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Abstract   
Protein kinases become an important source of potential drug targets. Developing new, efficient, and safe small-
molecule kinase inhibitors has become an important topic in the field of drug research and development. In 
contrast with traditional wet experiments which are time-consuming and expensive, machine learning-based 
approaches for predicting small molecule inhibitors for protein kinases are time-saving and cost-effective, which 
are highly desired for us. However, the issue of sample scarcity (known active and inactive compounds are usually 
limited for most kinases) poses a challenge to the research and development of machine learning-based kinase 
inhibitors’ active prediction methods. To alleviate the data scarcity problem in the prediction of kinase inhibitors, 
in this study, we present a novel Meta-learning-based inductive logistic matrix completion method for the Predic-
tion of Kinase Inhibitors (MetaILMC). MetaILMC adopts a meta-learning framework to learn a well-generalized 
model from tasks with sufficient samples, which can fast adapt to new tasks with limited samples. As MetaILMC 
allows the effective transfer of the prior knowledge learned from kinases with sufficient samples to kinases 
with a small number of samples, the proposed model can produce accurate predictions for kinases with limited 
data. Experimental results show that MetaILMC has excellent performance for prediction tasks of kinases with few-
shot samples and is significantly superior to the state-of-the-art multi-task learning in terms of AUC, AUPR, etc., 
various performance metrics. Case studies also provided for two drugs to predict Kinase Inhibitory scores, further 
validating the proposed method’s effectiveness and feasibility.

Scientific contribution   
Considering the potential correlation between activity prediction tasks for different kinases, we propose a novel 
meta learning algorithm MetaILMC, which learns a prior of strong generalization capacity during meta-training 
from the tasks with sufficient training samples, such that it can be easily and quickly adapted to the new tasks 
of the kinase with scarce data during meta-testing. Thus, MetaILMC can effectively alleviate the data scarcity problem 
in the prediction of kinase inhibitors.
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Introduction
The dysregulation of protein kinases plays critical roles 
in numerous human diseases, including cancers, inflam-
matory diseases, central nervous system disorders, car-
diovascular diseases, and complications of diabetes, 
therefore protein kinases become an important source of 
potential drug targets [1]. At present, 71 small molecule 
kinase inhibitors (SMKI) have been approved by the US 
Food and Drug Administration (FDA), approximately 
half of which were approved in the past 5  years. More 
than 250 kinase inhibitors are in preclinical and clinical 
trials [2, 3]. According to SMKI clinical trial data, about 
110 new kinases are currently being explored as drug 
targets, while about 45 targets of approved kinase inhibi-
tors account for only about 30% of the human kinase 
group, indicating that small molecule kinase inhibitors 
still have great drug research and development value [2, 
3]. Especially in the field of anti-tumor drug research and 
development, multitarget kinase inhibitors and highly 
selective kinase inhibitors can be used to treat cancer. 
Multiple kinase inhibitors can target a wide range of 
human kinases at the same time to play their anti-cancer 
role [4, 5]. Therefore, to fully understand and discover 
the potential small molecule compounds in the human 
Kinome, and to develop new, efficient, and safe small 
molecule kinase inhibitors has become an important 
topic in the field of drug research and development [6].

The traditional kinase inhibitors are found by low-
throughput methods [7–9], that is, screening by deter-
mining the ability of compounds to reduce kinase 
phosphorylation activity (IC50) [10] or their binding 
affinity with kinases [11]. However, this method cannot 
be used to determine the inhibition ability of compounds 
to the whole Kinome. With the development of technol-
ogy, it is possible to screen new high-throughput kinase 
profiles [12–17]. However, the long experimental cycle, 
high equipment requirements, and high cost make it dif-
ficult to use it as an early screen approach for drug dis-
covery [18].

In recent years, the existing methods have accumu-
lated a large amount of experimental data, which makes 
it possible to use data-driven methods to train machine 
learning models to predict kinase inhibitors. Compared 
with traditional experimental methods, machine learning 
methods have low experiment costs, and high efficiency, 
and can effectively narrow the scope of experiments and 
reduce experimental blindness [19]. It can be seen that 
the prediction method of kinase inhibitor activity based 
on statistical machine learning has actively promoted 
the development of kinase inhibitors [18–25]. Gener-
ally, there are two categories of machine learning-based 
approaches for finding kinase inhibitors, i.e., single kinase 

prediction model (SKM) and multiple kinases prediction 
model (MKM) [20].

The SKM approaches
These models were separately trained with individual 
data sets relating to a kinase and then made predictions 
for the kinase. For example, Bora et  al. [21] developed 
two-dimensional pharmacophore-based random for-
est models for the effective profiling of kinase inhibitors 
where one hundred-seven prediction models were devel-
oped to address distinct kinases spanning over all kinase 
groups. Merget et  al. [18] presented ligand-based activ-
ity prediction models for over 280 kinases by employing 
Random Forest on an extensive data set of proprietary 
bio-activity data. The existing SKM approaches usually 
use statistical machine learning methods such as Naive 
Bayesian, random forest, etc. to build prediction models, 
and generally use pharmacophore fingerprints or ECFP 
fingerprints as compound descriptors. The experimen-
tal results of these methods show that SKM can achieve 
good prediction results for kinases with many known 
active, and inactive compounds. However, the known 
active, and inactive compounds of most kinases are 
very few. When SKM meets kinases with few samples, it 
always shows unsatisfactory predictive power and a ten-
dency toward overfitting.

