A few people suggested pruning JAX-RPC, E]B
CMP, and JSR-88, which were made optional as of Java EE 7. A number of people also
requested that we not prune CORBA or I[IOP interop.

Additional Feedback

The survey concluded with a general open-ended request for feedback. The most
requested item was for simplifications and enhancements in the security area. We also
received many requests for continuing and improving CDI alignment and for more
standardization in the configuration area.



