
Java	
 EE	
 7	
 Hands-­‐on	
 Lab

Arun	
 Gupta	
 (Oracle)
Java	
 EE	
 &	
 GlassFish	
 Guy,	
 @arungupta

Antonio	
 Goncalves	
 (Independent)
Java	
 EE	
 EG	
 Member,	
 Consultant,	
 Java	
 Champion,	
 @agoncal

David	
 Delabassee	
 (Oracle)
GlassFish	
 Product	
 Manager,	
 @delabassee

Marian	
 Muller	
 (Serli)
Software	
 Engineer,	
 @mullermarian

2

Table	
 of	
 Contents

...1.0 Introduction! 4

..1.1 Software Requirement! 4

...2.0 Problem Statement! 5

...2.1 Lab Flow! 7

...2.2 Estimated Time! 9

..................................3.0 Walk-through of Sample Application! 10

................................4.0 Chat Room (Java API for WebSocket)! 17

...5.0 Ticket Sales (Batch Applications for the Java Platform)! 26

6.0 View and Delete Movie (Java API for RESTful Web
..Services)! 36

.......................7.0 Add Movie (Java API for JSON Processing)! 43

................................8.0 Movie Points (Java Message Service)! 52

.....................................9.0 Show Booking (JavaServer Faces)! 60

..10.0 Conclusion! 70

..11.0 Troubleshooting! 71

..12.0 Acknowledgements! 72

..13.0 Completed Solutions! 72

..13.1 TODO! 72

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

3

...13.2 Revision History! 72

..Appendix! 73

.........................Appendix A: Configure GlassFish 4 in NetBeans IDE! 73

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

4

1.0 Introduction
The Java EE 7 platform continues the ease of development push that
characterized prior releases by bringing further simplification to enterprise
development. It adds new and important APIs such as the REST client API in
JAX-RS 2.0 and the long awaited Batch Processing API. Java Message Service
2.0 has undergone an extreme makeover to align with the improvements in the
Java language. There are plenty of improvements to several other components.
Newer web standards like HTML 5, WebSocket, and JSON processing are
embraced to build modern web applications.

This hands-on lab will build a typical 3-tier end-to-end application using the
following Java EE 7 technologies:

• Java Persistence API 2.1 (JSR 338)
• Java API for RESTful Web Services 2.0 (JSR 339)
• Java Message Service 2.0 (JSR 343)
• JavaServer Faces 2.2 (JSR 344)
• Contexts and Dependency Injection 1.1 (JSR 346)
• Bean Validation 1.1 (JSR 349)
• Batch Applications for the Java Platform 1.0 (JSR 352)
• Java API for JSON Processing 1.0 (JSR 353)
• Java API for WebSocket 1.0 (JSR 356)
• Java Transaction API 1.2 (JSR 907)

Together these APIs will allow you to be more productive by simplifying
enterprise development.

The latest version of this document can be downloaded from glassfish.org/hol/
javaee7-hol.pdf.

1.1 Software Requirement

The following software needs to be downloaded and installed:

• JDK 7 from http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

• NetBeans 7.4 or higher “All” or “Java EE” version from http://netbeans.org/
downloads/. A preview of the downloads page is shown and highlights the
exact “Download” button to be clicked.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://glassfish.org/hol/javaee7-hol.pdf
http://glassfish.org/hol/javaee7-hol.pdf
http://glassfish.org/hol/javaee7-hol.pdf
http://glassfish.org/hol/javaee7-hol.pdf
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://netbeans.org/downloads/
http://netbeans.org/downloads/
http://netbeans.org/downloads/
http://netbeans.org/downloads/

5

• GlassFish 4 comes pre-bundled with NetBeans 7.4+ and does not need to
be downloaded explicitly. But if you want to download GlassFish 4 then
can do so from glassfish.org.

If you have downloaded GlassFish 4 separately or using a pre-installed
version of GlassFish 4, then configure it in NetBeans IDE following the
instructions in Appendix A.

2.0 Problem Statement

This hands-on lab builds a typical 3-tier Java EE 7 Web application that allows
customers to view the show timings for a movie in a 7-theater Cineplex and make
reservations. Users can add new movies and delete existing movies. Customers
can discuss the movie in a chat room. Total sales from each showing are
calculated at the end of the day. Customers also accrue points for watching
movies.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://glassfish.org
http://glassfish.org

6

This figure shows the key components of the application. The User Interface
initiates all the flows in the application. Show Booking, Add/Delete Movie and
Ticket Sales interact with the database; Movie Points may interact with the
database, however, this is out of scope for this application; and Chat Room does
not interact with the database.

The different functions of the application, as detailed above, utilize various Java
technologies and web standards in their implementation. The following figure
shows how Java EE technologies are used in different flows.

The table below details the components and the selected technology used in its’
implementation.

Flow Description

User Interface Written entirely in JavaServer Faces (JSF).

Chat Room Utilizes client-side JavaScript and JSON to communicate
with a WebSocket endpoint

Ticket Sales Uses Batch Applications for the Java Platform to calculate
the total sales and persist to the database.

Add/Delete Movie Implemented using RESTful Web Services. JSON is used
as on-the-wire data format.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

7

Flow Description

Movie Points Uses Java Message Service (JMS) to update and obtain
loyalty reward points; an optional implementation using
database technology may be performed.

Show Booking Uses lightweight Enterprise JavaBeans to communicate
with the database using Java Persistence API.

This document is not a comprehensive tutorial of Java EE. The attendees are
expected to know the basic Java EE concepts such as EJB, JPA, JAX-RS, and
CDI. The Java EE 7 Tutorial is a good place to learn all these concepts. However
enough explanation is provided in this guide to get you started with the
application.

WARNING: This is a sample application and the code may not be following the
best practices to prevent SQL injection, cross-side scripting attacks, escaping
parameters, and other similar features expected of a robust enterprise
application. This is intentional such as to stay focused on explaining the
technology. It is highly recommended to make sure that the code copied from this
sample application is updated to meet those requirements.

2.1 Lab Flow

The attendees will start with an existing maven application and by following the
instructions and guidance provided by this lab they will:

• Read existing source code to gain an understanding of the structure of the
application and use of the selected platform technologies.

• Add new and update existing code with provided fragments in order to
demonstrate usage of different technology stacks in the Java EE 7 platform.

While you are copy/pasting the code from this document into NetBeans, here are
couple of tips that will be really useful and make your experience enjoyable!

• NetBeans provides capability to neatly format the source code following
conventions. This can be done for any type of source code, whether its XML or
Java or something else. It is highly recommended to use this functionality after
the code is copy/pasted from this document to the editor. This keeps the code
legible.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://docs.oracle.com/javaee/7/tutorial/doc/
http://docs.oracle.com/javaee/7/tutorial/doc/

8

This functionality can be accessed by right-clicking in the editor pane and
selecting “Format” as shown.

This functionality is also accessible using the following keyboard shortcuts:

Shortcut Operating System

Ctrl + Shift + F Mac

Alt + Shift + F Windows

Alt + Shift + F Linux

• Copy/pasting the Java code from this document in NetBeans editor does not
auto-import the classes. This is required to be done manually in order for the
classes to compile. This can be fixed for each missing import statement by
clicking on the yellow bulb shown in the side bar.

Alternatively all the imports can be resolved by right-clicking on the editor pane
and selecting "Fix Imports" as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

9

This functionality is also accessible using the following keyboard shortcuts:

Shortcut Operating System

Command + Shift + I Mac

Ctrl + Shift + I Windows

Ctrl + Shift + I Linux

The defaults may work in most of the cases. Choices are shown in case a class
is available to import from multiple packages. If multiple packages are available
then specific packages to import from are clearly marked in the document.

2.2 Estimated Time

Following the complete instructions in this document can take any where from
three to five hours. The wide time range accommodates for learning the new
technologies, finding your way in NetBeans, copy/pasting the code, and
debugging the errors.

The recommended flow is where you follow through the instructions in all
sections in the listed sequence. Alternatively, you may like to cover section 4.0
through 9.0 in an order of your choice, based upon your interest and preference
of the technology. However section 6.0 is a pre-requisite for section 7.0.

Here is an approximate time estimate for each section:

Section Number and Title Estimated Time

3.0 Walk-through of Sample Application 15 - 30 mins

4.0 Chat Room (Java API for WebSocket) 30 - 45 mins

5.0 Ticket Sales (Batch Applications for the Java
Platform)

30 - 45 mins

6.0 View and Delete Movie (Java API for RESTful Web
Services)

30 - 45 mins

7.0 Add Movie (Java API for JSON Processing) 30 - 45 mins

8.0 Movie Points (Java Message Service) 30 - 45 mins

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

10

Section Number and Title Estimated Time

9.0 Show Booking (JavaServer Faces) 30 - 45 mins

The listed time for each section is only an estimate and by no means restrict you
within that. These sections have been completed in much shorter time, and you
can do it too!

The listed time for each section also allows you to create a custom version of the
lab depending upon your target audience and available time.

3.0 Walk-through of Sample Application

Purpose: This section will download the sample application to be used in this
hands-on lab. A walk-through of the application will be performed to provide an
understanding of the application architecture.