The MKM approaches
These models refer to using one model to predict multi-
ple compounds on multiple kinases (Kinome) activity at 
the same time. These models usually encode the kinase 
target, to achieve the prediction of DTI or affinity. Nii-
jima et  al. [22] proposed a de-convolution approach to 
dissecting kinase profiling data to gain knowledge about 
the cross-reactivity of inhibitors from large-scale profil-
ing data. This approach not only enables activity predic-
tions of given compounds on a Kinome-wide scale but 
also allows extraction of residue-–fragment pairs that are 
associated with an activity. Janssen et  al. [19] presented 
Drug Discovery Maps (DDM) that map the activity pro-
file of compounds across an entire protein family. DDM 
is based on the t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm to generate a visualization of 
molecular and biological similarity and maps chemical 
and target space to predict the activities of novel kinase 
inhibitors. Raquel Rodríguez-Pérez et  al. [23] proposed 
a multi-task learning model to predict highly potent and 
weakly potent protein kinase inhibitors. A total of 19 030 
inhibitors with activity against 103 human kinases were 
used for modeling. Experimental results show that multi-
task learning consistently outperformed single-task 
modeling. Lo et al. [24] used structured domain knowl-
edge related to kinases and compounds to improve the 
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prediction accuracy of highly selective kinase inhibitors. 
Shen et  al. [25] constructed a kinase-compound het-
erogeneous network using known activity data, which 
contains compound similarity information and kinase-
compound activity information. Based on this hetero-
geneous network, a diffusion propagation method was 
proposed to predict the inhibition relationship of kinase 
compound activity. The experimental results show that 
the prediction accuracy of kinase compound activity can 
be improved by using the knowledge of kinase and com-
pound domain to build an isomer network. Most related 
to our research work, Li et  al. [20] recently presented a 
virtual kinase chemogenomic model for predicting the 
interaction profiles of kinase inhibitors against a panel of 
391 kinases based on large-scale bioactivity data and the 
MTDNN algorithm. As a result of the high relatedness 
among kinases resulting from their promiscuousness 
and the transfer learning effect of MTDNN, the obtained 
model yields excellent pre-diction ability. The model con-
sistently shows higher predictive performance than con-
ventional single-task models, especially for kinases with 
insufficient activity data.

Despite the effectiveness of the existing methods for 
kinase inhibitors prediction, data scarcity issue remains 
an important challenge to the prediction performance 
of kinase inhibitors activity. However, most existing 
research works have ignored this issue, except [20] tries 
to alleviate the data scarcity problem by exploiting multi-
task learning. It is worth noting that for most kinases, the 
known active and inactive compounds are often limited. 
Based on the Kinase SARfari database, and the Kinome 
data set published by Metz et  al. [26], we collected and 
curated the data set consisting of 389 kinases, 32808 
compounds, and 177676 biological activity data. We 
found from the datasets that a large number of kinases 
(77%) have a small number of samples with the range of 
1–99. The limited training samples easily lead to over-
fitting of the prediction model, which greatly restricts 
the training quality and prediction performance of the 
model, and brings great challenges to the quality of vir-
tual screening of kinase inhibitors based on machine 
learning. In addition, the multi-task learning model [20] 
exploited the relatedness among different kinase predic-
tion tasks to improve the prediction performance of the 
model. However, the experimental results show that the 
prediction accuracy of a large number of small samples 
of kinases still needs to be improved as the literature 
[20] reported that the prediction performance of the 
multi-task deep learning method on validation data sets 
decreased significantly with the decrease of the sample 
data volume of the kinase pre-diction task.

To tackle the aforementioned data scarcity chal-
lenges of current approaches for kinase inhibitor activity 

prediction, in this study, we present a novel Meta-learn-
ing Inductive Logistic Matrix Completion (MetaILMC) 
to alleviate the data sparsity problem faced by PKI. 
Meta-learning [27] is a new learning paradigm for few-
shot application scenarios that focuses on deriving prior 
knowledge across different learning tasks, to rapidly 
adapt to a new learning task with the prior and a small 
amount of training data. Recently, some research has 
been devoted to exploring meta-learning methods to 
solve the few-shot learning issues in biology or medi-
cine, such as [35, 36]. To some extent, PKI with few shot 
samples can be formulated as a meta-learning problem. 
Specifically, each task is constructed for a kinase. From 
the tasks for kinases with sufficient training samples, the 
meta-learner learns a prior with strong generalization 
capacity during meta-training, such that it can be easily 
and quickly adapted to the new tasks of the kinase with 
scarce data during meta-testing. As MetaILMC allows 
the effective transfer of the prior knowledge learned from 
kinases with sufficient samples to kinases with a small 
number of samples, the proposed model can produce 
accurate predictions for kinases with limited data.

We compared the proposed method with other base-
lines on our collected and curated datasets. Experimental 
results show that MetaILMC has excellent performance 
for prediction tasks of kinases with few-shot samples and 
is significantly superior to the state-of-the-art method 
in terms of AUC, AUPR, etc., various performance met-
rics. Case studies also provided for two drugs to predict 
Kinase scores, further validating the proposed method’s 
effectiveness and feasibility.

