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Abstract   
In this paper we present a method that allows leveraging 3D electron density information to train a deep neu-
ral network pipeline to segment regions of high, medium and low electronegativity and classify substances 
as health hazardous or non-hazardous. We show that this can be used for use-cases such as cosmetics and food 
products. For this purpose, we first generate 3D electron density cubes using semiempirical molecular calcula-
tions for a custom European Chemicals Agency (ECHA) subset consisting of substances labelled as hazardous 
and non-hazardous for cosmetic usage. Together with their 3-class electronegativity maps we train a modified 
3D-UNet with electron density cubes to segment reactive sites in molecules and classify substances with an accu-
racy of 78.1%. We perform the same process on a custom food dataset (CompFood) consisting of hazardous 
and non-hazardous substances compiled from European Food Safety Authority (EFSA) OpenFoodTox, Food 
and Drug Administration (FDA) Generally Recognized as Safe (GRAS) and FooDB datasets to achieve a classification 
accuracy of 64.1%. Our results show that 3D electron densities and particularly masked electron densities, calcu-
lated by taking a product of original electron densities and regions of high and low electronegativity can be used 
to classify molecules for different use-cases and thus serve not only to guide safe-by-design product development 
but also aid in regulatory decisions.

Scientific contribution   
We aim to contribute to the diverse 3D molecular representations used for training machine learning algorithms 
by showing that a deep learning network can be trained on 3D electron density representation of molecules. This 
approach has previously not been used to train machine learning models and it allows utilization of the true spatial 
domain of the molecule for prediction of properties such as their suitability for usage in cosmetics and food products 
and in future, to other molecular properties. The data and code used for training is accessible at https://​github.​com/s-​
singh-​ivv/​eDen-​Subst​ances.
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Introduction
In the field of product development, it is necessary to 
identify compounds with specific properties as early as 
possible to minimize non-methodical trial-and-error 
approaches and consequently reduce development costs. 
Consumers want new products, such as cosmetics to 
exhibit desirable, characteristic hedonic properties, e.g., 
particular odors. At the same time, it is of the highest pri-
ority that new products are safe for customers’ health and 
the environment. The situation is similar for food prod-
ucts and their ingredients, where it is imperative to iden-
tify substances that are considered hazardous to health 
early in the development cycle and avoid their use.

Especially as part of the European Green Deal from 
the EU Commission [1], the chemical strategy aims to 
ban chemicals that are harmful to the consumers or the 
environment. Thus, having a generalized automated sys-
tem that can help in identifying such substances is key to 
overcoming this challenge. For this purpose, regulatory 
bodies such as the European Chemicals Agency (ECHA) 
and the European Food Safety Authority (EFSA) moni-
tor and maintain a list of substances that can be utilized 
for various use-cases [2, 3]. This problem can be well 
defined as a binary classification task that is well suited 
for an artificial neural network (ANN), not least due to 
the complex nature of the data.

ANNs have previously used molecular structure rela-
tionships to classify substances as carcinogenic [4–6] or 
to predict molecular properties [7, 8]. In cheminformat-
ics, molecular structures are often represented using spe-
cific notations, such as InChI [9] (International Chemical 
Identifier) or SMARTS [10] (SMILES ARbitrary Target 
Specification), or, more popularly, with SMILES [11] 
(Simplified Molecular Input Line Entry Specification) 
representations, which are a subset of SMARTS. Another 
method of encoding molecular structures and features is 
the SELFIES [12] (Self-Referencing Embedded Strings) 
notation, which is used in various machine learning tasks 
such as predicting molecular properties or generating 
new structures, among other applications. These rule-
based methods have the benefit of being rather straight-
forward to generate and easy to understand by chemists. 
Such representations have therefore been used exten-
sively with machine learning in previous works, like those 
to generate new molecular structures [13–17]. Addition-
ally, other encoding schemes, such as molecular graphs 
[15, 18–20], have been widely combined with machine 
learning to predict molecular properties, like toxicity [21, 
22], medical activity in drug discovery [23–26], or even to 
predict the odor of molecules [27–31].

