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Abstract 

Motivation  Drug combination therapies have shown promise in clinical cancer treatments. However, it is hard 
to experimentally identify all drug combinations for synergistic interaction even with high-throughput screening due 
to the vast space of potential combinations. Although a number of computational methods for drug synergy predic-
tion have proven successful in narrowing down this space, fusing drug pairs and cell line features effectively still lacks 
study, hindering current algorithms from understanding the complex interaction between drugs and cell lines.

Results  In this paper, we proposed a Permutable feature fusion network for Drug-Drug Synergy prediction, named 
PermuteDDS. PermuteDDS takes multiple representations of drugs and cell lines as input and employs a permut-
able fusion mechanism to combine drug and cell line features. In experiments, PermuteDDS exhibits state-of-the-art 
performance on two benchmark data sets. Additionally, the results on independent test set grouped by different 
tissues reveal that PermuteDDS has good generalization performance. We believed that PermuteDDS is an effective 
and valuable tool for identifying synergistic drug combinations. It is publicly available at https://​github.​com/​littl​ewei-​
lazy/​Permu​teDDS.

Scientific contribution  First, this paper proposes a permutable feature fusion network for predicting drug synergy 
termed PermuteDDS, which extract diverse information from multiple drug representations and cell line representa-
tions. Second, the permutable fusion mechanism combine the drug and cell line features by integrating information 
of different channels, enabling the utilization of complex relationships between drugs and cell lines. Third, compara-
tive and ablation experiments provide evidence of the efficacy of PermuteDDS in predicting drug-drug synergy.
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Introduction
Single-agent targeted therapies have been widely utilized 
in clinical cancer treatments. However, the clinical effi-
cacy of monotherapy remains limited due to the biologi-
cal complexity of tumors and the presence of pre-existing 
or acquired drug resistance mechanisms [1]. In con-
trast, combination therapies involving the simultaneous 
administration of multiple drugs have shown promising 
results in cancer treatment [2]. Compared to monother-
apy, combination therapies have the potential to enhance 
treatment efficacy, reduce the dose-limiting toxicity asso-
ciated with single agents, and overcome drug resistance 
[3]. Despite the potential benefits, it is important to note 
that not all drug combinations exhibit synergistic effects, 
and some combinations may even result in antagonistic 
interactions [4]. Therefore, it is essential to accurately 
determine the interaction between drug combinations to 
specific diseases.

Traditionally, the discovery of drug combinations heav-
ily relied on clinical trials, posing challenges in terms 
of time consumption and cost-effectiveness due to the 
extensive number of potential drug combinations [5]. An 
alternative method is high-throughput screening (HTS), 
which enables automated testing of chemical and biologi-
cal compounds against specific biological targets [6]. HTS 
techniques have significantly reduced the time required 
for identifying potential drug combinations. However, it 
is important to note that HTS has limitations in revealing 
the in vivo action modes of drug molecules [7]. Moreo-
ver, the substantial increase in the number of available 
drugs has rendered it impractical to comprehensively test 
the entire combinatorial space using HTS [8]. The sheer 
magnitude of potential drug combinations poses a chal-
lenge in terms of feasibility and resource utilization.

Computational methods, particularly machine learn-
ing models, have emerged as powerful tools for exploring 
the vast synergistic space of drug combinations [9]. These 
machine learning-based models can be broadly catego-
rized into two types: classical machine learning and deep 
learning. Classical machine learning models, such as 
random forest [10], support vector machine (SVM) [11], 
extreme gradient boosting (XGBoost) [12], have been 
widely utilized in drug synergy prediction. These models 
leverage genomic information from cancer cells, physi-
ochemical properties of drugs, and drug-cell interac-
tion data to predict drug synergy [13]. For instance, Jeon 
et al. [14] employed random forest and SVM algorithms 
to predict the synergistic effects of anticancer drug com-
binations by incorporating monotherapy response and 
synthetic lethality information. However, this approach 
heavily relies on the given dataset, and the model may 
struggle to accurately predict the features of drug com-
binations without prior knowledge. Another study by He 

et  al. [15] proposed an XGBoost-based model that pre-
dicts the selective synergistic effects of cancer by utiliz-
ing distinct single compound sensitivity curves between 
patient cells and healthy controls. This approach aimed 
to minimize potential toxicity associated with drug 
combinations.