Methods
Data collection
Two open-accessed Kinase datasets are used to con-
struct our experimental datasets. (1) The SARfari data 
set (http://​wwwdev.​ebi.​ac.​uk/​chembl/​sarfa​ri/​kinas​esarf​
ari) is an integrated chemogenomic workbench focused 
on kinases, which is composed of 54,189 compounds, 
989 different kinase domains, and 532,155 Kinase-com-
pound data points in the form of IC50, Ki, Kd, and other 
values. (2) The second data set, the Metz data set [26], 
contains 1498 compounds with known structures, 173 
human kinases, and 107,791 pKi data points. The inhibi-
tion activity in the merged data set was converted to two 
classes: active (pKi /pKd/pIC50 ≥ 6) and inactive (pKi /
pKd/pIC50 < 6). After the deletion of mutant kinases and 
kinases without both active and inactive data points, the 
final data set (named KinaseDB) contains over 182,447 
data points between 388 kinases and 34,682 compounds.

Figure 1 shows the statistics about the number of sam-
ple points contained for each kinase in our collected 
and curated datasets KinaseDB. It is easy to see that the 

http://wwwdev.ebi.ac.uk/chembl/sarfari/kinasesarfari
http://wwwdev.ebi.ac.uk/chembl/sarfari/kinasesarfari
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statistics follow an obvious long-tail distribution, i.e., only 
a few kinases have many points, majority of kinases just 
have a small number of points. More specifically there 
are 30 kinases with more than 1000 samples, account-
ing for 7% of the total number of kinases, 25 kinases with 
500 ~ 999 samples, accounting for 6% of the total number 
of kinases, 31 kinases with 100 ~ 499 samples, account-
ing for 8% of the total number of kinases, majority of 303 
kinases with less than 100 samples, accounting for 77% of 
the total number of kinases.

Problem formulation
This paper aims to tackle the issue of predicting 
the interaction profiles of kinase inhibitors against 
Kinome (hereinafter abbreviated as PKI). Consider-
ing with P of m kinases, C of n compounds, and n×m 
experimentally verified compound-kinase interac-
tion matrix T ∈

{

1, 0, null
}n×m.T

(

i, j
)

= 1 if a com-
pound i is inhibitory active for a protein kinase j . 
T
(

i, j
)

= 0 if a compound i is not inhibitory active 
for a protein kinase j . T

(

i, j
)

= null if a compound i 
is unknown inhibitory active for a protein kinase j . 
Let �+ =

{(

ci, pj
)

|T
(

i, j
)

= 1, ci ∈ C , pj ∈ P
}

 be the 
set of inhibitory active pair. Similarly, we also have 
�− =

{(

ci, pj
)

|T
(

i, j
)

= 0, ci ∈ C , pj ∈ P
}

 . Thus, PKI 
aims to establish a machine-learning-based model to 
predict the interaction profiles of any compound against 
Kinome using �tr = �+

tr ∪�−
tr  ( �

+
tr ⊆ �+ , �−

tr ⊆ �− ) as 
training data.

Inductive logistic matrix completion for PKI
Generally, PKI can be modeled as a matrix completion 
(MC) for the partially observed matrix T. However, MC 
can only provide a solution of transductive learning, since 

the learned embeddings cannot generalize to unseen 
compounds, i.e., can only be used to predict T-related 
compound-kinase prediction problems. In the real appli-
cation environment, PKI is required to have the ability of 
virtual screening, that is, given a new compound, predict 
the activity of the compound to Kinome. Therefore, an 
inductive learning model is desired to be established for 
PKI.

In this paper, inspired by the Inductive Matrix Com-
pletion (IMC) [28], we propose an Inductive Logistic 
Matrix Completion (ILMC) based model for PKI. Let 
T ∈

{

1, 0, null
}n×m be the partial observed interac-

tion matrix with m kinases, n compounds. Xp ∈ R
m×dp 

and Xc ∈ R
n×dc are the kinases and compounds feature 

matrices respectively (Later, in experimental section we 
will introduce the details of obtaining the feature matri-
ces). X⊤

c (i) ∈ R
dc and X⊤

p

(

j
)

∈ R
dp are the i-th compound 

and j-th kinase feature vector respectively. Then, the like-
lihood for PKI is defined as

where the active probability Pij for the pair of compounds 
i and protein kinase j is defined as

and U,V are the learnable parameters of MLPs. Thus, 
PKI is formulated as a maximum likelihood estimation 
(MLE) problem as follows.

(1)

LMLE(T|U,V) =
∏

(i,j)∈�+
tr∩�

−
tr

P
Ti,j

ij

(

1− Pij
)(1−Ti,j)

(2)

Pij = σ
(

Xc(i),X�
p
(

j
)

|U,V
)

=

exp
(

NN(Xc(i)|U)NN
(

X�
p
(

j
)

|V
))

1+ exp
(

NN(Xc(i)|U)NN
(

X�
p
(

j
)

|V
))

Fig. 1  The samples statistics for 388 protein kinases in KinaseDB. The figure shows that the compounds statistics follow an obvious long tail 
distribution, i.e., only few kinases have many samples, majority of kinases just have a small number of samples. It is worth noting that a large 
number of kinases (303, 77%) have a small number of samples with the range of 1–99. Detailed information about the protein kinases and sample 
statistics can be found in Additional file 1: Table S.1
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It is worth pointing out that since the learned feature 
transformation MLPs i.e., NN(•|U) and NN(•|V) can 
generalize to unseen kinase and compound, ILMC is an 
inductive learning model.