We assert that such a 2D-representation of molecules 
is insufficient to model the true spatial domain of the 
molecule and, as such, at best can roughly approximate 

properties rooted in the 3D-structure of a molecule. The 
SMILES notation, for example, has several drawbacks, 
such as a lack of standard aromaticity handling [32] or 
no standard method for generating canonical representa-
tions with various implementations consisting of imple-
mentational variations. On the one hand, this can yield 
multiple SMILES notations for a single structure [32–34]. 
On the other hand, there are molecules that cannot eas-
ily be defined by graph models, such as those with delo-
calized bonds, for example, in metal carbonyl complexes 
[33]. This is also the case for molecules whose atomic 
arrangements are not fixed in 3D space, making mean-
ingful graph representations difficult to generate. Addi-
tionally, while 2D-representations are adequate when 
calculating charges or polar surface areas for quick clas-
sification, gaining a deeper understanding of a molecule’s 
interaction in binding pockets of receptors necessitates 
3D information about its shape, for example in use-cases 
involving aroma and olfaction.

This can be seen in Fig.  1, where the SMILES strings 
do not convey the complex structures of molecules com-
pared to their 3D structures. Recent works have used 3D 
representation of molecules, like projecting a 3D molecu-
lar graph from its 2D structure [35], using 3D molecular 
conformations [36–38], or the representation of mol-
ecules in 3D coordinate space [39–43], and our method 
takes inspiration from these. In order to overcome the 
aforementioned limitations, we developed a machine 
learning pipeline that aims to learn molecular features 
which are as closely related to the true physics of a mol-
ecule as possible without depending on intermediate rep-
resentations, such as graphs or molecular fingerprints.

Particularly, for understanding toxicity, molecular 
structure, exposure duration and concentration play cru-
cial roles. Molecules interact with the mammalian body 
through direct or indirect means, including disruptions 
in the balance of signal molecules and interactions with 
receptors such as through shifts in electron densities 
(chemical reactions) or fitting into receptor pockets lead-
ing to various downstream signaling outcomes like tissue 
degradation and cell mutations [44–46]. Additionally, the 
mechanism of interaction with surrounding molecules 
and thereby, toxicity depends on the molecule’s proper-
ties. Reactivity of a molecule, for example, determines a 
molecule’s likelihood to donate or accept electrons and 
one very common measure to a molecule’s reactivity is its 
electron density [47, 48]. High electron density sites tend 
to donate electrons, while low electron density sites are 
prone to accept electrons. This understanding provides a 
basis for evaluating a molecule’s potential reactivity and 
interaction with its surroundings.

For this purpose, we use 3D electron densities as 
training data for a deep artificial neural network (DNN) 
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pipeline to allow capturing of the spatial features of 
molecules, which are rooted in quantum physics. We 
base our method on the core hypothesis of Density 
Functional Theory (DFT), which postulates that know-
ing the electron density of a molecule allows direct der-
ivation of various other molecular properties, such as 
electrostatic potentials, energies, or dipole structures 

[49–51]. In our pipeline, we use segmented local elec-
tronegativity maps of chemical compounds that can be 
used to identify sites of high and low electronegativity 
based on a threshold derived from their percentile val-
ues. Voxels, i.e., a single unit of 3D grid of size (1 × 1 × 
1)—consisting of the electron density or electronegativ-
ity values at the location with electronegativity values 

Fig. 1  Several molecules sampled from the custom ECHA cosmetics subset for both allowed and prohibited classes and their isomeric SMILES, 
ball-and-stick, electron density and electronegativity map formats. The electronegativity values have been overlaid on the molecular structure 
and then divided into three classes based on their percentile threshold values. The blue region shows regions of high electronegativity and hence 
these voxels are marked as value 2. Red shows regions of low electronegativity and these voxels are marked as 1. All other voxels are marked as 0 
and shown as green
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higher than the 90th percentile were marked as class 
2, i.e., high strength electronegative sites, while those 
less than the 10th percentile were marked as class 1, 
i.e., low strength electronegative sites, and the remain-
ing voxels were denoted as belonging to class 0, i.e., 
medium strength electronegative site. These are com-
monly considered as active sites where reactions would 
take place [51–55]. Thus, together with electron density 
distributions they can be used for the classification of 
compounds into chemical substances that are allowed, 
i.e., are not hazardous and those that are health hazards 
and hence prohibited for the two use-cases. Examples 
of the 3D electron density representation of molecules, 
and their corresponding ternary electronegativity maps 
are shown in Fig.  1. Thus, to predict if a substance is 
hazardous or non-hazardous, our work relies on struc-
tural similarity, encompassing both the molecular 
structure and electron densities, to known hazardous 
and non-hazardous substances.