Estimated Time: 15-30 mins

3.1 Download the sample application from glassfish.org/hol/movieplex7-starting-
template.zip and unzip. This will create a “movieplex7” directory and unzips all
the content there.

3.2 In NetBeans IDE, select “File”, “Open Project…”, select the unzipped
directory, and click on “Open Project”. The project structure is shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://glassfish.org/hol/movieplex7-starting-template.zip
http://glassfish.org/hol/movieplex7-starting-template.zip
http://glassfish.org/hol/movieplex7-starting-template.zip
http://glassfish.org/hol/movieplex7-starting-template.zip

11

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

12

3.3 Maven Coordinates: Expand “Project Files” and double click on “pom.xml”. In
the “pom.xml”, the Java EE 7 API is specified as a <dependency>:

<dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

This will ensure that Java EE 7 APIs are retrieved from the central Maven
repository.

The Java EE 6 platform introduced the notion of “profiles”. A profile is a
configuration of the Java EE platform targeted at a specific class of applications.
All Java EE profiles share a set of common features, such as naming and
resource injection, packaging rules, security requirements, etc. A profile may
contain a proper subset or superset of the technologies contained in the platform.

The Java EE Web Profile is a profile of the Java EE Platform specifically targeted
at modern web applications. The complete set of specifications defined in the
Web Profile is defined in the Java EE 7 Web Profile Specification. GlassFish can
be downloaded in two different flavors – Full Platform or Web Profile.

This lab requires Full Platform download. All technologies used in this lab, except
Java Message Service and Batch Applications for the Java Platform, can be
deployed on Web Profile.

3.4 Default Data Source: Expand
“Other Sources”, “src/main/resources”,
“META-INF”, and double-click on
“persistence.xml”. By default, NetBeans
opens the file in Design View. Click on
Source tab to view the XML source.	

It looks like:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

13

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="movieplex7PU" transaction-type="JTA">
 <!--

<jta-data-source>java:comp/DefaultDataSource</jta-data-source>
 -->
 <properties>
 <property
 name="javax.persistence.schema-generation.database.action"
 value="drop-and-create"/>
 <property
 name="javax.persistence.schema-generation.create-source"
 value="script"/>
 <property
 name="javax.persistence.schema-generation.drop-source"
 value="script"/>
 <property
 name="javax.persistence.schema-generation.drop-script-source"
 value="META-INF/drop.sql"/>
 <property
 name="javax.persistence.sql-load-script-source"
 value="META-INF/load.sql"/>
 <property
 name="eclipselink.deploy-on-startup"
 value="true"/>
 <property
 name="eclipselink.logging.exceptions"
 value="false"/>
 </properties>
 </persistence-unit>
</persistence>

Notice <jta-data-source> is commented out, i.e. no data source element is
specified. This element identifies the JDBC resource to connect to in the runtime
environment of the underlying application server.

The Java EE 7 platform defines a new default DataSource that must be
provided by the runtime. This pre-configured data source is accessible under the
JNDI name

java:comp/DefaultDataSource

The JPA 2.1 specification says if neither jta-data-source nor non-jta-
data-source elements are specified, the deployer must specify a JTA data
source or the default JTA data source must be provided by the container.

For GlassFish 4, the default data source is bound to the JDBC resource jdbc/
__default.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

14

Clicking back and forth between “Design” and “Source” view may prompt the
error shown below:

This will get resolved when we run the application. Click on “OK” to dismiss the
dialog.

3.5 Schema Generation: JPA 2.1 defines a new set of
javax.persistence.schema-generation.* properties that can be used to
generate database artifacts like tables, indexes, and constraints in a database
schema. This helps in prototyping of your application where the required artifacts
are generated either prior to application deployment or as part of
EntityManagerFactory creation. This feature will allow your JPA domain
object model to be directly generated in a database. The generated schema may
need to be tuned for actual production environment.

The “persistence.xml” in the application has the following
javax.persistence.schema-generation.* properties. Their meaning and
possible values are explained in Table	
 2.

Property Meaning Values
javax.persistence.schema-
generation.database.action

Specifies the action to be
taken by the persistence
provider with regard to the
database artifacts.

“none”, “create”,
“drop-and-create”,
“drop”

javax.persistence.schema-
generation.create-source/drop-
source

Specifies whether the
creation or deletion of
database artifacts is to
occur on the basis of the
object/relational mapping
metadata, DDL script, or a
combination of the two.

“metadata”,
“script”, “metadata-
then-script”, “script-
then-metadata”

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

15

javax.persistence.schema-
generation.create-script-
source/drop-script-source

Specifies a
java.IO.Reader
configured for reading of
the SQL script or a string
designating a file URL for
the SQL script to create or
delete database artifacts.

javax.persistence.sql-load-
script-source

Specifies a
java.IO.Reader
configured for reading of
the SQL load script for
database initialization or a
string designating a file
URL for the script.

Refer to the JPA 2.1 Specification for a complete understanding of these
properties.

In the application, the scripts are bundled in the WAR file in “META-INF”
directory. As the location of these scripts is specified as a URL, the scripts may
be loaded from outside the WAR file as well.

Feel free to open “create.sql”, “drop.sql” and “load.sql” and read through the
SQL scripts. The database schema is shown.

This folder also contains “sales.csv” which carries some comma-separated data,
and is used later in the application.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

16

3.6 JPA entities, Stateless EJBs, and REST endpoints: Expand “Source
Packages”. The package “org.glassfish.movieplex7.entities” contains the JPA
entities corresponding to the database table definitions. Each JPA entity has
several convenient @NamedQuery defined and uses Bean Validation constraints
to enforce validation.

The package “org.glassfish.movieplex7.rest” contains stateless EJBs
corresponding to different JPA entities.

Each EJB has methods to perform CRUD operations on the JPA entity and
convenience query methods. Each EJB is also EL-injectable (@Named) and
published as a REST endpoint (@Path). The AplicationConfig class defines
the base path of REST endpoint. The path for the REST endpoint is the same as
the JPA entity class name.

The mapping between JPA entity classes, EJB classes, and the URI of the
corresponding REST endpoint is shown.

JPA Entity Class EJB Class RESTful Path

Movie MovieFacadeREST /webresources/movie

Sales SalesFacadeREST /webresources/sales

ShowTiming ShowTimingFacadeREST /webresources/showtiming

Theater TheaterFacadeREST /webresources/theater

Timeslot TimeslotFacadeREST /webresources/timeslot

Feel free to browse through the code.

3.7 JSF pages: “WEB-INF/template.xhtml” defines the template of the web page
and has a header, left navigation bar, and a main content section. “index.xhtml”
uses this template and the EJBs to display the number of movies and theaters.

Java EE 7 enables CDI discovery of beans by default. No “beans.xml” is required
in “WEB-INF”. This allows all beans with bean defining annotation, i.e. either a
bean with an explicit CDI scope or EJBs to be available for injection.

Note, “template.xhtml” is in “WEB-INF” folder as it allows the template to be
accessible from the pages bundled with the application only. If it were bundled

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

17

with rest of the pages then it would be accessible outside the application and
thus allowing other external pages to use it as well.

3.8 Run the sample: Right-click on the project and select “Run”. This will
download all the maven dependencies on your machine, build a WAR file, deploy
on GlassFish 4, and show the URL localhost:8080/movieplex7 in the default
browser configured in NetBeans. Note that this could take a while if you have
never built a Maven application on your machine. Also, the project will show red
squiggly lines in the source code indicating that the classes cannot be resolved.
This is expected before
the dependencies are
downloaded. However
these references will be
resolved correctly after
the dependencies are
downloaded during
project building.

During the first run, the
IDE will ask you to select
a deployment server.
Choose the configured
GlassFish server and
click on “OK”.

The output looks like as shown.

4.0 Chat Room (Java API for WebSocket)

Purpose: Build a chat room for viewers. In doing so several new features of Java
API for WebSocket 1.0 will be introduced and demonstrated by using them in the
application.

Estimated Time: 30-45 mins

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://localhost:8080/movieplex7
http://localhost:8080/movieplex7

18

WebSocket provide a full-duplex and bi-directional communication protocol over
a single TCP connection. WebSocket is a combination of IETF RFC 6455
Protocol and W3C JavaScript WebSocket API (a Candidate Recommendation as
of this writing). The protocol defines an opening handshake and data transfer.
The API enables Web pages to use the WebSocket protocol for two-way
communication with the remote host.

JSR 356 defines a standard API for creating WebSocket applications in the Java
EE 7 Platform. The JSR provides support for:

• Create WebSocket endpoint using annotations and interface
• Initiating and intercepting WebSocket events
• Creation and consumption of WebSocket text and binary messages
• Configuration and management of WebSocket sessions
• Integration with Java EE security model

This section will build a chat room for movie viewers.

4.1 Right-click on “Source Packages”, select “New”, “Java Class…”. Give the
class name as “ChatServer”, package as “org.glassfish.movieplex7.chat”, and
click on “Finish”.