Meta inductive logistic matrix completion for few shots PKI
According to the statistical results of the kinase dataset 
(see Fig.  1), a majority of kinases have only a few sam-
ples. Obviously, due to the lack of sufficient samples for 
model training, the prediction performance of these few-
shot kinase tasks will be degraded. The data sparsity thus 
raises a challenge for the prediction of kinase inhibitors 
against Kinome using ILMC.

To alleviate the data scarcity problem, in this paper, 
we propose a novel meta-learning approach, named 
MetaILMC, for the prediction of the interaction pro-
files of kinase inhibitors against Kinome. MetaILMC is a 
gradient optimization-based meta-learning method that 
leverages the idea of MAML [27] to establish its basic 

(3)

maxU,V lnLMLE(T|U,V)

=

∑

(i,j)∈�+
tr∩�

−
tr

(

Ti,j lnPij +
(

1− Ti,j
)

ln
(

1− Pij
))

+ �
(

‖U‖
2
F + ‖V‖2F

)

architecture. The basic idea underlying MetaILMC is to 
train the model’s initial parameters with sufficient sample 
tasks (we call them head tasks) such that the model has 
maximal performance on a new task after the parameters 
have been adapted through one or more gradient steps 
computed with a small number of samples from that new 
task.

Generally, MetaILMC consists of two phases: meta-
training and meta-test (few-shot samples adaptation). In 
the meta-training phase, multiple kinases with sufficient 
samples are adopted as meta-training tasks to obtain 
a well-initialized model that could be fast adapted to a 
new kinase with limited data. In the adaptation phase, 
a few (e.g., less than 5) known active and inactive sam-
ples from a new target kinase are used to fine-tune the 
model on this kinase to capture its specific model. With 
the transferability and fast adaptability between meta-
training tasks and the new tasks with few-shot samples, 
MetaILMC can be applied to mitigate the data scarcity 
issue. The following Fig. 2 gives the overall framework of 
MetaILMC.

Before formally describe and define MetaILMC, we 
introduce some notations. In our MetaILMC frame-
work, each task Tk is constructed for a kinasek . Let 
T = Thead ∪ Ttail ( Thead ∩ Ttail = ∅ ) be the total tasks 

Fig. 2  The overall framework of MetaILMC. MetaILMC consists of two phases: meta-training and meta-test (few-shot samples adaptation). In 
the meta-training phase, multiple kinases with sufficient samples are adopted as meta-training tasks to obtain a well-initialized model which could 
be fast adapted to a new kinase with limited data. In the adaptation phase, a few (e.g., less than 5) known active and inactive samples from a new 
target kinase are used to fine-tune the model on this kinase to capture its specific model
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set. Thead = {T1, T2, . . . , Tℓ} denotes the set of tasks with 
sufficient samples. Ttail = {Tℓ+1, Tℓ+2, . . . , Tm} denotes 
the set of tasks with few-shot samples. As defined in sec-
tion Problem Formulation, �+ ( �− ) is the set of inhibi-
tory active (inactive) pair. Each task Tk =

{

STk ,QTk

}

 
for a kinase k consists of a support compound set STk 
and a query compound set QTk

 whereSTk ⊂ �+
Tk

∪�−
Tk

 , 
QTk

⊂ �+
Tk

∪�−
Tk

 sampled from the set of active or 
inactive compounds for the kinase k, such that the sup-
port and query compounds are mutually exclusive, 
i.e.,STk ∩ QTk

= ∅.
Specifically, the MetaILMC consists of two following 

phases.

(1). Meta-training Phase ( θ ’ ← meta(Thead|θ))

Starting with random initializing parameters θ , the 
meta-training algorithm θ ’ yields the learned meta 
parameters θ ’ using head tasks Thead as training tasks. 
The parameters θ′ learned by the meta(•) algorithm 
contain the prior knowledge of all head tasks which is 
desired to be generalized to all tail tasks. Specifically, 
let DTk

 be the set of compound-kinase pair related to 
the task Tk . θ = (U,V) are the parameters for ILMC. 
The data likelihood of ILMC for DTk

 under θ is defined 
as

For each head task Tk =
{

STk ,QTk

}

∈ Thead . The meta-
learner adapts the global prior θ to task-specific param-
eters θTk ′ w.r.t. the loss on the support set STk.

(4)

LMLE
(

DTk |θ
)

= p
(

DTk |U,V
)

=

∑

(ci ,pk )∈DTk

(

Ti,k lnPik

+
(

1− Ti,k
)

ln(1− Pik )
)

+ �
(

‖U‖
2
F + ‖V‖2F

)

(5)θ ’ ← θ− α∇θLMLE

(

STk |θ
)

Equation  (5) is called the inner-loop update process of 
meta-training. The updated ILMC parameters after several 
steps on data from the support set STk can be expressed 
where α is the inner-loop learning rate. The α is fixed as a 
hyperparameter and shared by all meta-training tasks. We 
will investigate the effect of α on model performance in the 
experimental section. For simplicity of notation, one gradi-
ent update is shown in Eq (5), but using multiple gradient 
updates is allowed as well.

For each query set QTk
 , the loss under the task-specific 

parameters θTk ′ is calculated and the backward propagation 
is exploited to update the global θ using the loss sum of all 
meta-training tasks.