Results and discussion
The pipeline for classifying molecules into two categories 
is shown in Fig. 2.

The neural network receives information from two 
sources: a CSV file provides the main class labels (1 for 
"allowed/non-hazardous" and 0 for "prohibited/hazard-
ous" class) and electronegativity cube files are used as a 
secondary label to identify specific regions using the 90th 
upper and 10th lower percentile values denoting high and 
low reactivity. Electron density cubes and their electron-
egativity maps are initially fed into the 3D-UNet, produc-
ing an intermediate segmentation result, as displayed in 
Fig. 2. Following this, a 1 × 1 convolution block is applied 
to reduce channel count and this result is used to mask 

and highlight specific electron density regions by multi-
plying the input densities with the intermediate output, 
followed by batch normalization and adaptive max pool-
ing layers. Finally, two fully connected layers generate 
probabilities, determining the class of the sample.

Classification on ECHA dataset
The ECHA dataset consisted of 1356 training samples 
divided into 855 from the allowed class and 501 belong-
ing to the prohibited/hazardous class. The validation 
set comprised of 330 samples, where 208 datapoints 
were from the allowed class and 122 from the pro-
hibited class. Finally, the test set consisted of 183 test 
samples, divided into 115 samples from the allowed 
class and 68 from the prohibited class. Table  1 shows 
the results achieved for classification of molecules into 
allowed/non-hazardous and prohibited/hazardous 
classes. Fig.  3 shows the confusion matrix, and exam-
ples of the segmented electronegativity regions ran-
domly sampled from the test set are shown in Fig.  4. 
Furthermore, we performed fivefold cross validation 
on this dataset to ensure that the performance metrics 
are not due to a favorable train-test split; these results 
are shown in Table 2. The averaged dice coefficient val-
ues for the model on the test set are shown in Table 3 
along with the dice coefficients for CompFood. The low 
dice coefficient values for classes 1 and 2 are somewhat 
expected given the fewer number of voxels that are 
assigned those classes compared to the dominant class. 
Overall, however, the network seems to be able to han-
dle not only the imbalance in the two classes of allowed 
and prohibited, but also provides a high classification 
accuracy of 78.1% for this use-case.

Fig. 2  Overview of the electron density pipeline. The modification block consists of 1 × 1 convolution followed by adaptive max pooling, batch 
normalization and two fully connected layers. The resulting segmentation cube from the UNet is multiplied and passed through the modified block. 
The fully connected layer assigns class probabilities for the given input using the provided class labels
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Classification on CompFood dataset
The results of classification on the CompFood dataset 
are shown in Table  4. CompFood dataset consisted of 
4262 train samples, divided into 2271 allowed and 1991 
prohibited datapoints. Moreover, the validation set 
consisted of 474 samples, divided into 239 allowed and 
235 prohibited substances. Finally, the test set consisted 
of a total of 836 substances, divided into 463 allowed 
and 373 prohibited substances.

The confusion matrix for the results is shown in 
Fig. 5. The classification report indicates that while the 
overall classification accuracy of 64.11% is much higher 
than chance, there is still scope for significant improve-
ment of the model. Examples from the segmentation 
of electronegativity files sampled randomly from the 
test set molecules are shown in Fig. 6 and the average 

dice coefficient values across the test set are shown in 
Table  3. Like the previous case, here, the dice coeffi-
cient for the two under-represented classes (class 1–2) 
is less than that of the majority class (class 0), which is 
somewhat expected. 