Recently, deep learning has gained increasing popu-
larity in drug development and discovery. Compare 
to classical machine learning methods, deep learning 
algorithms have better generalization performance, 
making it efficient in handling large drug combination 
datasets. Deep learning-based methods typically frame 
the challenge of drug synergy prediction as a regression 
task, aiming to predict the quantitative synergy scores. 
These methods can be categorized into three groups: 
fingerprint-based methods, SMILE-based methods and 
graph-based methods. Fingerprint-based methods take 
molecular fingerprint (also called descriptor) as input. 
Preuer et  al. [9] proposed DeepSynergy, a feedforward 
neural network-based deep learning model for drug 
synergy score prediction that employs molecular finger-
prints and gene expression as inputs. The performance 
of DeepSynergy demonstrated significant improvement 
over classical machine learning models. Kuru et  al. [16] 
developed a MatchMaker model for predicting syner-
gistic drug combinations using chemical descriptors 
generated by ChemoPy [17] and the expression profiles 
of landmark genes as input. Lin et al. [18] amalgamated 
molecular fingerprint information with drug induced 
gene expression profiles to capture drug cell responses 
to reveal the mechanisms of biological synergistic 
effects, and using deep forests as feature learning mod-
els. Hosseini et al. [19] proposed CCSynergy, used a feed 
forward network to obtain the fusion feature of drug fin-
gerprints and mutiple cell line representations for durg 
syergy prediction. SMILE-based methods select simpli-
fied molecular-input line-entry system (SMILES) [20] as 
drug representations. Kim et al. [21] utilized a muti-head 
attention mechanism and convolutional neural networks 
(CNN) to encode drug SMILES. Graph-based methods 
that extract features from molecular graphs have the 
potential to capture structural information about the 
molecules [22]. Wang et  al. [23] proposed DeepDDS, a 
model that utilizes a graph convolutional network (GCN) 
and attention mechanism to compute drug embedding 
vectors, which are integrated with cell line gene expres-
sion data to predict drug synergy. Liu et al. [24] proposed 
HypergraphSynergy, a method employing hypergraph 
representation learning to predict anti-cancer drug syn-
ergy by considering drugs and cell lines as nodes and rep-
resenting drug pair-cell line triplets as hyperedges.

The previously mentioned deep learning-based meth-
ods have exhibited impressive performance in predicting 
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drug synergy, yet there is still room for further improve-
ment. One limitation is that these methods typically only 
use single type drug representation, thereby failing to 
provide a comprehensive description of drugs. Moreo-
ver, most of these methods simply fuse drug and cell line 
features through simple operations such as concatenation 
or addition, neglecting dynamic synergies between drug 
pairs and cell lines.

In light of the limitations associated with existing 
approaches for predicting drug synergy, we proposed a 
Permutable feature fusion network for Drug-Drug Syn-
ergy prediction, namely PermuteDDS. Our method 
addresses the challenge of limited representation types 
by considering multiple representations of drugs and cell 
lines. We employed the one-dimensional CNN to learn 
and extract high-latent features from these representa-
tions. Then, we designed a permutable fusion mechanism 
to combine the drug and cell line features, allowing us to 
capture the complex relationships between drug combi-
nations and cell lines. Finally, we conducted experiments 
on two benchmark datasets, and the results compared to 
state-of-the-art methods indicated that PermuteDDS is 
an effective model for drug synergy prediction. In sum-
mary, the contributions of our work are as follows:

•	 We propose PermuteDDS, a deep learning model for 
drug-drug synergy prediction with multiple input 
representations.

•	 Our major contribution lies in the application of the 
permutable fusion mechanism to represent the inter-
actions between drug combinations and cell lines.

•	 We conduct comprehensive experiments to demon-
strate the effectiveness of our proposed model. We 
present ablations and analysis to gain a deeper under-
standing of the model’s behavior.

Materials and methods
Data description
We collected Drug-Drug Synergy (DDS) data, molecular 
structures of drugs, the expression profiles and mutation 
information of cell lines from various public databases as 
below.

•	 Drug-Drug Synergy datasets. The Drug-Drug Syn-
ergy (DDS) data were obtained from two released 
large-scale oncology screening datasets, namely 
O’Neil [25] and NCI-ALMANAC [26]. The O’Neil 
dataset contains 22 737 samples estimated by Loewe 
synergy score [27] consisting of two chemicals and 
a cell line, covering 38 unique drugs and 39 diverse 
caner cell lines. The NCI-ALMANAC dataset com-
prises 304 549 samples evaluated by the Com-
boScores of pairwise combinations of 104 FDA-

approved anticancer drugs against a panel of 60 
well-characterized human tumor cell lines.

•	 Drug synergy scores. The Loewe synergy score 
incorporates the concepts of sham combination and 
dose equivalence. Let A and B denote two drugs, and 
xA and xB represent their respective doses. The drug 
synergy score can then be computed as follows [27]: 

 where YLoewe is a continuous value, Rmin and Rmax 
represents the maximum and minimum drug 
response, respectively. � is the shape parameter and 
m is the dose that produce midpoint between Rmin 
and Rmax . The determination of combination benefit, 
denoted as ‘ComboScore’ [26], relies on a modifica-
tion of Bliss independence [28]. Let YApBq

i  represent 
the growth fraction for the i-th cell line exposed to 
the p-th concentration of drug A and the q-th con-
centration of drug B. Similarly, let ZApBq

i  denote the 
expected growth fraction for the combination. The 
final continuous combination score YComboScore for 
the cell line and the drug combination can then be 
computed as the sum of the differences between 
expected and observed growth fractions: 

•	 Molecular structures of drugs. The SMILES of the 
drugs were obtained from PubChem database [29], 
based on which the chemical and structure informa-
tion of a drug can be converted to fingerprints with 
RDKit [30] and MAP4 project.1

•	 Gene expression and gene mutation of cell lines. 
The gene expression and gene mutation of cell lines 
were obtained from Genomics of Drug Sensitivity 
in Cancer (GDSC) database,2. where 1000 human 
cancer cell lines were characterised and screened 
[31]. To enhance the representation of cell lines, 
we identified significant genes by referencing The 
Library of Integrated Network-Based Cellular Signa-
tures (LINCS) project [32]. The LINCS project offers 
a meticulously curated set of approximately 1000 
genes, known as the ‘landmark gene set’, which cap-
tures 80% of the information from Connectivity Map 
data [33]. We selected genes that intersected between 
GDSC gene expression profiles and the landmark set, 

(1)YLoewe =
Rmin + Rmax

(
xA+xB

m

)�

1+
(
xA+xB

m

)�

(2)YComboScore =
∑

p,q

Y
ApBq
i − Z

ApBq
i

1  https://​github.​com/​reymo​nd-​group/​MAP4/​tree/​master.
2  https://​www.​cance​rrxge​ne.​org.

https://github.com/reymond-group/MAP4/tree/master
https://www.cancerrxgene.org
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as well as gene mutation profiles. Finally, 899 genes 
were chosen for expression profiles, and 968 genes 
were selected for mutation profiles.