Equation (6) is called the outer-loop update process of 
meta-training where β is called the outer-loop learning 
rate which is fixed as a hyperparameter. We will investi-
gate the effect of β on model performance in the experi-
mental section. The following Algorithm 1 describes the 
complete procedure of meta-training.

(2). Few-shot Adaptation Phase ( θ′′j ← apt
(

Tj |STj , θ′

)

)

For each tail task Tj ∈ Ttail , the support set STj still con-
tains a small number of active and inactive compounds 
for the kinase j. The MetaILMC adapts the prior θ′ 
learned during meta-training stage via one or a few gra-
dient steps w.r.t. its support set STj and finally yields the 
parameters θ′′j  specific to the task Tj.

(6)θ
′

← θ− β∇θ

∑

Tk∈Thead

LMLE

(

QTk
|θ− α∇θLMLE

(

STk
|θ
))

(7)θ
′′
j ← θ− α∇θLMLE

(

STj |θ
′

)
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Now, each few-shot kinase prediction task Tj has the 
model parameters θ′′j =

(

U′′
j ,V

′′
j

)

 . When a new com-
pound xnew is input, active probability xnew for kinase j 
can be predicted by:

Results and discussion
Experimental setup
As described in Sect.  "Methods", we collected and pre-
processed the experimental dataset based on the SAR-
fari and Metz [26] data sets. The preprocessed data set 
is denoted as KinaseDB which finally contains over 
182,447 bioactivity data points between 388 kinases and 
34,682 compounds (see Additional file 1: Table S.1 for the 
detailed information and statistics of KinaseDB).

In addition, to further highlight the long-tail nature 
of the dataset, we establish a long-tail dataset based on 
KinaseDB. Specifically, we choose 27 kinases with suffi-
cient samples as head kinases. Each head kinase has 500 
active points and 500 inactive points as training samples. 
Then, the other 265 kinases are considered as tail kinases 
each of which has few-shot samples. Each tail kinase has 
5 active points and 5 inactive points as training samples. 
For tail kinases, all compounds except those selected 
as active and inactive points are considered test sam-
ples. The preprocessed long-tail dataset is referred to as 
LTKinaseDB.

The chemical structure (SMILES format) of a com-
pound contains a large amount of physicochemical prop-
erty information. Therefore, for the structural features 
of the compounds, we assembled the chemical structure 
information (SMILES format) from the merged dataset. 
We use RDKit (http://​www.​rdkit.​org/) to compute the 
MACCS fingerprints for all of the compounds, and each 
compound’s length is 167 bits. We use the Conjoint Triad 
Descriptors (CTD) method [31] to compute the distribu-
tion of amino acid properties in the protein sequences, 
the 20 amino acids were clustered into seven classes 
according to their dipoles and volumes of the side chains. 
The conjoint triad descriptors consider the property of 
amino acid along with its adjacent amino acids as one 
single unit of three amino acids, thus the dimension of 
one protein should be 7*7*7, you can use CTD in pfeature 
website (https://​webs.​iiitd.​edu.​in).

The experimental code is implemented based on the 
open-source machine learning framework Pytorch 
(https://​pytor​ch.​org). All experiments are carried out 
on Windows 10 operating system with a Dell Precision 

(8)

Pnew,j = σ

(

xnew,X
⊤
p

(

j
)

|U′′
j ,V

′′
j

)

=
exp

(

xnewU
′′
j V

′′
j
⊤
X⊤
p

(

j
)

)

1+ exp
(

xnewU
′′
j V

′′
j
⊤
X⊤
p

(

j
)

)

T5820 workstation computer of an intel W-2145 8 cores, 
3.7 GHz CPU, and 64G memory. All datasets and experi-
mental code are available from https://​github.​com/​ljaty​
nu/​MetaI​LMC/.

Baselines
In the experiments, our proposed methods are compared 
with the other five baselines which included two deep-
learning based baselines, MTDNN [20], MolTrans [29] 
and three traditional machine learning baselines, sup-
port vector machine (SVM), random forest (RF), and 
k-nearest neighbors (KNN) [33]. Particularly, MolTrans 
[29] exploited a sub-structural pattern mining algorithm 
and interaction modeling module for more accurate and 
interpretable DTI prediction. MTDNN [20] is a multitask 
deep neural network-based model for PKI. Li et al. [20] 
have showed that MTDNN consistently shows higher 
predictive performance than conventional single-task 
models, especially for kinases with insufficient activity 
data in the prediction of highly potent inhibitors of 391 
human kinases by exploiting high relatedness among var-
ious kinases predictive tasks.

Predictive performance of ILMC
We first verify the global predictive performance of 
ILMC on KinaseDB. The global means that we are not 
evaluating the predictive performance of ILMC for a 
single kinase. The 10-Fold- Cross Validation (10-FCV) is 
used to evaluate the performance of ILMC on KinaseDB. 
In 10-FCV, the known compound-kinase pairs (active 
or inactive) are randomly divided into 10 different sub-
sets. A part of them is considered the testing set and the 
rest 9 divisions are considered the training set. The area 
under the receiver operating characteristic curve (AUC) 
and the area under the precision-recall curve (AUPR) 
are used to evaluate the performance of ILMC. To evalu-
ate the performance of ILMC more comprehensively, we 
also use BA (balanced accuracy), Precision, Recall and 
the F1-score to verify the performance of the model. The 
final results are the average results over 10 experiments. 
ILMC adopts 3-layer MLPs (167-128-64 and 343-128-
64) to make feature transformations for kinase and com-
pounds respectively. To explore the effectiveness of other 
feature representation methods for compounds and 
proteins in terms of model generalization ability. In the 
experiment, we also validated the predictive performance 
of ILMC when using extended connectivity fingerprint-
ing (ECFP) for drugs and the ProtVec for proteins. ECFP 
used the settings of radius = 2 and nBits = 256 to obtain 
compound features. For ProtVec, we obtain the pre-
trained protein features from biovec (https://​github.​com/​
kyu999/​biovec).