4.2 Change the class such that it looks like:

@ServerEndpoint("/websocket")
public class ChatServer {

 private static final Set<Session> peers =
Collections.synchronizedSet(new HashSet<Session>());

 @OnOpen
 public void onOpen(Session peer) {
 peers.add(peer);
 }

 @OnClose
 public void onClose(Session peer) {
 peers.remove(peer);
 }

 @OnMessage
 public void message(String message, Session client) throws
IOException, EncodeException {
 for (Session peer : peers) {
 peer.getBasicRemote().sendObject(message);
 }
 }

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
http://jcp.org/en/jsr/detail?id=356
http://jcp.org/en/jsr/detail?id=356

19

}

In this code:
• @ServerEndpoint decorates the class to be a WebSocket endpoint. The

value defines the URI where this endpoint is published.
• @OnOpen and @OnClose decorate the methods that must be called when

WebSocket session is opened or closed. The peer parameter defines the
client requesting connection initiation and termination.

• @OnMessage decorates the message that receives the incoming
WebSocket message. The first parameter, message, is the payload of the
message. The second parameter, client, defines the other end of the
WebSocket connection. The method implementation transmits the
received message to all clients connected to this endpoint.

Resolve the imports by right-clicking in the editor and selecting “Fix Imports” or
(Command + Shift + I shortcut on Mac or Ctrl + Shift + I on Windows).

Make sure to pick java.websocket.Session for resolving imports.

Right-click again in the editor pane and select “Format” to format your code.

4.3 In “Web Pages”, select “New”, “Folder…”, give the folder name as “chat” and
click on “Finish”.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

20

4.4 Right-click on the newly created folder, select “New”, "Other...", "Java Server
Faces", “Facelets Template Client”, give the File Name as “chatroom”. Click on
“Browse…” next to “Template:”, expand “Web Pages”, “WEB-INF”, select
“template.xhtml”, and click on “Select File”. Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

Replace <ui:define> section with “content” name such that it looks like:

<ui:define name="content">
 <form action="">
 <table>
 <tr>
 <td>
 Chat Log

 <textarea readonly="true" rows="6" cols="50" id="chatlog"></
textarea>
 </td>
 <td>
 Users

 <textarea readonly="true" rows="6" cols="20" id="users"></
textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <input id="textField" name="name" value="Duke" type="text"/>
 <input onclick="join();" value="Join" type="button"/>
 <input onclick="send_message();" value="Send" type="button"/
><p/>
 <input onclick="disconnect();" value="Disconnect"
type="button"/>
 </td>
 </tr>
 </table>
 </form>
 <div id="output"></div>

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

21

 <script language="javascript" type="text/javascript" src="$
{facesContext.externalContext.requestContextPath}/chat/websocket.js"></
script>
</ui:define>

The code builds an HTML form that has two textareas – one to display the
chat log and the other to display the list of users currently logged. A single text
box is used to take the user name or the chat message. Clicking on “Join” button
takes the value as user name and clicking on “Send” takes the value as chat
message. JavaScript methods are invoked when these buttons are clicked and
these are explained in the next section. The chat messages are sent and
received as WebSocket payloads. There is an explicit button to disconnect the
WebSocket connection. “output” div is the placeholder for status messages. The
WebSocket initialization occurs in “websocket.js” included at the bottom of the
fragment.

4.5 Right-click on “chat” in “Web Pages”, select “New”, "Other...", “Web”,
“JavaScript File”.

Give the name as “websocket” and click on “Finish”.

4.6 Edit the contents of “websocket.js” such that it looks like:

var wsUri = 'ws://' + document.location.host
 + document.location.pathname.substr(0,
 document.location.pathname.indexOf("/faces"))
 + '/websocket';
console.log(wsUri);
var websocket = new WebSocket(wsUri);
var textField = document.getElementById("textField");
var users = document.getElementById("users");
var chatlog = document.getElementById("chatlog");

var username;
websocket.onopen = function(evt) { onOpen(evt); };
websocket.onmessage = function(evt) { onMessage(evt); };
websocket.onerror = function(evt) { onError(evt); };
websocket.onclose = function(evt) { onClose(evt); };
var output = document.getElementById("output");

function join() {
 username = textField.value;
 websocket.send(username + " joined");
}

function send_message() {
 websocket.send(username + ": " + textField.value);

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

22

}

function onOpen() {
 writeToScreen("CONNECTED");
}

function onClose() {
 writeToScreen("DISCONNECTED");
}

function onMessage(evt) {
 writeToScreen("RECEIVED: " + evt.data);
 if (evt.data.indexOf("joined") !== -1) {
 users.innerHTML += evt.data.substring(0, evt.data.indexOf("
joined")) + "\n";
 } else {
 chatlog.innerHTML += evt.data + "\n";
 }
}

function onError(evt) {
 writeToScreen('ERROR: ' +
evt.data);
}

function disconnect() {
 websocket.close();
}

function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;
 output.appendChild(pre);
}

The WebSocket endpoint URI is calculated by using standard JavaScript
variables and appending the URI specified in the ChatServer class. WebSocket
is initialized by calling new WebSocket(…). Event handlers are registered for
lifecycle events using onXXX messages. The listeners registered in this script are
explained in the table.

Listeners Called When

onOpen(evt) WebSocket connection is initiated

onMessage(evt) WebSocket message is received

onError(evt) Error occurs during the communication

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

23

Listeners Called When

onClose(evt) WebSocket connection is terminated

Any relevant data is passed along as parameter to the function. Each method
prints the status on the browser using writeToScreen utility method. The join
method sends a message to the endpoint that a particular user has joined. The
endpoint then broadcasts the message to all the listening clients. The
send_message method appends the logged in user name and the value of the
text field and broadcasts to all the clients similarly. The onMessage method
updates the list of logged in users as well.

4.7 Edit “WEB-INF/template.xhtml” and change:

<h:outputLink value="item2.xhtml">Item 2</h:outputLink>

to

<h:outputLink value="$
{facesContext.externalContext.requestContextPath}/faces/chat/
chatroom.xhtml">Chat Room</h:outputLink>

The outputLink tag renders an HTML anchor tag with an href attribute. $
{facesContext.externalContext.requestContextPath} provides the
request URI that identifies the web application context for this request. This

allows the links in the left navigation bar to be fully-qualified URLs.

4.8 Run the project by right clicking on the project and selecting “Run”. The
browser shows localhost:8080/movieplex7.

Click on “Chat Room” to see the output.

The “CONNECTED” status message is shown and indicates that the WebSocket
connection with the endpoint is established.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://localhost:8080/movieplex7
http://localhost:8080/movieplex7

24

Please make sure your browser supports WebSocket in order for this page to
show up successfully. Chrome 14.0+, Firefox 11.0+, Safari 6.0+, and IE 10.0+ are
the browsers that support WebSocket. A complete list of supported browsers is
available at caniuse.com/websockets.

Open the URI localhost:8080/movieplex7 in another browser window. Enter
“Duke” in the text box in the first browser and click “Join”.

Notice that the user list and the status message in both the browsers gets
updated. Enter “James” in the text box of the second browser and click on “Join”.
Once again the user list and the status message in both the browsers is updated.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://caniuse.com/websockets
http://caniuse.com/websockets
http://localhost:8080/movieplex7
http://localhost:8080/movieplex7

25

Now you can type any messages in any of the browser and click on “Send” to
send the message.

The output from two different browsers after the initial greeting looks like as
shown.

Here it shows output from Chrome on the top and Firefox on the bottom.

Chrome Developer Tools or Firebug in Firefox can be used to monitor
WebSocket traffic.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

26

5.0 Ticket Sales (Batch Applications for the Java
Platform)

Purpose: Read the total sales for each show and populate the database. In
doing so several new features of Java API for Batch Processing 1.0 will be
introduced and demonstrated by using them in the application.

Estimated Time: 30-45 mins

Batch Processing is execution of series of "jobs" that is suitable for non-
interactive, bulk-oriented and long-running tasks. Batch Applications for the Java
Platform (JSR 352) will define a programming model for batch applications and a
runtime for scheduling and executing jobs.

The core concepts of Batch Processing are:

• A Job is an instance that encapsulates an entire batch process. A job is
typically put together using a Job Specification Language and consists of
multiple steps. The Job Specification Language for JSR 352 is
implemented with XML and is referred as "Job XML".

• A Step is a domain object that encapsulates an independent, sequential
phase of a job. A step contains all of the information necessary to define
and control the actual batch processing.

• JobOperator provides an interface to manage all aspects of job
processing, including operational commands, such as start, restart, and
stop, as well as job repository commands, such as retrieval of job and step
executions.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

27

• JobRepository holds information about jobs current running and jobs that
run in the past. JobOperator provides access to this repository.

• Reader-Processor-Writer pattern is the primary pattern and is called
as Chunk-oriented Processing. In this, ItemReader reads one item at a
time, ItemProcessor processes the item based upon the business logic,
such as calculate account balance and hands it to ItemWriter for
aggregation. Once the 'chunk' numbers of items are aggregated, they are
written out, and the transaction is committed.

This section will read the cumulative sales for each show from a CSV file and
populate them in a database.

5.1 Right-click on Source Packages, select “New”, “Java Package…”, specify the
value as “org.glassfish.movieplex7.batch”, and click on “Finish”.

5.2 Right-click on newly created package, select “New”, “Java Class…”, specify
the name as “SalesReader”. Make this class extend from
AbstractItemReader, change the class definition and add:

extends AbstractItemReader

AbstractItemReader is an abstract class that implements ItemReader
interface. The ItemReader interface defines methods that read a stream of
items for chunk processing. This reader implementation returns a String item
type as indicated in the class definition.