Overall, we show that our model is able to achieve up 
to 78.1% binary class accuracy for the ECHA dataset 
and 64.1% accuracy for the CompFood dataset. Using 
thresholded electronegativity maps as reactive sites of 
the molecules and thus as weights for the electron den-
sities allows specific spatial regions within the molecule 
to be highlighted, which would not be possible with a 
2D representation. This enables the network to use only 
these electron densities for making a decision on the 
molecules being in the hazardous/non-hazardous class.

We hypothesize that the difference in performance 
between the two datasets could be attributed to the pres-
ence of more ‘complex’ compounds in the CompFood 
dataset, which might pose challenges for the network 
to learn. Molecular complexity, however, is a complex 
topic which is not in the current scope of work, but we 
calculate the fraction of chiral centers [56] (FCC) to 
gain insight into the two datasets. The CompFood data-
set consists of compounds with higher FCC values (1.61 
Mean, 3.86 SD) than the ECHA dataset (0.87 Mean, 2.21 
SD), and thus this could be one reason for the difference 
in performance. Moreover, another possible scenario 
could be the effect of concentration that is not currently 
considered in our approach. For example, Ethanol is one 
compound in the CompFood dataset, that is labelled as 
prohibited due to it being considered carcinogenic but 
present in wide range of cosmetics and thus allowed in 
ECHA dataset. Two strategies for our future work to 
counter this would be to introduce a weight/penalty for 
misclassifying ‘complex’ compounds in the loss function 
along with considering concentration of the substances 
below which they would be considered belonging to the 
‘allowed’ class.

Our prototype pipeline thus allows the molecular prop-
erties to be established directly based on the physics of 
the molecule without depending on intermediate steps, 
such as lossy fingerprint translation. This approach opens 
up various other future possibilities, such as molecular 
structure replacement by identifying sites that contrib-
ute to the reactive nature of the molecule and testing if 
the replacement structure leads to a change in the haz-
ardous/non-hazardous class assignment. Among others, 
our future work will focus on improving the performance 
of the network and transferring this to other properties, 
such as the logP (octanol–water partition coefficient) of 
the underlying molecule that can be verified in a labora-
tory setting.

Table 1  Results of the classification of molecules into 
prohibited, i.e., hazardous category (class 0) and allowed, i.e., 
non-hazardous (class 1) for the ECHA cosmetics test set (higher 
is better)

Chance prediction would be 62.8% for ECHA dataset

Class Precision Recall F1 score Support

Class 0 0.73 0.65 0.69 68

Class 1 0.80 0.86 0.83 115

Accuracy 0.78 183

Macro Acc. 0.77 0.75 0.76 183

Weighted Acc. 0.78 0.78 0.78 183

Fig. 3  Confusion matrix for classification on the ECHA cosmetics 
dataset
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Conclusions
We demonstrate a machine learning pipeline that uses 
3D electron density and electronegativity information 

to segment regions of high, medium, and low electron-
egativity and classify substances as health hazardous or 
non-hazardous with considerably higher than chance 
accuracy. For this purpose, we first created a custom 
dataset of cube files by performing semi-empirical 
molecular calculations for all molecules present in the 
ECHA dataset consisting of molecules that are consid-
ered health hazardous and hence prohibited or non-
hazardous and thus allowed for cosmetic use. These cube 
files were used to train a modified 3D-UNet to segment 
3-class electronegativity maps that were derived by set-
ting an upper and lower threshold on the electronega-
tivities before being used for classification of the given 
molecules.

Moreover, we show that this kind of approach can be 
used for various use-cases, for example, in cosmetics or 
food products by performing the same data generation, 

Fig. 4  Electronegativity regions for three molecules from the test set along with their corresponding predicted segmentation. The SMILES strings 
for the compounds are CCC​CCC​CC1CCCC1 = O, C[C@H]1[C@@H]([C@H](C[C@@H](O1)O[C@H]2CC[C@]3([C@@H](C2)CC[C@@H]4[C@@H]3CC[C@]5([
C@@]4(C[C@@H]([C@@H]5C6 = CC(= O)OC6)OC(= O)C)O)C)C)OC)O and c1c(cc(c(c1N(= O) = O)O)N(= O) = O)N(= O) = O respectively