http://www.rdkit.org/
https://webs.iiitd.edu.in
https://pytorch.org
https://github.com/ljatynu/MetaILMC/
https://github.com/ljatynu/MetaILMC/
https://github.com/kyu999/biovec
https://github.com/kyu999/biovec
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Table  1 shows the comparison results under various 
evaluation criteria. Generally, the predictive perfor-
mance of deep learning methods is superior to traditional 
machine learning baselines. MTDNN achieves the best 
performance. Two ILMCs, ILMC(ECFP + ProtVec) and 
ILMC(MACCS + CTD) achieve desirable performance 
as well which is slightly lower than that of MTDNN and 
MolTrans. At the same time, we also note that two ILMC 
models using two different feature representations, i.e., 
ILMC(ECFP + ProtVec) and ILMC(MACCS + CTD) 
achieved comparable prediction results.

Data scarcity degenerates the performance of both ILMC 
and MTDNN
To simulate the circumstances of few-shot learning, 
each tail task in LTKinaseDB has only 5 active points 
and 5 inactive points. Each head task instead has 500 
active points and 500 inactive points. Four experimental 
methods were trained on LTKinaseDB, all compounds 
except LTKinaseDB are considered as test samples. 
Table 2 shows the performance of ILMCs, MolTrans, and 
MTDNN on tail tasks decreased significantly compared 
with the results on head tasks. Few-shot samples degen-
erate significantly the performance of these models.

Based on the experimental results, we infer that the 
MTDNN, MolTrans, and ILMCs achieve high global 
accuracy for the task of kinase activity prediction. 

However, we also found that there was a significant dif-
ference in the predictive performance of these models on 
head and tail tasks. The issue of few-shot sample learning 
brings great challenges to the predictive performance of 
kinase inhibitors against Kinome.

Effect of parameter setting on MetaILMC prediction 
performance
The number of meta-training tasks, the inner-loop learn-
ing rate α , the gradient descent steps of inner-loops, 
and the outer-loop learning rate β all affect the training 
results of the meta parameters. In this section, we con-
ducted experiments to investigate the effect of parameter 
setting on MetaILMC prediction performance.

Table 3 results show the effect of the number of meta-
training learning tasks on the performance of MetaILMC. 
From the results, we can see that with the increase in the 

Table 1  Performance comparison of different methods on KinaseDB (10-FCV, global evaluation model)

The best results are shown in bold, the rank 2 score is marked by underline

AUC​ AUPR BA RECALL PRECISION F1

SVM 0.6098 0.6655 0.6098 0.2397 0.6098 0.3738

KNN 0.817 0.7951 0.817 0.7388 0.817 0.7531

RF 0.8088 0.7989 0.8088 0.6975 0.8088 0.7469

MolTrans [29] 0.9297 0.8718 0.8603 0.7751 0.7267 0.8013
MTDNN [20] 0.9302 0.8735 0.8424 0.7708 0.8080 0.7889

ILMC(MACCS + CTD) 0.9290 0.8496 0.8304 0.7800 0.8090 0.7695

ILMC(ECFP + ProtVec) 0.9270 0.8595 0.8439 0.7795 0.8046 0.7891

Table 2  Performance comparison of ILMC & MTDNN on head & tail kinase of LTKinaseDB (global evaluation model)

AUC​ AUPR BA RECALL PRECISION F1

ILMC (MACCS + CTD) Head 0.8386 0.7919 0.7571 0.7590 0.7062 0.7317

Tail 0.7204 0.4509 0.6621 0.6423 0.3995 0.4926

ILMC (ECFP + ProtVec) Head 0.8549 0.8193 0.7876 0.7832 0.7448 0.7635

Tail 0.7049 0.4646 0.6595 0.6675 0.4102 0.5277

MTDNN [20] Head 0.8753 0.8401 0.7945 0.7868 0.7552 0.7706

Tail 0.7034 0.4448 0.6477 0.6639 0.3724 0.4772

MolTrans [29] Head 0.8453 0.8041 0.7643 0.7679 0.6774 0.7488

Tail 0.7253 0.4442 0.6805 0.6908 0.3620 0.5377

Table 3  The effect of the number of meta-training tasks on 
performance of MetaILMC

The number of meta-training tasks

5 tasks 15 tasks 27 tasks

AUC​ 0.7937 0.8459 0.8754

AUPR 0.5974 0.6761 0.7265
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number of tasks involved in meta-training, the prediction 
performance of the model on target tasks with few-shot 
samples is also continuously improved. This result is con-
sistent with the intuition that meta-learning can effec-
tively achieve knowledge transfer across tasks.

The inner-loop learning rate α , the gradient descent 
steps of inner-loops, and the outer-loop learning rate β 
all affect both the generalization and convergence speed 
of MetaILMC (as the effect of the gradient descent steps 
of outer-loops has no regular experimental results for 
the prediction performance, we omit the results here). 