Add @Named as a class-level annotations and it allows the bean to be injected in
Job XML. Add @Dependent as another class-level annotation to mark this bean
as a bean defining annotation so that this bean is available for injection.

Resolve the imports.

5.3 Add the following field:

private BufferedReader reader;

Override open() method to initialize the reader:

public void open(Serializable checkpoint) throws Exception {
 reader = new BufferedReader(
 new InputStreamReader(
 Thread.currentThread()
 .getContextClassLoader()
 .getResourceAsStream("META-INF/sales.csv")));

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

28

}

This method initializes a BufferedReader from “META-INF/sales.csv” that is
bundled with the application.

Sampling of the first few lines from “sales.csv” is shown below:

1,500.00
2,660.00
3,80.00
4,470.00
5,1100.x0

Each line has a show identifier comma separated by the total sales for that show.
Note that the last line (5th record in the sample) has an intentional typo. In
addition, 17th record also has an additional typo. The lab will use these lines to
demonstrate how to handle parsing errors.

5.4 Override the following method from the abstract class:

@Override
public String readItem() {
 String string = null;
 try {
 string = reader.readLine();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return string;
}

The readItem method returns the next item from the stream. It returns null to
indicate end of stream. Note end of stream indicates end of chunk, so the
current chunk will be committed and the step will end.

Resolve the imports.

5.5 Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Java
Class…”, specify the name as “SalesProcessor”. Change the class definition and
add:

implements ItemProcessor

ItemProcessor is an interface that defines a method that is used to operate on
an input item and produce an output item. This processor accepts a String

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

29

input item from the reader, SalesReader in our case, and returns a Sales
instance to the writer (coming shortly). Sales is the pre-packaged JPA entity with
the application starter source code.

Add @Named and @Dependent as class-level annotations so that it allows the
bean to be injected in Job XML.

Resolve the imports.

5.6 Add implementation of the abstract method from the interface as:

@Override
public Sales processItem(Object s) {
 Sales sales = new Sales();

 StringTokenizer tokens = new StringTokenizer((String)s, ",");
 sales.setId(Integer.parseInt(tokens.nextToken()));
 sales.setAmount(Float.parseFloat(tokens.nextToken()));

 return sales;
}

This method takes a String parameter coming from the SalesReader, parses
the value, populates them in the Sales instance, and returns it. This is then
aggregated with the writer.

The method can return null indicating that the item should not be aggregated.
For example, the parsing errors can be handled within the method and return
null if the values are not correct. However this method is implemented where
any parsing errors are thrown as exception. Job XML can be instructed to skip
these exceptions and thus that particular record is skipped from aggregation as
well (shown later).

Resolve the imports.

5.7 Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Java
Class…”, specify the name as “SalesWriter”. Change the class definition and
add:

extends AbstractItemWriter

AbstractItemWriter is an abstract class that implements ItemWriter
interface. The ItemWriter interface defines methods that write to a stream of
items for chunk processing. This writer writes a list of Sales items.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

30

Add @Named and @Dependent as class-level annotations so that it allows the
bean to be injected in Job XML.

Resolve the imports.

5.8 Inject EntityManager as:

@PersistenceContext EntityManager em;

Override the following method from the abstract class:

@Override
@Transactional
public void writeItems(List list) {
 for (Sales s : (List<Sales>)list) {
 em.persist(s);
 }
}

Batch runtime aggregates the list of Sales instances returned from the
SalesProessor and makes it available as List in this method. This method
iterates over the list and persist each item in the database.

The method also specifies @Transactional as a method level annotation. This
is a new annotation introduced by JTA 1.2 that provides the ability to control
transaction boundaries on CDI managed beans. This provides the semantics of
EJB transaction attributes in CDI beans without dependencies such as RMI. This
support is implemented via an implementation of a CDI interceptor that conducts
the necessary suspending, resuming, etc.

In this case, a transaction is automatically started before the method is called,
committed if no checked exceptions are thrown, and rolled back if runtime
exceptions are thrown. This behavior can be overridden using rollbackOn and
dontRollbackOn attributes of the annotation.

Resolve the imports.

5.9 Create Job XML that defines the job, step, and chunk.

In “Files” tab, expand the project -> “src” -> “main” -> “resources”, right-click on
“resources”, “META-INF”, select “New”, “Folder…”, specify the name as “batch-
jobs”, and click on “Finish”.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

31

Right-click on the newly created folder, select “New”, “Other…”, select “XML”,
“XML Document”, click on “Next >”, give the name as “eod-sales”, click on “Next”,
take the default, and click on “Finish”.

Replace contents of the file with the following:

<job id="endOfDaySales" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
version="1.0">
 <step id="populateSales">
 <chunk item-count="3" skip-limit="5">
 <reader ref="salesReader"/>
 <processor ref="salesProcessor"/>
 <writer ref="salesWriter"/>
 <skippable-exception-classes>
 <include class="java.lang.NumberFormatException"/>
 </skippable-exception-classes>
 </chunk>
 </step>
</job>

This code shows that the job has one step of chunk type. The <reader>,
<processor>, and <writer> elements define the CDI bean name of the
implementations of ItemReader, ItemProcessor, and ItemWriter
interfaces. The item-count attribute defines that 3 items are read/processed/
aggregated and then given to the writer. The entire reader/processor/writer cycle
is executed within a transaction. The <skippable-exception-classes>
element specifies a set of exceptions to be skipped by chunk processing.

CSV file used for this lab has intentionally introduced couple of typos that would
generate NumberFormatException. Specifying this element allows skipping
the exception, ignore that particular element, and continue processing. If this
element is not specified then the batch processing will halt. The skip-limit
attribute specifies the number of exceptions a step will skip.

5.10 Lets invoke the batch job.

Right-click on “org.glassfish.movieplex7.batch” package, select “New”, “Java
Class…”. Enter the name as “SalesBean” and click on “Finish” button.

Add the following code to the bean:

public void runJob() {
 try {
 JobOperator jo = BatchRuntime.getJobOperator();
 long jobId = jo.start("eod-sales", new Properties());
 System.out.println("Started job: with id: " + jobId);
 } catch (JobStartException ex) {

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee

32

 ex.printStackTrace();
 }
}

This method uses BatchRuntime to get an instance of JobOperator, which is
then used to start the job. JobOperator is the interface for operating on batch
jobs. It can be used to start, stop, and restart jobs. It can additionally inspect job
history, to discover what jobs are currently running and what jobs have previously
run.

Add @Named and @RequestScoped as class-level annotations. This allows the
bean to be injectable in an EL expression.

Resolve the imports.

5.11 Inject EntityManagerFactory in the class as:

@PersistenceUnit EntityManagerFactory emf;

and add the following method:

public List<Sales> getSalesData() {
 return emf.createEntityManager().createNamedQuery("Sales.findAll",
Sales.class).getResultList();
}

This method uses a pre-defined @NamedQuery to query the database and return
all the rows from the table.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

33

Resolve the imports.

5.12 Right-click on “Web Pages”, select “New”, “Folder…”, specify the name as
“batch”, and click on “Finish”.

Right-click on the newly created folder, select “New”, “Other…”, “JavaServer
Faces”, “Facelets Template Client”, and click on “Next >”.

Give the File Name as “sales”. Click on “Browse…” next to “Template:”, expand
“Web Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select File”.
Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

Replace <ui:define> section with “content” name such that it looks like:

<ui:define name=”content”>
<h1>Movie Sales</h1>
<h:form>
 <h:dataTable value="#{salesBean.salesData}" var="s" border="1">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Show ID" />
 </f:facet>
 #{s.id}
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Sales" />
 </f:facet>
 #{s.amount}
 </h:column>
 </h:dataTable>

 <h:commandButton value="Run Job" action="sales"
actionListener="#{salesBean.runJob()}"/>
 <h:commandButton value="Refresh" action="sales" />
</h:form>
</ui:define>

This code displays the show identifier and sales from that show in a table by
invoking SalesBean.getSalesData(). First command button allows invoking
the job that processes the CSV file and populates the database. The second
command button refreshes the page.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

34

Right-click on the yellow bulb to fix namespace prefix/URI mapping. This needs
to be repeated for h: and f: prefix.

5.13 Add the following code in “template.xhtml” along with other
<outputLink>s:

<p/><h:outputLink value="$
{facesContext.externalContext.requestContextPath}/faces/batch/
sales.xhtml">Sales</h:outputLink>

5.14 Run the project to see the output as shown.

Notice, a new “Sales” entry is displayed in the left navigation bar.

5.15 Click on “Sales” to see the output as shown.

The empty table indicates that there is no sales data in the database.

5.16 Click on “Run Job” button to initiate data processing of CSV file. Look for
“Waiting for localhost...” in the browser status bar, wait for a couple of seconds

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

35

for the processing to finish, and then click on “Refresh” button to see the updated
output as shown.

Now the table is populated with the sales data.

Note that record 5 is missing from the table, as this records did not have correct
numeric entries for the sales total. The Job XML for the application explicitly
mentioned to skip such errors.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

36

6.0 View and Delete Movie (Java API for RESTful Web
Services)

Purpose: View, and delete a movie. In doing so several new features of JAX-RS
2 will be introduced and demonstrated by using them in the application.