Table 2  To ensure that the accuracies achieved for the ECHA 
dataset were not due to favorable train-test split, we also 
performed a 5-fold cross validation on the entire dataset. The 
classification accuracy and weighted F1 scores per fold are 
summarized here (higher is better)

Fold Accuracy (%) Weighted 
F1 score

0 77.445 0.8136

1 72.826 0.7955

2 73.250 0.7838

3 75.820 0.7982

4 76.366 0.8080

Average 75.141 0.7998

Table 3  Average generalized dice scores on the test sets for the 
ECHA and CompFood datasets (higher is better)

ECHA dataset Comp 
food 
dataset

Class 0 0.8305 0.8473

Class 1 0.1960 0.1802

Class 2 0.2537 0.3991

Table 4  Classifications of molecules into prohibited, i.e., 
hazardous category (class 0) and allowed, i.e., non-hazardous 
(class 1) for the CompFood test set (higher is better)

Chance prediction would be 55.4% for this case

Class Precision Recall F1 score Support

Class 0 0.58 0.72 0.64 373

Class 1 0.72 0.58 0.64 463

Accuracy 0.64 836

Macro Acc. 0.65 0.65 0.64 836

Weighted Acc. 0.66 0.64 0.64 836
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pre-processing, and training steps on the CompFood 
dataset consisting of substances considered carcinogenic 
or safe in a binary class problem that were compiled from 
the OpenFoodTox, GRAS and FooDB datasets. With our 
work, we aim to demonstrate that a prototype pipeline 
that uses electron densities and deep neural networks 
can be used in the product development cycle as an early 
predictor to reduce future trial and errors, as well as aid 
in regulatory decisions.

Methods
Data generation
Initially, a list of substances prohibited for use in cos-
metic products under EU Cosmetic Products Regulation 
was retrieved from the European Chemicals Agency’s 
database for Information on Chemicals [2]. The prohib-
ited substances are those chemicals that are classified 
as carcinogenic, mutagenic, or toxic for reproduction 
by the European Union and hence considered a health 
hazard. Additionally, a second list of allowed substances 
was created that do not belong to this list, i.e., those not 
restricted by ECHA. For this purpose, we sampled a dis-
joint set of molecules with molecular weight < 400  Da 
from the ZINC [57] database. In this work, we use ‘haz-
ardous’ and ‘prohibited’ interchangeably and similarly, 
‘non-hazardous’ and ‘allowed’ are used interchangeably.

For creating the training dataset, in a first step CAS 
numbers were used to query PubChem via their REST 
API [58] to retrieve the isomeric SMILES representa-
tions of the substances in our prohibited and allowed 
categories. Using RDKit [59], these SMILES strings were 
converted to 3D structures, optimized using the Merck 

Molecular Force Field (MMFF) [60] and exported to 
mol2 files, from which we generated input files for the 
EMPIRE [61] software. We used EMPIRE and the AM1S 
[62] Hamiltonian to perform geometry optimizations 
and to generate an electronic wave-function for each 
molecule. The wave-function was then used to generate 
electron density, electronegativity and electron-affinity 
cube files using the eh5cube software from Cepos [61]. 
The final dataset consisted of 3D-electronegativity and 
the 3D electron-affinity cube files for each of the 1869 
molecules, of which 1178 are allowed and 691 are prohib-
ited, and this was then divided randomly into stratified 
train, validation, and test sets in the approximate ratio of 
70:20:10.

The labels for classifying molecules into “allowed” 
or “prohibited” classes were one-hot encoded with 
allowed = 1 and prohibited = 0. To map physical proper-
ties onto the feature space, a local property map of elec-
tronegativity was used as a secondary label, as follows. 
Since high (local) electronegativity is correlated to high 
(local) reactivity [52], we derive a ternary reactivity mask 
from the electronegativity cube files for regions of high, 
medium and low local reactivity. To categorize reactivity, 
voxels with electronegativity values above the 90th per-
centile were labeled as class 2, signifying high reactive 
sites. Conversely, those below the 10th percentile were 
labeled as class 1 for low reactive sites. All remaining vox-
els were designated as class 0, indicating medium reactiv-
ity. Examples of the 3D electron density representation of 
molecules, and their corresponding ternary electronega-
tivity maps, are shown in Fig. 1.