We preprocessed the two dataset by eliminating the 
drugs lacking SMILES and the cell lines devoid of gene 
expressions or gene mutations. The resulting refined 
O’Neil dataset comprised 18 950 samples with Loewe 
synergy scores across 38 drugs and 39 cell lines, while the 
processed NCI-AlMANAC dataset consisted of 74 139 
instances with NCI ComboScores (a Bliss independence 
modification) across 87 drugs and 55 cell lines.

Molecular fingerprints
Molecular fingerprints (also referred to as descriptors) is 
a prevalent method of drug representation. Within this 
approach, each molecule is encoded as a binary string 
that delineate the presence or absence of specific sub-
structure fragments or properties within the molecule. A 
value of 0 corresponds to absence of the particular fea-
ture, while a value of 1 denotes its existence. Moreover, 
the fingerprints exhibit uniqueness; specifically, one mol-
ecule possesses one sequence for a particular fingerprints 
type, yet it can have numerous diverse fingerprints types 
[22]. The three different kinds of fingerprints employed 
in this article are described below.

•	 Hashed topological-torsion (HashTT) is a kind 
of topological fingerprints [34]. The fragments 
employed in HashTT fingerprints are linear sequence 
comprising four consecutively bonded non-hydrogen 
atoms. The label for each fragment is determined 
based on its atomic type, the number of non-hydro-
gen branches attached to it, and its number of 7r 
electrons of each atom. These labels then undergo a 
hashing process to generate the HashTT fingerprints.

•	 MinHashed atom-pair fingerprint up to a diameter 
of four bonds (MAP4) [35] is a novel fingerprint that 
integrates both substructure fingerprints and atom-
pair fingerprints. Given a molecule SMILE sentence, 
the circular substructures with radii of r = 1 and r = 
2 bonds around individual atoms within an atom-pair 
configuration are encoded as two pairs of SMILES. 
Each pair is subsequently combined with the topo-
logical distance separating the central atoms. These 
atom-pair molecular shingles undergo a hashing pro-
cess, and the resulting set of hashes is subjected to 
the MinHashed technique, which lead to the creation 
of the MAP4 fingerprint.

•	 Molecular ACCess System (MACCS) [36] keys are 
one of the most commonly used structural finger-
prints. In this fingerprint, one molecule is encoded as 
a 166-bit binary string, where each bit corresponds 

to a predefined structural fragment (e.g. 3-element 
ring).

Overview of PermuteDDS
PermuteDDS is an end-to-end framework for predict-
ing drug combinations, presented in Fig.  1. Specifically, 
Fig.  1(A) illustrates the pipeline implemented by Per-
muteDDS to derive the synergy scores. Our framework 
contains three subnetworks called Fingerprint Specific 
Networks (FSNs), all of which share the same architec-
ture shown in Fig. 1(B). Each FSN takes a drug pair of a 
certain fingerprint and a cell line pair including its gene 
expression and gene mutation profiles as inputs. Then, 
the CNNs are used to extract drug and cell line features, 
and the Permute-MLP module (Fig. 1(C)) is proposed to 
obtain the fusion synergy feature, which is the output of 
FSN. The three FSNs output three distinct synergy fea-
tures, each of which is propagated through a specific 
prediction module to generate a synergy score. The final 
outputs of PermuteDDS is the average of the synergy 
scores predicted by these prediction modules.

Fingerprint specific subnetwork (FSN)
Given a drug fingerprint pair and a cell line pair as inputs, 
the FSN encompasses three essential processes, including 
drug features extraction, cell line features extraction and 
feature fusion, which integrates the extracted drug and 
cell line features. The output of FSN is a synergy feature. 
A comprehensive overview of these processes is provided 
below.

Drug features      To extract the drug fingerprint fea-
tures, we used the one-dimensional convolutional neural 
network (Conv1D), where 1D array-like kernel convolves 
along a single dimension and identify the patterns from 
fingerprint information. Here, we considered three dif-
ferent fingerprints include Hashtt(t), MAP4(p) and 
MACCS(s). We conducted a three-layer Conv1D model, 
as illustrated in Fig.  2. An input fingerprint sequence is 
represented as Xd ∈ R

L×1 in which L denotes the length, 
1 denotes the dimension and d ∈ {t, p, s} . Let Xi:i+j refer 
to the concatenation of tokens Xi,Xi+1, ...,Xi+j in the 
sequence, a feature zi ∈ R

k can be generated from the 
window of tokens Xi:i+h−1 by

where GELU [37] is an activation function, Wk ∈ R
h×1×k 

is a k-channel (here is 8) filter applied to a window of h 
token, bk ∈ R is a bias term and zi ∈ R

k is a feature gen-
erated from the window of tokens Xi:i+h−1 . Then, the 
filter is applied to each possible window of tokens to pro-
duce a feature map