Tables 4, 5, 6 sshowsthe experimental results of the effect 
of various parameter settings on MetaILMC prediction 
performance. According to the experimental results, in 
the following experiments, MetaILMC adopts α = 0.01 , 
β = 0.01, , and 4 as the gradient descent steps of inner-
loops to carry on experiments.

MetaILMC can improve the performance in few‑shot 
learning circumstances
Given the difference in prediction between head and tail 
kinases mentioned above, we proposed MetaILMC to 
improve the prediction performance for tail kinases. In 
the meta-training phase, 27 head kinases with sufficient 
samples in LTKinaseDB were used as the meta-training 
tasks to train MetaILMC. Specifically, in each epoch of 
meta training, each head task Tk was adapted by feed-
ing with randomly selected 5 active points and 5 inac-
tive points as STk set, and 10 active points and 10 inactive 
points as QTk

 set. In the meta-testing phase, 265 tail 
kinases with few-shot samples in LTKinaseDB were used 
as the meta-testing tasks to evaluate the predictive per-
formance of MetaILMC. Specifically, the few-shot sup-
port set (5 active points and 5 inactive points) of each tail 
task was utilized to adapt parameters θ of MetaILMC via 
a small number of gradient descent steps using Eq.  (1), 
then all remaining samples of the tail task were used as 
test set to evaluate the predictive performance of the 
adapted MetaILMC. Since under the framework of meta-
learning, each tail task has its predictive model, a local 
evaluation model is adopted to evaluate the performance 
of various methods, i.e., the performance of each task is 
evaluated by the test set belonging to the corresponding 
kinase. The final performance of MetaILMC was evalu-
ated by the average performance of 265 tail tasks.

We compared the MetaILMCs, i.e., 
MetaILMC(MACCS + CTD) and MetaILMC(ECFP + Prot-
Vec), to the other baselines (including ILMC). All compared 
baselines used LTKinaseDB as training data to train the mod-
els and average the predictive results of tail kinases to obtain 

Table 4  The effect of various inner-loop learning rate α on 
performance of MetaILMC

Inner-loop learning rate α

0.1 0.05 0.01 0.001 0.0001

AUC​ 0.8518 0.859 0.8754 0.8365 0.8304

AUPR 0.6945 0.702 0.7265 0.6599 0.6465

Table 5  The effect of various outer-loop learning rate β on 
performance of MetaILMC

Outer-loop learning rate β

0.1 0.01 0.005 0.001 0.0001

AUC​ 0.8446 0.8754 0.8538 0.8515 0.7737

AUPR 0.6885 0.7265 0.7017 0.7005 0.5322

Table 6  The effect of the gradient descent steps of inner-loops 
on performance of MetaILMC

# Gradient descent steps

1 2 3 4 5

AUC​ 0.8531 0.8552 0.8615 0.8754 0.8577

AUPR 0.6863 0.6932 0.7005 0.7265 0.6988

Table 7  Performance comparison of various methods on tail kinase of LTKinaseDB (local evaluation model)

The best results are shown in bold, the second score is marked by underline

AUC​ AUPR BA RECALL PRECISION F1

MetaILMC (MACCS + CTD) 0.8754 0.7265 0.8215 0.9170 0.6432 0.6636
MetaILMC (ECFP + ProtVec) 0.8461 0.6726 0.7972 0.8896 0.5429 0.6018

ILMC 0.7724 0.5401 0.7319 0.8196 0.4726 0.5202

MTDNN [20] 0.7403 0.5044 0.6971 0.8605 0.4383 0.4906

SVM 0.5541 0.5153 0.5541 0.4599 0.3925 0.3016

KNN 0.5586 0.4958 0.5586 0.6097 0.2916 0.3554

RF 0.5976 0.5139 0.5976 0.6090 0.3263 0.3870

MolTrans [29] 0.6366 0.6245 0.6124 0.8042 0.4862 0.4220

MetaMGNN[30] 0.7280 0.6294 0.7280 0.8037 0.4334 0.5099
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the final performance. To verify the generalization ability and 
transfer learning ability of MetaILMC, we compared it with 
other recent baselines, including MTDNN [20] (a multi-task 
learning model), MolTrans [29], and MetaMGNN [30] (a 
meta-learning model). MTDNN and MetaMGNN use the 
entire long tail dataset as a train set, consistent with ILMC, 
to predict and calculate AUC values on each tail kinase test 
set. For the single-task model, random forest, SVM, and 
KNN algorithms were selected, and only 5 active points and 
5 inactive points of a single tail kinase were used as the train 
set each time. Then, the prediction performance is evaluated 
on the test set of each tail kinase. The comparison results 
are shown in Table  7. It should be mentioned that due to 
the superior performance of MetaILMC (MACCS + CTD) 
over MetaILMC (ECFP + ProtVec) under few-shot learning 
circumstances, in the following we only provide the experi-
mental results of MetaILMC (MACCS + CTD) as the com-
parison experimental results of the MetaILMC method. The 
detailed compare results of various methods on each tail 
task of LTKinaseDB can be found in the Additional file  2: 
Table S.2-AUC, Additional file  3: Table S.3-AUPR, Addi-
tional file 4: Table S.4-PRECISION, Additional file 5: Table 

S.5-RECALL, Additional file  6: Table S.6-BA, Additional 
file 7: Table S.7-F1.