Estimated Time: 30-45 mins

JAX-RS 2 defines a standard API to create, publish, and invoke a REST
endpoint. JAX-RS 2 adds several new features to the API:

• Client API that can be used to access Web resources and provides
integration with JAX-RS Providers. Without this API, the users need to
use a low-level HttpUrlConnection to access the REST endpoint.

• Asynchronous processing capabilities in Client and Server that enables
more scalable applications.

• Message Filters and Entity Interceptors as well-defined extension points to
extend the capabilities of an implementation.

• Validation constraints can be specified to validate the parameters and
return type.

This section will provide the ability to view all the movies, details of a selected
movie, and delete an existing movie using the JAX-RS Client API.

6.1 Right-click on “Source Packages”, select “New”, “Java Class…”. Give the
class name as “MovieClientBean”, package as “org.glassfish.movieplex7.client”,
and click on “Finish”.

This bean will be used to invoke the REST endpoint.

6.2 Add @Named and @RequestScoped class-level annotations. This allows the
class to be injected in an EL expression and also defines the bean to be
automatically activated and passivated with the request.

Resolve the imports. Make sure to pick
javax.enterprise.context.RequestScoped class.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

37

6.3 Add the following code to the class:

Client client;
WebTarget target;

@PostConstruct
public void init() {
 client = ClientBuilder.newClient();
 target = client.target("http://localhost:8080/movieplex7/
webresources/movie/");
}

@PreDestroy
public void destroy() {
 client.close();
}

ClientBuilder is the main entry point to the Client API. It uses a fluent builder
API to invoke REST endpoints. A new Client instance is created using the
default client builder implementation provided by the JAX-RS implementation
provider. Client are heavy-weight objects that manage the client-side
communication infrastructure. It is highly recommended to create only required
number of instances of Client and close it appropriately.

In this case, Client instance is created and destroyed in the lifecycle callback
methods. The endpoint URI is set on this instance by calling the target method.

6.4 Add the following method to the class:

public Movie[] getMovies() {
 return target
 .request()
 .get(Movie[].class);

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://localhost:8080/movieplex7/webresources/movie/
http://localhost:8080/movieplex7/webresources/movie/
http://localhost:8080/movieplex7/webresources/movie/
http://localhost:8080/movieplex7/webresources/movie/

38

}

A request is prepared by calling the request method. HTTP GET method is
invoked by calling get method. The response type is specified in the last method
call and so return value is of the type Movie[].

6.5 Right-click on “Web Pages”, select “New”, “Folder…”, specify the name as
“client”, and click on “Finish”.

Right-click on the newly created folder, select “New”, “Other…”, “JavaServer
Faces”, “Facelets Template Client”, and click on “Next >”.

Give the File Name as “movies”. Click on “Browse…” next to “Template:”, expand
“Web Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select File”.
Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

6.6 Replace the content inside <ui:define> with “content” with the code
fragment shown below:

<h:form prependId="false">
 <h:selectOneRadio value="#{movieBackingBean.movieId}"
layout="pageDirection">
 <c:forEach items="#{movieClientBean.movies}" var="m">
 <f:selectItem itemValue="#{m.id}" itemLabel="#{m.name}"/>
 </c:forEach>
 </h:selectOneRadio>

 <h:commandButton value="Details" action="movie" />
</h:form>

This code fragment invokes getMovies method from MovieClientBean,
iterates over the response in a for loop, and display the name of each movie
with a radio button. The selected radio button value is bound to the EL
expression #{movieBackingBean.movieId}.

The code also has a button with “Details” label and looks for “movie.xhtml” in the
same directory. We will create this file later.

Click on the yellow bulb in the left bar to resolve the namespace prefix-to-URI
resolution. This needs to be completed for – for h:, c:, and f: prefixes.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

39

6.7 Right-click on “org.glassfish.movieplex7.client” package, select “New”, “Java
Class…”, specify the value as “MovieBackingBean” and click on “Finish”.

Add the following field:

int movieId;

Add getters/setters by right-clicking on the editor pane and selecting “Insert
Code…” (Ctrl + I shortcut on Mac). Select the field and click on “Generate”.

Add @Named and @SessionScoped class-level annotations and implements
Serializable.

Resolve the imports. Make sure to import
javax.enterprise.context.SessionScoped.

6.8 In “template.xhtml”, add the following code in <ui:insert> with
name=”left”.

<p/><h:outputLink value="$
{facesContext.externalContext.requestContextPath}/faces/client/
movies.xhtml">Movies</h:outputLink>

Running the project (Fn + F6 shortcut on Mac) and clicking on “Movies” in the left
navigation bar shows the output as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

40

The list of all the movies with a radio button next to them is displayed.

6.9 In “MovieClientBean”, inject “MovieBackingBean” to read the value of
selected movie from the page. Add the following code:

@Inject
MovieBackingBean bean;

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

41

6.10 In “MovieClientBean”, add the following method:

public Movie getMovie() {
 Movie m = target
 .path("{movie}")
 .resolveTemplate("movie", bean.getMovieId())
 .request()
 .get(Movie.class);
 return m;
}

This code reuses the Client and WebTarget instances created in
@PostConstruct. It also adds a variable part to the URI of the REST endpoint,
defined using {movie}, and binds it to a concrete value using
resolveTemplate method. The return type is specified as a parameter to the
get method.

6.11 Right-click on “client” folder, select “New”, “Facelets Template Client”, give
the File Name as “movie”. Click on “Browse…” next to “Template:”, expand “Web
Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select File”. Click on
“Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

Replace the content inside <ui:define> with “content” with the code fragment
shown below:

<h1>Movie Details</h1>
<h:form>
 <table cellpadding="5" cellspacing="5">
 <tr>
 <th align="left">Movie Id:</th>
 <td>#{movieClientBean.movie.id}</td>
 </tr>
 <tr>
 <th align="left">Movie Name:</th>
 <td>#{movieClientBean.movie.name}</td>
 </tr>
 <tr>
 <th align="left">Movie Actors:</th>
 <td>#{movieClientBean.movie.actors}</td>
 </tr>

 </table>
 <h:commandButton value="Back" action="movies" />
</h:form>

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

42

Click on the yellow-bulb to resolve the namespace prefix-URI mapping for h:.
The output values are displayed by calling the getMovie method and using the
id, name, and actors property values.

6.12 Run the project, select “Movies” in the left navigation bar, select a radio
button next to any movie, and click on details to see the output as shown.

Click on the “Back” button to select another movie.

6.13 Add the ability to delete a movie. In “movies.xhtml”, add the following code
with the other commandButton.

<h:commandButton value="Delete" action="movies"
actionListener="#{movieClientBean.deleteMovie()}"/>

This button displays a label “Delete”, invokes the method deleteMovie from
“MovieClientBean”, and then renders “movies.xhtml”.

6.14 Add the following code to “MovieClientBean”:

public void deleteMovie() {
 target
 .path("{movieId}")
 .resolveTemplate("movieId", bean.getMovieId())
 .request()
 .delete();
}

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

43

This code again reuses the Client and WebTarget instances created in
@PostConstruct. It also adds a variable part to the URI of the REST endpoint,
defined using {movieId}, and binds it to a concrete value using
resolveTemplate method. The URI of the resource to be deleted is prepared
and then delete method is called to delete the resource.

Make sure to resolve the imports.

Running the project shows the output shown.

Select a movie and click on Delete button. This deletes the movie from the
database and refreshes list on the page. Note that a redeploy of the project will
delete all the movies anyway and add them all back.

7.0 Add Movie (Java API for JSON Processing)

Purpose: Add a new movie. In doing so several new features of the Java API for
JSON Processing 1.0 will be introduced and demonstrated by using them in the
application.

Estimated Time: 30-45 mins

Java API for JSON Processing provides a standard API to parse and generate
JSON so that the applications can rely upon a portable API. This API will provide:

• Produce/Consume JSON in a streaming fashion (similar to StAX API for
XML)

• Build a Java Object Model for JSON (similar to DOM API for XML)

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

44

This section will define a JAX-RS Entity Providers that will allow reading and
writing JSON for a Movie POJO. The JAX-RS Client API will request this JSON
representation.

JAX-RS Entity Providers supply mapping services between on-the-wire
representations and their associated Java types. Several standard Java types
such as String, byte[], javax.xml.bind.JAXBElement,
java.io.InputStream, java.io.File, and others have a pre-defined
mapping and is required by the specification. Applications may provide their own
mapping to custom types using MessageBodyReader and
MessageBodyWriter interfaces.

This section will provide the ability to add a new movie to the application.
Typically, this functionality will be available after proper authentication and
authorization.

7.1 Right-click on Source Packages, select “New”, “Java Package…”, specify the
value as “org.glassfish.movieplex7.json”, and click on “Finish”.

7.2 Right-click on newly created package, select “New”, “Java Class…”, specify
the name as “MovieReader”, and click on “Finish”. Add the following class-level
annotations:

@Provider
@Consumes(MediaType.APPLICATION_JSON)

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider scanning phase. @Consumes indicates that this
implementation will consume a JSON representation of the resource.