(3)zi = GELU
(
Wk · Xi:i+h−1 + bk

)
,
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where Concat refers to the concatenation process and 
z ∈ R

L×k . Subsequently, we conducted similar opera-
tions as above with different filter channels (16 and 32 
respectively) in the next layers and then got an output 
z
′ ∈ R

L×k ′ in which k ′ denote the output channel (here is 
32) of the third layer. To obtained the final drug features 
with expected dimension D, we conducted a projection 
process as follow:

where Flatten refers to the flattening process, 
Wd ∈ R

Lk ′×D is the weight matrix, bd is the bias term and 

(4)z = Concat(z1, z2, ..., zL),

(5)Zd = Wd · Flatten(z′)+ bd,

Zd ∈ R
D is the output drug features. Then, given a drug 

pair (i,  j), the pairwise features can be represented as 
(Zdi,Zdj) , where Zdi ∈ R

D and Zdj ∈ R
D.

Cell line features      To derive cell line features, we 
employed two distinct three-layer CNNs individually 
for gene expression (e) and gene mutation (m) data. 
Consistent with the fingerprint sequence, an initial gene 
expression sequence can be represented as Xe ∈ R

l×1 
in which l denotes the number of selected genes and 1 
is the dimension. We then conducted the same opera-
tions described in the Eq.  3, 4 and 5 to obtained the 
gene expression features Ze ∈ R

D with D represents the 
output dimension, which aligns with the dimension of 

Fig. 1  The overview of the PermuteDDS framework
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drug features. Similarly, the extracted gene mutation 
features are represented as Zm ∈ R

D.
Feature fusion      Recent works [38, 39] have demon-

strated the superior performance of Multilayer Percep-
tron (MLP) in feature fusion tasks. Motivated by these 
findings, we conducted a MLP-based method to extract 
fusion feature of drug fingerprints and cell lines. Given a 
triplet of drug pairs and cell line, a feature Hd ∈ R

N×D is 
constructed by

Here, N corresponds to the value 4, reflecting the num-
ber of features utilized in the stacking process. We then 
employed two Permute-MLP blocks taken the feature 
Hd as input. A diagrammatic illustration of the Permute-
MLP block is presented in Fig. 1(C). First, we conducted 
a MLP unit along the D-channel, which can be formu-
lated as follows:

where Swish [40] is an activation function, LN refers to 
LayerNorm [41], W

1
dD,W

2
dD ∈ R

D×D are the weight 
matrices and Ĥd ∈ R

N×D . Then, we perform a N - D 
permutation operation with respect to Ĥd , yielding 
Ĥ

⊤
d ∈ R

D×N , which is serve as the input to the next MLP 
unit along the N-channel. This process can be described 
as

where Hd ∈ R
D×N , W1

dN ∈ R
N×D and W2

dN ∈ R
D×N . 

To recover the original dimensional information to Hd , 
we only need to perform a D- N  permutation opera-
tion on Hd , outputting H⊤

d ∈ R
N×D , which is the input 

(6)Hd = Stack(Zdi,Zdj,Ze,Zm).

(7)Ĥd = Hd + LN(Swish(HdW
1
dD)W

2
dD),

(8)Hd = Ĥ
⊤
d + LN(Swish(Ĥ⊤

d W
1
dN)W

2
dN),

to the next Permute-MLP block. Similarly, we conducted 
the same operations as above in the second block and 
obtained a fusion feature H̃d ∈ R

N×D . Furthermore, we 
conducted projection process to obtain the final synergy 
feature

where W
1
dproj ∈ R

ND×D̂ with hidden size D̂ , 

W
2
dproj ∈ R

D̂×D̃ with the output dimension D̃ , and 

Md ∈ R
D̃ is the output of FSNd.

Predicting the synergistic effect
The objective of drug synergy prediction is to derive a 
synergy score for a given drug pair and cell line trio. The 
process outlined above results in the generation of three 
distinct synergy features, denoted as Mt , Mp and Ms , 
through the utilization of the respective modules FSNt , 
FSNp , and FSNs . Each of the generated features was then 
propagated to a specific prediction module, which con-
sisted of two linear transformations with a GELU acti-
vation in between, and output a synergy score ŷd ∈ R . 
In other words, we got three different synergy scores 
denoted as ŷt , ŷp and ŷs . Given a drug-drug-cell line trio, 
the final predicted synergy score ŷ can be calculated as

Then, the mean square error (MSE) is adopted as the loss 
function to train the model, which is defined as:

(9)Md = GELU(Flatten(H̃d)W
1
dproj)W

2
dproj,

(10)ŷ =
1

3
(ŷt + ŷp + ŷs)

(11)LMSE =
1

n

n∑

i=1

(
yi − ŷi

)2
,

Fig. 2  The architecture of the three-layer Conv1D
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where n represents the number of training set and yi is 
the real score of a given trio.

Experimental setup
Data split strategies
We first randomly selected 90% samples from each 
dataset to conduct a 5-fold cross-validation strategy. To 
benchmark the performance of graph-fp under differ-
ent situations, we considered three different strategies 
shown in Fig. 3:

•	 Random-split. The training samples were randomly 
partitioned into five equal folds. Four of these folds 
were utilized as the training set, while the remain-
ing one was designated as the test set.