We also present the box plots as shown in Fig.  3 to 
compare the performance of various on BA, AUC, 
F1, RECALL, PRECISION and AUPR. From Fig.  3, 
MetaILMC has the highest average and median among 
all methods in all performance indicators. In Fig.  3(b), 
the average AUC of MetaILMC is greater than 0.85 and 
higher than those of the comparison methods, in addi-
tion, the prediction results of MetaILMC for all tail 
kinases are clustered between 0.66 and 1, indicating the 
superior performance of the MetaILMC model in the 
prediction of kinase inhibitors with LTKinaseDB, when 
we just have a small number of training data points, this 
model also can achieve better prediction performance, we 
can get the same conclusion from another figure in Fig. 3. 
Take a look at the images in Fig. 3 as a whole, MetaILMC 
has the best prediction performance in all indicators, 
and prediction results are concentrated, moreover, it has 
fewer outliers, which indicates that MetaILMC has high 
robustness and can perform better for different kinases 
with small and different training points.

Fig. 3  Performance comparison between Meta-ILMC and other comparison methods. Figures a ~ f respectively represents the performance 
of different algorithms under AUC, AUPR, BA, F1, RECALL, PRECISION performance metrics. Black lines in boxes depict the median, triangle depict 
the average, and boxes illustrate the interquartile range (IQR) of the distribution. Whiskers extent to 1.5·IQR from the median
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The above experimental results demonstrate that in 
few-shot learning circumstances, MetaILMC outper-
forms all baseline models under various evaluation met-
rics. Compared with other methods, MetaILMC has 
a good ability to learn task priori, and can effectively 
improve the prediction performance of kinases with few 
samples.

Case study
To further demonstrate the accuracy of our proposed 
model for predicting unobserved compounds, we chose 
two anticancer drugs approved by the US FDA, Dasat-
inib [32] and Sunitinib [33] as case studies. We used the 
ILMC model based on kinaseDB dataset to predict head 
kinases and the MetaILMC model based on the LTKi-
naseDB dataset to predict tail kinases, then prioritized all 
kinases using their predicted scores. We verified the top-
10 human kinases’s predictions with HMS LINCS dataset 
[34].  As shown in Table 8, both eight kinases for Dasat-
inib and Sunitinib were supported by direct evidence. 
The results prove that our proposed model is effective.

Conclusion
Protein kinases play critical roles in numerous human 
diseases. Therefore, developing new, efficient and safe 
small-molecule kinase inhibitors has become an impor-
tant topic in the field of drug research and develop-
ment. Machine learning-based methods have low 
experiment costs, high efficiency, and can effectively 
narrow the scope of experiments and reduce experi-
mental blindness. However, the existing research works 
have neglected the issue of few-shot samples which is 
a common challenge for the majority of kinases. To 
tackle the issue of few-shot machine learning, meta-
learning trains the meta-model over a large number 
of tasks with limited training samples in each task. 
The meta-model parameters are optimized via gradi-
ent descent according to the adaption performance on 
these tasks, so the learned model can be fast adapted 
and generalized well on new tasks with limited samples. 
Inspired by meta-learning, in this study, we develop a 
novel multi-task meta-learning MetaILMC to learn a 
well-generalized model that enables fast adaptation on 
new tasks with limited samples.

Experimental results show that MetaILMC has excel-
lent performance for prediction tasks of kinases with 
few-shot samples and is significantly superior to the 
state-of-the-art method in terms of AUC, AUPR, etc., 
various performance metrics. Case studies also provided 
for two drugs to predict Kinase scores, further validating 
the effectiveness and feasibility of the proposed method. 
We believe that the proposed MetaILMC can be used to 
improve the performance of the prediction method of 
kinase inhibitor activity and actively promote the devel-
opment of kinase inhibitors.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00838-9.

Additional file 1:Table S.1. The detailed information and statistics of 
KinaseDB.

Additional file 2: Table S.2. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of AUC.

Additional file 3: Table S.3. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of AUPR.

Additional file 4: Table S.4. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of PRECISION.

Additional file 5: Table S.5. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of RECALL.

Additional file 6: Table S.6. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of BA.

Additional file 7: Table S.7. The detailed compare results of various 
methods on each tail task of LTKinaseDB in terms of F1.

Table 8  Case Study

The top-10 potential kinases candidates detected by our models for Dasatinib 
and Sunitinib, pKd value from HMS LINCS dataset, if pKd > 6, kinase is active

Drug Kinase Predicted Scores pKd

Dasatinib Q9Y4K4 0.997994542 (7,)

Q8N4C8 0.99648869 (6,7]

P07948 0.99596256 (7,)

Q92918 0.992815614 (6,7]

P54753 0.991856694 (7,)

P36896 0.99170506 (6,7]

P48730 0.990989685 /

P54760 0.990192294 (7,)

P51451 0.987114549 (7,)

P43403 0.986486316 /

Sunitinib O95819 0.99972111 (6,7]

Q96SB4 0.999653816 (6,7]

P23443 0.999647975 (7,)

O15530 0.999610126 (5,6]

O00444 0.999576867 (6,7]

Q9H2X6 0.999403119 (7,)

O94806 0.999173343 (6,7]

P52333 0.998999894 (5,6]

P22607 0.998657823 (6,7]

O60285 0.998578429 (7,)

https://doi.org/10.1186/s13321-024-00838-9
https://doi.org/10.1186/s13321-024-00838-9
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