Make sure to resolve imports from the appropriate package as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

45

7.3 Make the class implements MessageBodyReader<Movie>.

Click on the hint (shown as yellow bulb) on the class definition and select
“Implement all abstract methods”.

7.4 Change implementation of the isReadable method as:

return Movie.class.isAssignableFrom(type);

This method ascertains if the MessageBodyReader can produce an instance of
a particular type.

7.5 Replace the readFrom method to:

@Override
public Movie readFrom(Class<Movie> type, Type type1, Annotation[]
antns, MediaType mt, MultivaluedMap<String, String> mm, InputStream in)
throws IOException, WebApplicationException {
 Movie movie = new Movie();
 JsonParser parser = Json.createParser(in);
 while (parser.hasNext()) {
 switch (parser.next()) {
 case KEY_NAME:
 String key = parser.getString();
 parser.next();
 switch (key) {
 case "id":
 movie.setId(parser.getInt());
 break;
 case "name":
 movie.setName(parser.getString());
 break;
 case "actors":
 movie.setActors(parser.getString());
 break;
 default:
 break;

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

46

 }
 break;
 default:
 break;
 }
 }
 return movie;
}

This code reads a type from the input stream in. JsonParser, a streaming
parser, is created from the input stream. Key values are read from the parser and
a Movie instance is populated and returned.

Resolve the imports.

7.6 Right-click on newly created package, select “New”, “Java Class…”, specify
the name as “MovieWriter”, and click on “Finish”. Add the following class-level
annotations:

@Provider
@Produces(MediaType.APPLICATION_JSON)

@Provider allows this implementation to be discovered by the JAX-RS runtime
during the provider scanning phase. @Produces indicates that this
implementation will produce a JSON representation of the resource.

Resolve the imports as shown.

7.7 Make this class implements MessageBodyWriter<Movie>.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

47

Click on the hint (show as yellow bulb) on the class definition and select
“Implement all abstract methods”.

7.8 Change implementation of the isWritable method to:

return Movie.class.isAssignableFrom(type);

This method ascertains if the MessageBodyWriter supports a particular type.

7.9 Add implementation of the getSize method as:

return -1;

Originally, this method was called to ascertain the length in bytes of the serialized
form of t. In JAX-RS 2.0, this method is deprecated and the value returned by
the method is ignored by a JAX-RS runtime. All MessageBodyWriter
implementations are advised to return -1.

7.10 Change implementation of the writeTo method as:

public void writeTo(Movie t, Class<?> type, Type type1, Annotation[]
antns, MediaType mt, MultivaluedMap<String, Object> mm, OutputStream
out) throws IOException, WebApplicationException {
 JsonGenerator gen = Json.createGenerator(out);
 gen.writeStartObject()
 .write("id", t.getId())
 .write("name", t.getName())
 .write("actors", t.getActors())
 .writeEnd();
 gen.flush();
}

This method writes a type to an HTTP message. JsonGenerator writes JSON
data to an output stream in a streaming way. Overloaded write methods are
used to write different data types to the stream.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

48

Resolve the imports.

7.11 In “Web Pages”, right-click on “client” folder, select “New”, “Facelets
Template Client”.

Give the File Name as “addmovie”. Click on “Browse…” next to “Template:”,
expand “Web Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select
File”. Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

Replace the content inside <ui:define> with “content” with the code fragment
shown below:

<h1>Add a New Movie</h1>
<h:form>
 <table cellpadding="5" cellspacing="5">
 <tr>
 <th align="left">Movie Id:</th>
 <td><h:inputText value="#{movieBackingBean.movieId}"/></td>
 </tr>
 <tr>
 <th align="left">Movie Name:</th>
 <td><h:inputText value="#{movieBackingBean.movieName}"/> </
td>
 </tr>
 <tr>
 <th align="left">Movie Actors:</th>
 <td><h:inputText value="#{movieBackingBean.actors}"/></td>
 </tr>

 </table>
 <h:commandButton value="Add" action="movies"
 actionListener="#{movieClientBean.addMovie()}"/>
</h:form>

This code creates a form to accept input of id, name, and actors of a movie.
These values are bound to fields in “MovieBackingBean”. The click of command
button invokes the addMovie method from “MovieClientBean” and then renders
“movies.xhtml”.

Click on the hint (show as yellow bulb) to resolve the namespace prefix/URI
mapping as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

49

7.12 Add movieName and actors field to “MovieBackingBean” as:

String movieName;
String actors;

Generate getters and setters by clicking on the menu item “Source” and then
“Insert Code...”.

7.13 Add the following code to “movies.xhtml”

<h:commandButton value="New Movie" action="addmovie" />

along with rest of the <commandButton>s.

7.14 Add the following method in “MovieClientBean”:

public void addMovie() {
 Movie m = new Movie();
 m.setId(bean.getMovieId());
 m.setName(bean.getMovieName());
 m.setActors(bean.getActors());
 target
 .register(MovieWriter.class)
 .request()
 .post(Entity.entity(m, MediaType.APPLICATION_JSON));
}

This method creates a new Movie instance, populates it with the values from the
backing bean, and POSTs the bean to the REST endpoint. The register
method registers a MovieWriter that provides conversion from the POJO to
JSON. Media type of “application/json” is specified using
MediaType.APPLICATION_JSON.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

50

Resolve the imports as shown

7.15 Run the project to see the updated main page as:

A new movie can be added by clicking on “New Movie” button.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

51

7.16 Enter the details as shown:

Click on “Add” button. The “Movie Id” value has to be greater than 20 otherwise
the primary key constraint will be violated. The table definition may be updated to
generate the primary key based upon a sequence; however this is not done in
the application.

The updated page looks like as shown

Note that the newly added movie is now displayed.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

52

8.0 Movie Points (Java Message Service)

Purpose: Customers accrue points for watching a movie.

Estimated Time: 30-45 mins

Java Message Service 2.0 allows sending and receiving messages between
distributed systems. JMS 2 introduced several improvements over the previous
version such as:

• New JMSContext interface
• AutoCloseable JMSContext, Connection, and Session
• Use of runtime exceptions
• Method chaining on JMSProducer
• Simplified message sending

This section will provide a page to simulate submission of movie points accrued
by a customer. These points are submitted to a JMS queue that is then read
synchronously by another bean. JMS queue for further processing, possibly
storing in the database using JPA.

8.1 Right-click on Source Packages, select “New”, “Java Package…”, specify the
value as “org.glassfish.movieplex7.points”, and click on “Finish”.

8.2 Right-click on newly created package, select “New”, “Java Class…”, specify
the name as “SendPointsBean”.

Add the following class-level annotations:

@Named
@RequestScoped

This makes the bean to be EL-injectable and automatically activated and
passivated with the request.

Resolve the imports.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

53

8.3 A message to a JMS Queue is sent after the customer has bought the tickets.
Another bean will then retrieve this message and update the points for that
customer. This allows the two systems, one generating the data about tickets
purchased and the other about crediting the account with the points, completely
decoupled.

This lab will mimic the sending and consuming of a message by an explicit call to
the bean from a JSF page.

Add the following field to the class:

@NotNull
@Pattern(regexp = "^\\d{2},\\d{2}",
message = "Message format must be 2 digits, comma, 2 digits, e.g.
12,12")
private String message;

This field contains the message sent to the queue. This field’s value is bound to
an inputText in a JSF page (created later). Constraints have been specified on
this bean that enable validation of data on form submit. It requires the data to
consists of 2 numerical digits, followed by a comma, and then 2 more numerical
digits. If the message does not meet the validation criteria then the error
message to be displayed is specified using message attribute.

This could be thought as conveying the customer identifier and the points
accrued by that customer.

Generate getter/setters for this field. Right-click in the editor pane, select “Insert
Code” (Ctrl + I shortcut on Mac), select “Getter and Setter…”, select the field, and
click on “Generate”.

8.4 Add the following code to the class:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

54

@Inject
JMSContext context;

@Resource(lookup = "java:global/jms/pointsQueue")
Queue pointsQueue;

public void sendMessage() {
 System.out.println("Sending message: " + message);

 context.createProducer().send(pointsQueue, message);
}

The Java EE Platform requires a pre-configured JMS connection factory under
the JNDI name java:comp/DefaultJMSConnectionFactory. If no
connection factory is specified then the pre-configured connection factory is
used. In a Java EE environment, where CDI is enabled by default anyway, a
container-managed JMSContext can be injected as:

@Inject
JMSContext context;

This code uses the default factory to inject an instance of container-managed
JMSContext.

JMSContext is a new interface introduced in JMS 2. This combines in a single
object the functionality of two separate objects from the JMS 1.1 API: a
Connection and a Session.

When an application needs to send messages it use the createProducer
method to create a JMSProducer that provides methods to configure and send
messages. Messages may be sent either synchronously or asynchronously.
When an application needs to receive messages it uses one of several
createConsumer or createDurableConsumer methods to create a
JMSConsumer. A JMSConsumer provides methods to receive messages either
synchronously or asynchronously.

All messages are then sent to a Queue instance (created later) identified by
java:global/jms/pointsQueue JNDI name. The actual message is
obtained from the value entered in the JSF page and bound to the message
field.
Resolve the imports.
Make sure Queue class is imported from javax.jms.Queue instead of the
default java.util.Queue as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

55

Click on “OK”.