•	 Leave-cell-out. The cell line set was randomly 
partitioned into five equal folds. Samples contain-
ing the cell lines in four of these folds were used as 
the training set, while the remaining samples were 
assigned to the test set. This ensured that the test 
set contained only cell lines that were not included 
in the training set.

•	 Leave-combination-out. The set of drug combi-
nations was randomly partitioned into five equal 
folds. Samples containing the drug combinations 
in four of these folds were used as the training 
set, while the remaining samples were used as the 
test set, ensuring that the test set only contained 
unseen drug combinations that were not present in 
the training set.

Furthermore, to verify the generalization ability of 
our method, we used the remaining 10% samples as the 
independent test set. The models were first trained and 
evaluated on the cross validation set, and then tested 
on the independent test set.

Baselines
To evaluate the performance of our model, we compared 
it with several competitive deep learning methods.

•	 HypergraphSynergy [24] employed Hypergraph 
Neural Networks (HGNN) to predict drug synergy 
with hypergraphs as input. In this method, drugs and 
cell lines are represented as nodes, while synergistic 
drug-drug-cell line triplets are represented as hyper-
edges. We reproduced the results of HypergraphSyn-
ergy and obtained the remaining results as reported 
in the HypergraphSynergy paper.

•	 DeepSynergy [9] takes molecular chemistry and cell 
line gene expression as input and used a feed forward 
neural network to predict synergy scores.

•	 DTF [42] utilized a tensor factorization to decompose 
drug synergy matrix and the results of the tensor 
decomposition are used as features to train the DNN 
model for drug synergy prediction.

•	 CombFM [43] used a higher-order factorization 
machine to predict synergy scores with a higher-
order tensor as input which is compiled by drugs, 
drug concentrations and cell lines.

•	 Celebi’s method [44] integrate drug synergy features 
with multiple biological and chemical properties’ fea-
tures and employed an XG-Boost model to predict 
synergy scores.

Evaluation metrics
We regarded the drug synergy prediction as a regression 
task, which objective is to predict the quantitative syn-
ergy scores of drug combinations. The regression results 
were evaluated by three metrics: the root man squared 
error (RMSE), the coefficient of determination ( R2 ) and 
Pearson’s Correlation Coefficient (PCC). These evalua-
tion metrics are calculated as follows:

Fig. 3  Three different data split strategies. The white parts are used as training and validation data. The grey parts indicate testing data
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In the equations, yt and yp denotes the true synergy 
scores and predicted synergy scores, respectively. ȳt and 
ȳp represent the mean value of the true synergy scores 
and predicted synergy scores, respectively.

Results
Performance comparison on cross validation
The 5-fold cross validation results of PermuteDDS and 
other competitive methods on O’Neil dataset are shown 
in Table 1. It can be easily seen that our PermuteDDS sur-
passed all baselines by a large margin on the random split 
task, e.g. 9.4% relative R2 increase compared to the pre-
vious state-of-art method. Compared with random split 

(12)
RMSE =

√√√√√
n∑

i=1

(
yit − yip

)2

n

(13)

R
2 =1−

RMSE2

Var
(
yit
) , whereVar

(
yt
)
=

n∑

i=1

(
yit − ȳt

)2

(14)PCC =

n∑
i=1

(
yit − ȳt

)(
yip − ȳp

)

√
n∑

i=1

(
yit − ȳt
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task, leave-cell-out and leave-combination-out are more 
challenging, which test the performance of prediction 
models on unseen drug combinations/cell lines. On these 
two tasks, the performance of all methods decreased sig-
nificantly compared to random split task. PermuteDDS 
performed slightly worse than HypergraphSynergy on 
the leave-cell-out task. This may be attributed to the fact 
that HypergraphSynergy utilized an auxiliary task that 
involved reconstructing cell line and drug similarity net-
works, which can enhance the robustness of the model 
on leave-cell-out task. However, this auxiliary task took 
all drugs and cell lines as input, resulting in the presence 
of unknown combinations and cell lines solely within 
the prediction module. Despite these considerations, the 
performance gap between our method and Hypergraph-
Synergy remains quite small. As for the leave-combina-
tion-out task, PermuteDDS achieved the best results, 
with 19.3% relative R2 increase and 8.1% relative PCC 
increase compared to HypergraphSynergy. These results 
highlight the superior predictive capabilities of Per-
muteDDS in accurately estimating drug synergy.

Table  2 shows that the performance of the models is 
comparatively lower on the NCI-ALMANAC dataset in 
comparison to the O’Neil dataset. This observation could 
be attributed to the fact that the NCI-ALMANAC data-
set encompasses a wider range of drugs and cell lines, 
thereby increasing the complexity of prediction. How-
ever, PermuteDDS still achieved better performance 

Table 1  Performance comparison on the O’Neil dataset. Bold values indicate the best performance

Random split Leave-cell-out Leave-combination-out

RMSE R
2 PCC RMSE R

2 PCC RMSE R
2 PCC

PermuteDDS 13.721 0.641 0.801 19.668 0.243 0.522 16.152 0.501 0.709
HypergraphSynergy 14.727 0.586 0.775 19.537 0.252 0.533 17.346 0.420 0.656