For the generation of the compiled food dataset, three 
independent datasets were combined. Firstly, the Open-
FoodTox [3] from EFSA containing 4201 substances with 

Fig. 5  Confusion matrix for classification on the CompFood dataset

Fig. 6  Electronegativity regions for three molecules from the test 
set for the CompFood dataset along with their corresponding 
predicted segmentation using the modified 3D-UNet pipeline. The 
SMILES strings for the three molecules are CCC​CCC​S, Cc1cccnc1 
and COc1c(oc2cc3OC(=O)C=Cc3cc12)C(C)C respectively
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their CAS numbers was downloaded. These consisted of 
3409 substances found in food products labeled as ‘Posi-
tive’ denoting a carcinogenic compound, 375 as ‘No Data’, 
i.e., either no carcinogenicity assessment was made or no 
studies are available, 209 labelled as ‘Negative’, 51 as ‘Not 
Determined’, i.e., no clear conclusion could be made, 32 
as ‘Other’, 37 as ‘Ambiguous’ and 88 as ‘Not applicable’. 
Thus, from this dataset, 3409 substances were selected 
for the prohibited class. To assign substances as allowed, 
only those belonging to the Negative class were chosen, 
i.e., 209 substances were assigned as allowed. To balance 
out the class distribution, additional substances were 
added to the allowed class from the GRAS database [63] 
that provided 381 compounds that are generally recog-
nized as safe for consumption, such as in the form of a 
food additive and a further 3167 “non-hazardous” sub-
stances were randomly sampled from the FooDB dataset 
[64] that consists of a comprehensive collection of food 
compounds and their associated chemical compositions, 
nutrients and flavors. Using our data preparation steps 
we generated a total of 5572 cube files, with 2599 com-
pounds belonging to the prohibited class and 2973 to the 
allowed class. This data was then subdivided into train-
test-validation sets in the ratio of 75:15:10 with the aim 
of training an ANN pipeline for this binary classification 
problem using 3D electron density and electronegativity 
representation of these substances.

Loss functions, evaluation and hyperparameter search
For classification of molecules into allowed/prohibited 
classes, a sum of cross entropy (CE) loss between ground-
truth and predicted class labels along with the dice loss 
between the original and predicted electronegativity maps 
was used, denoted as Lovr = Lce + Lgen_dice . Since the 
thresholded electronegativity voxels lead to a very imbal-
anced distribution of classes, we used generalized dice 
loss instead of the simple dice loss [65]. This allows intro-
ducing a weighting scheme for the different classes that 
are underrepresented. For our implementation, we used 
the generalized dice coefficient implementation from 
the Monai library [66]. This loss function is defined as 
Lgen_dice = 1− (1/(y2 + ε)) ∗ ((2 ∗ y ∗ yˆ+ ε)/(y+ yˆ+ ε))   . 
The CE loss used for training is defined as 
Lce = −

∑2
i=1 wiyilog

(
ŷi
)
 . Here, y corresponds to the 

ground truth labels and ŷi corresponds to the predicted 
labels. wi are the weights for class i shown in Supp. 
Table 3. Moreover, to account for class imbalance, espe-
cially classification on the ECHA dataset, the CE loss 
was provided with class weights for the ECHA dataset 
that were optimized along with the other hyperparam-
eters. For the CompFood dataset, however, the CE class 

weights were found to be almost the same, which would 
make sense since the classes are sufficiently balanced 
for the classification task. The performance of the mod-
els was determined by calculating the accuracy on the 
test set, along with their confusion matrices. The models 
were trained using Pytorch [67] library (version 2.0.0) for 
Python using a cluster of 4 Nvidia Quadro 8000 GPUs. 
The hyper-parameters for both trainings were selected 
by performing hyperparameter search using Optuna [68] 
and a Tree-structured Parzen Estimator. The final param-
eters are listed in Table 5.
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