8.5 Right-click on “org.glassfish.movieplex7.points” package, select “New”, “Java
Class…”, specify the name as “ReceivePointsBean”.

Add the following class-level annotations:

@JMSDestinationDefinition(name = "java:global/jms/pointsQueue",
 interfaceName = "javax.jms.Queue")
@Named
@RequestScoped

This allows the bean to refered from an EL expression. It also activates and
passivates the bean with the request.

JMSDestinationDefinition is a new annotation introduced in JMS 2. It is
used by the application to provision the required resources and allow an
application to be deployed into a Java EE environment with minimal
administrative configuration. This code will create Queue with the JNDI name
java:global/jms/pointsQueue.

8.6 Add the following code to the class:

@Inject
JMSContext context;

@Resource(lookup="java:global/jms/pointsQueue")
Queue pointsQueue;

public String receiveMessage() {
 String message =
context.createConsumer(pointsQueue).receiveBody(String.class);
 System.out.println("Received message: " + message);
 return message;
}

This code is very similar to SendPointsBean. createConsumer method
creates JMSConsumer which is then used to synchronously receive a message.

8.7 Add the following method to the class:

public int getQueueSize() {
 int count = 0;

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

56

 try {
 QueueBrowser browser = context.createBrowser(pointsQueue);
 Enumeration elems = browser.getEnumeration();
 while (elems.hasMoreElements()) {
 elems.nextElement();
 count++;
 }
 } catch (JMSException ex) {
 ex.printStackTrace();
 }
 return count;
}

This code creates a QueueBrowser to look at the messages on a queue without
removing them. It calculates and returns the total number of messages in the
queue.

Make sure to resolve the import from javax.jms.Queue, take all other defaults.

8.8 Right-click on “Web Pages”, select “New”, “Folder…”, specify the name as
“points”, and click on “Finish”.

In “Web Pages”, right-click on newly created folder, select “Facelets Template
Client”, give the File Name as “points”. Click on “Browse…” next to “Template:”,
expand “Web Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select
File”. Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

Replace the content inside <ui:define> with “content” with the code fragment
shown below:

Copy the following code inside <ui:define> with name=”content”:

<h1>Points</h1>
<h:form>
 Queue size:
 <h:outputText value="#{receivePointsBean.queueSize}"/><p/>
 <h:inputText value="#{sendPointsBean.message}"/>

 <h:commandButton value="Send Message" action="points"
actionListener="#{sendPointsBean.sendMessage()}"/>
</h:form>
<h:form>
 <h:commandButton value="Receive Message" action="points"
actionListener="#{receivePointsBean.receiveMessage()}"/>
</h:form>

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

57

Click on the yellow bulb to resolve namespace prefix/URI mapping for h: prefix.

This page displays the number of messages in the current queue. It provides a
text box for entering the message that can be sent to the queue. The first
command button invokes sendMessage method from SendPointsBean and
refreshes the page. Updated queue count, incremented by 1 in this case, is
displayed. The second command button invokes receiveMessage method from
ReceivePointsBean and refreshes the page. The queue count is updated
again, decremented by 1 in this case.

If the message does not meet the validation criteria then the error message is
displayed on the screen.

8.9 Add the following code in “template.xhtml” along with other <outputLink>s:

<p/><h:outputLink value="$
{facesContext.externalContext.requestContextPath}/faces/points/
points.xhtml">Points</h:outputLink>

8.10 Run the project. The update page looks like as shown:

Click on “Points” to see the output as:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

58

The output shows that the queue has 0 messages. Enter a message “1212” in
the text box and click on “Send Message” to see the output as shown.

This message is not meeting the validation criteria and so the error message is
displayed.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

59

Enter a message as “12,12” in the text box and click on “Send Message” button
to see the output as:

The updated count now shows that there is 1 message in the queue. Click on
“Receive Message” button to see output as:

The updated count now shows that the message has been consumed and the
queue has 0 messages.

Click on “Send Message” 4 times to see the output as:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

60

The updated count now shows that the queue has 4 messages. Click on
“Receive Message” 2 times to see the output as:

The count is once again updated to reflect the 2 consumed and 2 remaining
messages in the queue.

9.0 Show Booking (JavaServer Faces)

Purpose: Build pages that allow a user to book a particular movie show in a
theater. In doing so a new feature of JavaServer Faces 2.2 will be introduced and
demonstrated by using in the application.

Estimated Time: 30-45 mins

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

61

JavaServer Faces 2.2 introduces a new feature called Faces Flow that provides
an encapsulation of related views/pages with application defined entry and exit
points. Faces Flow borrows core concepts from ADF TaskFlow, Spring Web Flow,
and Apache MyFaces CODI.

It introduces @FlowScoped CDI annotation for flow-local storage and
@FlowDefinition to define the flow using CDI producer methods. There are
clearly defined entry and exit points with well-defined parameters. This allows the
flow to be packaged together as a JAR or ZIP file and be reused. The application
thus becomes a collection of flows and non-flow pages. Usually the objects in a
flow are designed to allow the user to accomplish a task that requires input over
a number of different views.

This application will build a flow that allows the user to make a movie reservation.
The flow will contain four pages:

1. Display the list of movies
2. Display the list of available show timings
3. Confirm the choices
4. Make the reservation and show the ticket

9.1 Items in a flow are logically related to each other and so it is required to keep
them together in a directory.	
 In NetBeans, right-click on the “Web Pages”, select
“New”, “Folder…”, specify the folder name “booking”, and click on “Finish”.

9.2 Right-click on the newly created folder, select “New”, “Facelets Template
Client”, give the File Name as “booking”. Click on “Browse…” next to “Template:”,
expand “Web Pages”, “WEB-INF”, select “template.xhtml”, and click on “Select
File”. Click on “Finish”.

In this file, remove <ui:define> sections where name attribute value is “top”
and “left”. These sections are inherited from the template.

9.3 “booking.xhtml” is the entry point to the flow (more on this later). Replace the
<ui:define> with name=”content” section such that it looks like:

<ui:define name="content">
 <h2>Pick a movie</h2>
 <h:form prependId="false">

 <h:selectOneRadio value="#{booking.movieId}"
layout="pageDirection" required="true">

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

62

 <f:selectItems value="#{movieFacadeREST.all}" var="m"
itemValue="#{m.id}" itemLabel="#{m.name}"/>
 </h:selectOneRadio>

 <h:commandButton id="shows" value="Pick a time"
action="showtimes" />
 </h:form>
</ui:define>

The code builds an HTML form that displays the list of movies as radio button
choices. The chosen movie is bound to #{booking.movieId} which will be
defined as a flow-scoped bean. The value of action attribute on
commandButton refers to the next view in the flow, i.e. “showtimes.xhtml” in the
same directory in our case.

Click on the hint (shown as yellow bulb) and click on the suggestion to add
namespace prefix. Do the same for f: prefix as shown.

9.4 Right-click on “Source Packages”, select “New”, “Java Class…”. Specify the
class name as “Booking” and the package name as
“org.glassfish.movieplex7.booking”.

Add @Named class-level annotation to make the class EL-injectable. Add
@FlowScoped("booking") to define the scope of bean as the flow. The bean
is automatically activated and passivated as the flow is entered or exited.

Add the following field:

int movieId;

and generate getters/setters by going to “Source”, “Insert Code…”, selecting
“Getter and Setter…”, and select the field.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

63

Inject EntityManager in this class by adding the following code:

@PersistenceContext
EntityManager em;

Add the following convenience method:

public String getMovieName() {
 try {
 return em.createNamedQuery("Movie.findById",
Movie.class).setParameter("id", movieId).getSingleResult().getName();
 } catch (NoResultException e) {
 return "";
 }
}

This method will return the movie name based upon the selected movie.

Alternatively, movie id and name may be passed from the selected radio button
and parsed in the backing bean. This will reduce an extra trip to the database.

9.5 Create “showtimes.xhtml” in the “booking” folder following the steps in section
9.2. Replace “content” <ui:define> section such that it looks like:

<ui:define name="content">
 <h2>Show Timings for #{booking.movieName}</
h2>
 <h:form>
 <h:selectOneRadio value="#{booking.startTime}"
layout="pageDirection" required="true">
 <c:forEach items="#{timeslotFacadeREST.all}" var="s">
 <f:selectItem itemValue="#{s.id},#{s.startTime}"
itemLabel="#{s.startTime}"/>
 </c:forEach>
 </h:selectOneRadio>
 <h:commandButton value="Confirm" action="confirm" />
 <h:commandButton id="back" value="Back" action="booking"
immediate="true"/>
 </h:form>
</ui:define>

This code builds an HTML form that displays the chosen movie name and all the
show times. #{timeslotFacadeREST.all} returns the list of all the movies
and iterates over them using a c:forEach loop. The id and start time of the
selected show are bound to #{booking.startTime}. One command button
(value=”Back”) allows going back to the previous page and the other
command button (value=”Confirm”) takes to next view in the flow,
“confirm.xhtml” in our case.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

64

Typically a user will expect the show times only for the selected movie but all the
show times are shown here. This allows us to demonstrate going back and forth
within a flow if an incorrect show time for a movie is chosen. A different query
may be written that displays only the shows available for this movie; however this
is not part of the application.