DeepSynergy 14.87 0.584 0.765 23.890 0.195 0.426 17.28 0.433 0.663

ComboFM 16.86 0.451 0.702 20.820 0.142 0.396 18.62 0.376 0.635

DTF 14.73 0.594 0.775 21.110 0.132 0.535 17.37 0.429 0.671

Celebi’s method 16.34 0.5 0.708 20.6 0.179 0.473 19.1 0.309 0.572

Table 2  Performance comparison on the NCI-ALMANAC dataset. Bold values indicate the best performance

Random split Leave-cell-out Leave-combination out

RMSE R
2 PCC RMSE R

2 PCC RMSE R
2 PCC

PermuteDDS 43.053 0.527 0.726 54.128 0.242 0.519 51.58 0.318 0.569
HypergraphSynergy 43.89 0.508 0.719 53.398 0.273 0.538 52.609 0.291 0.543

DeepSynergy 44.44 0.491 0.701 54.560 0.230 0.322 53.500 0.262 0.526

ComboFM 48.27 0.399 0.651 54.670 0.245 0.531 53.890 0.267 0.526

DTF 47.03 0.430 0.678 54.730 0.223 0.517 53.470 0.263 0.531

Celebi’s method 47.31 0.423 0.653 53.49 0.259 0.516 55.830 0.196 0.456
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in most cases. Regarding the random split task, Per-
muteDDS demonstrated superior performance compared 
to other state-of-the-art approaches. It achieved a RMSE 
of 43.053, a R2 of 0.527 and a PCC of 0.726. However, 
similar to the results on the O’Neil dataset, our method 
only achieved competitive results compared to other 
methods. However, in the leave-combination-out task, 
PermuteDDS outperformed all other baseline methods 
by a large margin, achieving the lowest RMSE of 51.58, 
the highest R2 of 0.318 and the highest PCC of 0.569.

Performance evaluation on independent test
Furthermore, we assessed the generalization perfor-
mance of our model by testing on independent test sets, 
and the results are presented in Table  3. Notably, Per-
muteDDS achieved the overall best performance. Specifi-
cally, on the O’Neil dataset, PermuteDDS attained the top 
result with RMSE, R2 , and PCC scores of 15.144, 0.659, 
and 0.821, respectively. While the NCI-ALMANAC data-
set’s complexity posed challenges for prediction across 
all methods, PermuteDDS still exhibited a slight supe-
riority over previous state-of-the-art approaches with 
RMSE, R2 , and PCC scores of 43.338, 0.484, and 0.696, 
respectively. To intuitively assess differences in predic-
tive performance across different datasets, we analyzed 

the distribution of true scores and predicted scores gen-
erated by the top three methods—PermuteDDS, Hyper-
graphSynergy, and DeepSynergy. Figure 4 illustrates that 
the prediction results of all models on the O’Neil dataset 
form a well-clustered fitting line, indicative of good pre-
dictive performance. Conversely, as depicted in Fig.  5, 
the results on the ALMANAC datasets appear relatively 
dispersed, and the expansion of synergy scores (coordi-
nate axis) range further confirms the complexity of this 
dataset.

Ablation study
To study the effectiveness of each inputs and each Per-
muteDDS units, we perform the ablation studies under 
random split on both datasets. As shown in Table 4, the 
complete PermuteDDS framework achieves the best per-
formance on 5 of 6 evaluation. In terms of the selection 
of input, we designed variants with different molecular 
fingerprint combinations as inputs. Upon examination, 
it becomes evident that the removal of any of the three 
fingerprints results in a decline in performance, and 
employing only one fingerprint yields even worse results. 
We can infer from the results that the combination of 
the three different fingerprints complements each other 
jointly contributes to the predictive performance of 

Table 3  Performance comparison on the independent dataset. Bold values indicate the best performance

O’Neil NCI-ALMANAC

RMSE R2 PCC RMSE R2 PCC

PermuteDDS 15.144 0.659 0.821 43.338 0.484 0.696

HypergraphSynergy 16.710 0.585 0.788 43.730 0.474 0.693

DeepSynergy 16.840 0.578 0.765 45.325 0.435 0.670

ComboFM 16.080 0.541 0.754 46.370 0.457 0.685

DTF 16.150 0.548 0.752 49.860 0.372 0.700
Celebi’s method 16.500 0.529 0.728 45.860 0.469 0.688

Fig. 4  Independent test results on the O’Neil dataset. From left to right: PermuteDDS, HypergraphSynergy and DeepSynergy
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PermuteDDS. Then, in terms of model design, we con-
ducted another two variants: PermuteDDS without Per-
mute-MLP block and PermuteDDS-L. PermuteDDS-L is 
the model that utilizes a feedforward network to extract 
features from fingerprints and cell lines. The model 
without Permute-MLP block demonstrated inferior per-
formance compared to PermuteDDS, highlighting the 
effectiveness of this module. Moreover, CNN might not 
capture as much information from fingerprints and cell 
lines as expected, as PermuteDDS-L only performed 
slightly worse than PermuteDDS.

Model performance is robust against noise cell lines
In actual clinical situations, cancer cells may be mixed 
with normal cells. To assess the robustness of Per-
muteDDS, we conducted a sensitivity analysis to evaluate 
the stability of model performance in response to noise, 
following the methodology outlined in [45]. Specifically, 
we introduced different levels of multiplicative or addi-
tive Gaussian noise into the input cell line gene expres-
sion and mutation profiles. Subsequently, PermuteDDS 
was trained using these resulting noisy cell lines. The 

underlying assumption is that Gaussian noise injected 
into the data can serve as a simulation of normal cell 
lines. For a given gene expression (or mutation) profile X, 
the computation of input noisy cell lines is as follows:

where xmul represent multiplicative noisy cell lines gen-
erated with a Gaussian distribution N (1, σmul) , and 
xadd represent additive noisy cell lines generated with a 
Gaussian distribution N (0, σadd) . We adopted the same 
standard deviation as reported in [45]. Subsequently, 
we performed 5-fold cross-validation under random 
split across each standard deviation on both datasets. 
As depicted in Fig.  6A, the predicted synergy scores, 
obtained by training on cell lines with multiplicative 
Gaussian noise, exhibit consistently high correlations 
with those trained on the original cell lines. Remarkably, 
even as the magnitude of the noise increases, the stability 
of the model’s performance is retained. Similar behavior 

(15)xmul = x ∗ N (1, σmul)

(16)xadd = x + N (0, σadd)

Fig. 5  Independent test results on the O’Neil dataset. From left to right: PermuteDDS, HypergraphSynergy and DeepSynergy

Table 4  Results of ablation study. Bold values indicate the best performance

O’Neil NCI-ALMANAC

RMSE R
2 PCC RMSE R

2 PCC

PermuteDDS 13.721 0.641 0.801 43.053 0.527 0.726

w/o hashtt 13.895 0.632 0.796 44.081 0.504 0.711

w/o MAP4 13.746 0.639 0.800 43.964 0.507 0.713

w/o maccs 13.953 0.628 0.793 44.185 0.501 0.709

hashtt 14.340 0.607 0.780 46.034 0.459 0.681

maccs 14.444 0.602 0.777 46.141 0.456 0.681

MAP4 14.345 0.607 0.780 46.310 0.452 0.678

w/o Permute-MLP 14.811 0.581 0.769 44.528 0.494 0.718

PermuteDDS-L 14.433 0.602 0.777 43.138 0.525 0.728
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is observed when subjecting PermuteDDS to additive 
Gaussian noise, as illustrated in Fig. 6B. Based on these 
observations, we can infer that PermuteDDS demon-
strates robustness in the presence of noisy data.

Cell line data study
Cell lines are known to exhibit sensitivity to variations 
in experimental conditions. Even identical cell lines 
obtained from different institutions can exhibit dis-
tinct gene expression profiles. To assess the necessity 
of the selected cell line descriptors, we constructed the 
variant of the PermuteDDS employing the cell line gene 
expression profiles sourced from the Cell Lines Pro-
ject data in the COSMIC database [46]. Following the 
methodology outlined in [24], we considered only data 
related to 651 genes from the COSMIC Cancer Gene 
Census (https://​cancer.​sanger.​ac.​uk/​census.). Moreover, 
we created an another variant utilizing a simple one-
hot encoding as the input cell line descriptor, serving as 
a baseline for comparison. For the leave-cell-out task, 

the cell lines within the test set, which are unseen dur-
ing training, are encoded as simple zero vectors. The 
results on the O’Neil and NCI-ALMANAC datasets are 
presented in Table 5 and Table 6, respectively. The term 
‘cline-gdsc’ denotes the original PermuteDDS, whereas 
‘cline-cosmic’ and ‘cline-onehot’ refer to the variants 
employing COSMIC and one-hot cell line descriptors, 
respectively. The outcomes derived from employing dif-
ferent cell lines descriptors consistently exhibit similar 
performance across all cross-validation scenarios. This 
suggests that our method demonstrates insensitivity 
towards the choice of these cell-line descriptors, as long 
as the representation method adequately represents and 
distinguishes different cell lines. It’s crucial to highlight 
that all variants exhibited poor performance under the 
leave-cell-out task. Even upon encoding an unseen cell 
line with a zero vector, no significant differences were 
observed in comparison to the utilization of gene expres-
sion profiles. Indeed, none of the baseline methods dem-
onstrate the capability to achieve satisfactory results on 

Fig. 6  Correlation between predicted synergy scores of cell lines without noise and cell lines with multiplicative noise (A) or additive noise (B)

Table 5  Performance comparison of different cell lines descriptors on the O’Neil dataset

Random split Leave-cell-out Leave-combination-out

RMSE R
2 PCC RMSE R

2 PCC RMSE R
2 PCC

cline-gdsc 13.721 0.641 0.801 19.668 0.243 0.522 16.152 0.501 0.709

cline-cosmic 13.602 0.647 0.805 19.928 0.236 0.508 16.122 0.503 0.71

cline-onehot 13.663 0.644 0.803 20.010 0.232 0.507 16.175 0.499 0.708

Table 6  Performance comparison of different cell lines descriptors on the NCI-ALMANAC dataset

Random split Leave-cell-out Leave-combination-out

RMSE R
2 PCC RMSE R

2 PCC RMSE R
2 PCC

cline-gdsc 43.053 0.527 0.726 54.128 0.242 0.519 51.58 0.318 0.569

cline-cosmic 43.247 0.522 0.723 54.83 0.218 0.515 51.303 0.325 0.575

cline-onehot 43.101 0.526 0.726 55.336 0.209 0.506 51.53 0.319 0.57

https://cancer.sanger.ac.uk/census
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this task (Tables 1 and 2), underscoring the considerable 
challenge inherent in its execution.