9.6 Add the following fields to the Booking class:

String startTime;
int startTimeId;

And the following methods:

public String getStartTime() {
 return startTime;
}

public void setStartTime(String startTime) {
 StringTokenizer tokens = new StringTokenizer(startTime, ",");
 startTimeId = Integer.parseInt(tokens.nextToken());
 this.startTime = tokens.nextToken();
}

public int getStartTimeId() {
 return startTimeId;
}

These methods will parse the values received from the form. Also add the
following method:

public String getTheater() {
 // for a movie and show
 try {
 // Always return the first theater
 List<ShowTiming> list =
 em.createNamedQuery("ShowTiming.findByMovieAndTimingId",
 ShowTiming.class)
 .setParameter("movieId", movieId)
 .setParameter("timingId", startTimeId)
 .getResultList();
 if (list.isEmpty())
 return "none";

 return list
 .get(0)
 .getTheaterId()
 .getId().toString();
 } catch (NoResultException e) {
 return "none";

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

65

 }
}

This method will find the first theater available for the chosen movie and show
the timing.

Additionally a list of theaters offering that movie may be shown in a separate
page.

9.7 Create “confirm.xhtml” page in the “booking” folder by following the steps
defined in 9.2. Replace “content” <ui:define> section such that it looks like:

<ui:define name="content">
 <c:choose>
 <c:when test="#{booking.theater == 'none'}">
 <h2>No theater found, choose a different time</h2>
 <h:form>
 Movie name: #{booking.movieName}<p/>
 Starts at: #{booking.startTime}<p/>
 <h:commandButton id="back" value="Back" action="showtimes"/>
 </h:form>
 </c:when>
 <c:otherwise>
 <h2>Confirm ?</h2>
 <h:form>
 Movie name: #{booking.movieName}<p/>
 Starts at: #{booking.startTime}<p/>
 Theater: #{booking.theater}<p/>
 <p/><h:commandButton id="next" value="Book" action="print"/>
 <h:commandButton id="back" value="Back" action="showtimes"/>
 </h:form>
 </c:otherwise>
 </c:choose>
</ui:define>

The code displays the selected movie, show timing, and theater if available. The
reservation can proceed if all three are available. “print.xhtml”, identified by
action of commandButton with “Book” value, is the last page that shows the
confirmed reservation.

actionListener can be added to commandButton to invoke the business
logic for making the reservation. Additional pages may be added to take the
credit card details and email address.

9.8 Create “print.xhtml” page in the “booking” folder by following the steps
defined in 9.2 and replace “content” <ui:define> section such that it looks like:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

66

<ui:define name="content">
 <h2>Reservation Confirmed</h2>
 <h:form>
 Movie name: #{booking.movieName}<p/>
 Starts at: #{booking.startTime}<p/>
 Theater: #{booking.theater}<p/>
 <p><h:commandButton id="home" value="home" action="goHome" /></p>
 </h:form>
</ui:define>

This code displays the movie name, show timings, and the selected theater.

The commandButton initiates exit from the flow. The action attribute defines a
navigation rule that will be defined in the next step.

9.9 “booking.xhtml”, “showtimes.xhtml”, “confirm.xhtml”, and “print.xhtml” are all
in the same directory. Now the runtime needs to be informed that the views in this
directory are to be treated as view nodes in a flow. This can be done by adding
“booking/booking-flow.xml” or have a class with a method that @Produces
@FlowDefinition.

Right-click on “Web Pages/booking” folder, select “New”, “Other”, “XML”, “XML
Document”, give the name as “booking-flow”, click on “Next>”, take the default of
“Well-formed Document”, and click on “Finish”. Edit the file such that it looks like:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

 <flow-definition id="booking">

<flow-return id="goHome">
 <from-outcome>/index</from-outcome>

 </flow-return>
 </flow-definition>

</faces-config>

This defines the flow graph. It uses the standard parent element used in any
“faces-config.xml” but defines a <flow-definition>.

<flow-return> defines a return node in a flow graph. <from-outcome>
contains the node value, or an EL expression that defines the node, to return to.
In this case, the navigation returns to the home page.

9.10 Finally, invoke the flow by editing “WEB-INF/template.xhtml” and changing:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

67

<h:commandLink action="item1">Item 1</h:commandLink>

to

<h:commandLink action="booking">Book a movie</h:commandLink>

commandLink renders an HTML anchor tag that behaves like a form submit
button. The action attribute points to the directory where all views for the flow
are stored. This directory already contains “booking-flow.xml” which defines the
flow of the pages.

9.11 Run the project by right clicking on the project and selecting “Run”. The
browser shows the updated output.

Click on “Book a movie” to see the page as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

68

Select a movie, say “The Shining” and click on “Pick a time” to see the page
output as shown.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

69

Pick a time slot, say “04:00”, click on “Confirm” to see the output as shown.

Click on “Book” to confirm and see the output as:

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

70

Feel free to enter other combinations, go back and forth in the flow and notice
how the values in the bean are preserved.

Click on “home” takes to the main application page.

10.0 Conclusion

This hands-on lab built a trivial 3-tier web application using Java EE 7 and
demonstrated the following features of the
platform:

• Java EE 7 Platform (JSR 342)
o Maven coordinates
o Default DataSource
o Default

JMSConnectionFactory
• Java Persistence API 2.1 (JSR 338)

o Schema generation properties
• Java API for RESTful Web Services 2.0

(JSR 339)
o Client API
o Custom Entity Providers

• Java Message Service 2.0 (JSR 343)
o Default ConnectionFactory
o Injecting JMSContext

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

71

o Synchronous message send and receive
• JavaServer Faces 2.2 (JSR 344)

o Faces Flow
• Contexts and Dependency Injection 1.1 (JSR 346)

o Automatic discovery of beans
o Injection of beans

• Bean Validation 1.1 (JSR 349)
o Integration with JavaServer Faces

• Batch Applications for the Java Platform 1.0 (JSR 352)
o Chunk-style processing
o Exception handling

• Java API for JSON Processing 1.0 (JSR 353)
o Streaming API for generating JSON
o Streaming API for consuming JSON

• Java API for WebSocket 1.0 (JSR 356)
o Annotated server endpoint
o JavaScript client

• Java Transaction API 1.2 (JSR 907)
o @Transactional

Hopefully this has raised your interest enough in trying out Java EE 7applications
using GlassFish 4.

Send us feedback at users@glassfish.java.net.

11.0 Troubleshooting

11.1 How can I start/stop/restart GlassFish from within the IDE ?

In the “Services” tab, right-click on “GlassFish Server 4”. All the commands to
start, stop, and restart are available from the pop-up menu. The server log can
be viewed by clicking on “View Server Log” and web-based administration
console can be seen by clicking on “View Admin Console”.

11.2 I accidentally closed the GlassFish output log window. How do I bring it
back ?

In “Services” tab of NetBeans, expand “Servers”, choose the GlassFish node,
and select “View Domain Server Log”.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

72

12.0 Acknowledgements

The following GlassFish community members graciously reviewed this hands-on
lab:

• Antonio Goncalves (@agoncal)
• Markus Eisele (@myfear)
• Craig Sharpe (@dapugs)
• Marcus Vinicius Margarites (@mvfm)
• David Delabasse (@delabasse)
• John Clingan (@jclingan)
• Reza Rahman (@reza_rahman)

Thank you very much for providing the valuable feedback!

13.0 Completed Solutions

The completed solution can be downloaded from glassfish.org/hol/movieplex7-
solution.zip.

13.1 TODO

1. Add the following use cases:
a. Concurrency Utilities for

Java EE
b. WebSocket Java Client
c. JAX-RS Logging Filter

2. Disable errors in persistence.xml
3. How to override .m2/repository in

NetBeans?
4. Add icons for Fix Imports,

Format, Fix namespaces, Run the
Project.

5. Change logging to use java.util.Logging.

13.2 Revision History

1. 1.1:
a. Moving the source document from Microsoft Word to Pages.
b. Added time estimates for each section.
c. Updated to use NetBeans 7.4 nightly.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

http://glassfish.org/hol/movieplex7-solution.zip
http://glassfish.org/hol/movieplex7-solution.zip
http://glassfish.org/hol/movieplex7-solution.zip
http://glassfish.org/hol/movieplex7-solution.zip

73

d. Reorganized to ensure that newer Java EE 7 technologies are
described first.

2. 1.0.4: Code updates from UberConf.
3. 1.0.3: Incorporating typos, missing dialog boxes, and code optimizations

received during DevoxxUK.
4. 1.0.2: Updating instructions after some of the bugs have been fixed.
5. 1.0.1: Using the final GlassFish 4 build (b89).

Appendix

Appendix A: Configure GlassFish 4 in NetBeans IDE

A.1 In NetBeans, click on the “Services” tab.

A.2 Right-click on Servers, choose “Add
Server...” in the pop-up menu.

A.3 Select “GlassFish Server” in the Add
Server Instance wizard, set the name to
“GlassFish 4.0” and click “Next >”.

A.4 Click on “Browse …” and browse to
where you unzipped the GlassFish build
and point to the “glassfish4” directory that
got created when you unzipped the above
archive. Click on “Finish”.

Java	
 EE	
 7	
 Hands-­‐on	
 Lab	
 using	
 GlassFish	
 4