Furthermore, we conducted similar experiments using 
one-hot encoding as cell line descriptors to construct the 
other two baseline methods, DeepSynergy and Hyper-
graphSynergy. As presented in Additional file 1: Tables S1 
and S2, DeepSynergy exhibited a similar phenomenon to 
PermuteDDS, wherein employing one-hot encoding as a 
cell line descriptor yielded similar results to the original. 
However, replacing the cell line descriptor with one-hot 
encoding leads to a significant decline in the performance 
of HypergraphSynergy. This may be attributed to the fact 
that HypergraphSynergy incorporates the reconstruction 
of cell line similarities as part of its optimization objec-
tive. Since the similarity between cell lines encoded using 
one-hot encoding is uniformly zero, this reconstruction 
process loses its significance. These observations reveal 
the inconsistent sensitivity among different methods to 
the selection of cell line descriptors, depending on the 
preprocessing approach applied to the cell lines.

Predicting novel synergistic combinations
In this section, we employed PermuteDDS to predict 
novel synergistic drug combinations that had not been 
previously tested. We utilized all measured trios of drug 
pairs and cell lines to train PermuteDDS and subse-
quently made predictions for unmeasured trios using the 
NCI-ALMANAC dataset. We focused on drug combina-
tions with predicted scores close to 1 (see GitHub link3.). 
We further conducted a nonexhaustive literature search, 
which revealed that six of the predicted drug combina-
tions were consistent with observations from previous 
studies. For example, Dasatinib and Gefitinib combina-
tion presented a cell-specific cytotoxic synergistic effect 
in human ovarian cell line OVCAR-3 and IGROV-1 [47]. 
According to the trials of Dolfi et al., combination of ful-
vestrant and doxorubicin can enhance the sensitivity of 
breast cancer cell line T47D to these cytotoxic agents 
[48]. We believe that there are other predicted drug pairs 
that hold the potential of being promising combinations, 
which require further validation.

Discussion
From the results, while PermuteDDS has demonstrated 
outstanding performance, we noticed that its perfor-
mance on the leave-cell-out and leave-combination-out 
tasks is limited. The same situation occurred on other 
baselines, where R2 and PCC scores are consistently 
below 0.5 and 0.7, respectively. These scores indicate that 

the predicted results of the model are almost meaning-
less for these tasks. The reason for this limitation may be 
attributed to the distribution shift between the training 
and test sets, caused by the disparity in drug combina-
tions and cell lines between these sets. The problem is 
expected to be solved by learning the invariance between 
different drugs and cell lines [49, 50]. Our future work is 
to explore a more robust model for these leave-out cross 
validation tasks.

In 3.3, we deduced that the combined use of the three 
different fingerprints significantly contributed to the pre-
dictive performance of PermuteDDS. This observation is 
likely because these fingerprints provide distinct descrip-
tions of molecules from various perspectives. HashTT 
fingerprint is a type of path-based fingerprint that incor-
porates the topological information of molecules [34, 
51]. MACCS keys, on the other hand, generate bit strings 
based on the presence or absence of specific substruc-
tures or features, thus enabling the capture of structural 
information. MAP4 is a novel fingerprint that combines 
the atom-pair approach with circular substructures, 
allowing it to encode both molecular shape and chemical 
information simultaneously [35]. Thus, HashTT provides 
valuable topological information, while MACCS offers 
essential structural information. Subsequently, MAP4 
supplements the chemical properties from the atomic 
perspective. The fusion of these distinct pieces of infor-
mation results in a comprehensive and detailed descrip-
tion of the molecules.

In "Cell line data study" section, we conducted experi-
ments to investigate the significance of cell line descrip-
tors. The results of these experiments suggest that 
different methods have varying sensitivities to the choice 
of cell line descriptors, indicating the limitations of one-
hot encoding for certain methods. Moreover, the utiliza-
tion of different cell line descriptors all resulted in poor 
performance under the leave-cell-out task. Several other 
related studies have also demonstrated poor generaliza-
tion performance on this task [52–54]. Nevertheless, we 
maintain the conviction that continued research in fields 
such as pharmacology, pharmacokinetics, toxicology, 
and genetic heterogeneity, alongside the development 
of novel computational methods, holds the potential to 
swiftly surmount these challenges.

Conclusions
In conclusion, we proposed PermuteDDS, a novel 
model designed to predict potential synergistic drug 
combinations for cancer treatment. PermuteDDS 
establishes a unified framework that incorporates 
diverse types of information, including topological 
structure and chemical properties of drugs, cellular 
gene expressions and gene mutations. These different 3  https://​github.​com/​littl​ewei-​lazy/​Permu​teDDS/​blob/​main/​Data/​novel_​

syner​gy_​predi​ct.​csv

https://github.com/littlewei-lazy/PermuteDDS/blob/main/Data/novel_synergy_predict.csv
https://github.com/littlewei-lazy/PermuteDDS/blob/main/Data/novel_synergy_predict.csv
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data are effectively fused using the FSN architecture to 
capture the complex interactions between drug pairs 
and cell lines. PermuteDDS exhibits robust predictive 
capabilities on two benchmark datasets through com-
parison with other competitive methods. However, 
there remain certain limitations that have been previ-
ously discussed. Our future work is to explore a more 
robust model for leave-out cross validation tasks.
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