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Abstract 
De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, 
and deep learning has been recognized as a promising solution. In this study, I developed an effective computational 
method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization 
through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-
likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by opti-
mizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, 
and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinester-
ase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules 
with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design 
strategies in the future of drug discovery and development.

Scientific contribution 
 The scientific contribution of this study lies in the development of the Scoring-Assisted Generative Exploration 
(SAGE) method, a novel computational approach that significantly enhances de novo molecular design. SAGE 
uniquely integrates virtual synthesis simulation, the generation of complex bridged bicyclic rings, and multiple 
scoring models to optimize drug-like properties comprehensively. By efficiently generating molecules that meet 
a broad spectrum of pharmacological criteria—including target specificity, synthetic accessibility, solubility, 
and metabolic stability—within a reasonable number of steps, SAGE represents a substantial advancement 
over traditional methods. Additionally, the application of SAGE to discover dual inhibitors for acetylcholinesterase 
and monoamine oxidase B not only demonstrates its potential to streamline and enhance the drug develop-
ment process but also highlights its capacity to create more effective and precisely targeted therapies. This study 
emphasizes the critical and evolving role of de novo design strategies in reshaping the future of drug discovery 
and development, providing promising avenues for innovative therapeutic discoveries.
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Introduction
Discovering new molecules with the desired properties 
is a key aspect of drug discovery, but the task of finding 
these molecules is challenging because of the massive 
size of the chemical space. While virtual screening is an 
efficient method for rapidly identifying compounds from 
existing commercial databases, it’s gradually becom-
ing more challenging to find molecules that both satisfy 
all desired properties and avoid patent infringement. To 
overcome this challenge, de novo molecular design has 
been developed as a solution [1–3], which aims to create 
new molecules with the desired properties from scratch. 
Generative deep learning has revolutionized the field of 
de novo molecular design by enabling direct learning 
from input data without relying on human-made rules. 
This approach has shown great success in the field of de 
novo molecular design by effectively exploring uncharted 
chemical space for drugs and creating new molecules 
with specific properties [4–6]. For example, genetic 
expert-guided learning (GEGL) demonstrated impressive 
performance in several de novo molecular design tasks 
and added genetic algorithms (GA) to generative deep 
learning through the domain-specific genetic operator, 
which allows for effective exploration of the chemical 
space [7]. This approach has the potential to revolution-
ize drug discovery by offering a more effective method 
of identifying potential drug candidates, but it is neces-
sary to validate the drug-likeness of these newly designed 
molecules.

Drug-likeness is a crucial element in drug discovery, 
which helps to increase the success rate of clinical trials, 
reduce costs, and filter out compounds with a high like-
lihood of failure. Computational filters have been devel-
oped to distinguish between drug-like and non-drug-like 
molecules, such as Lipinski’s rules [8]. However, relying 
solely on a single drug-likeness property has limitations 
in drug discovery, as the definition of drug-likeness has 
expanded to include various molecular properties that 
may not necessarily be related to drug efficacy or safety. 
Therefore, it is necessary to separately consider phar-
macodynamic and pharmacokinetic properties in the 
drug discovery process for effective drugs. Pharmaco-
dynamic properties relate to a drug molecule’s ability to 
interact specifically with a biological target without caus-
ing off-target effects. Pharmacokinetic properties deter-
mine if a drug molecule will reach its target protein and 
persist in the bloodstream, and this includes processes 
such as absorption, distribution, metabolism, and excre-
tion (ADME), while toxicity refers to adverse or harmful 
drug effects, and its examination is crucial for identify-
ing potential risks and reducing negative side effects. 
Improving drug-likeness requires optimizing multiple 

factors such as target specificity and ADME/T together, 
and this is essential for discovering effective drugs.

Targeting a single protein has been successful in man-
aging many diseases, but complex diseases require 
alternative approaches like combination therapy and 
multi-target drugs. Dual-action drugs have two distinct 
desired effects at a single effective dose from two sepa-
rate modes of action, making them versatile for treating 
a variety of diseases. For instance, acetylcholinesterase 
(AChE) inhibitors increase cholinergic levels in the brain 
to treat Alzheimer’s disease (AD), by enhancing the cho-
linergic levels in the brain [9], while monoamine oxidase 
(MAO) inhibitors reduce oxidative damage and have the 
potential for treating AD [10]. AChE/MAO dual inhibi-
tors are believed to be more effective in treating AD, and 
ladostigil showed a neuroprotective ability and stimu-
lated the processing of amyloid precursor protein (APP) 
alpha through AChE/MAO dual inhibition [10, 11]. 
However, computationally designing AChE/MAO dual 
inhibitors is a challenging task due to the complex bal-
ance of target specificity.

Quantitative structure–activity/property relation-
ship (QSAR/QSPR) methods have been widely used for 
predicting target specificity and ADME/T properties by 
identifying molecular features in known active and inac-
tive ligands. While QSAR models can help eliminate 
undesirable compounds during drug design and provide 
feedback for lead optimization, they are not able to cre-
ate or generate new molecules with desired properties. 
Therefore, QSAR models should be combined with other 
computational methods to generate new molecules with 
desired properties.

In this study, I devised an effective computational 
methodology named Scoring-Assisted Generative Explo-
ration (SAGE) by integrating the GEGL framework and 
multiple QSAR models. My SAGE expanded the GEGL 
for practical use by enabling virtual synthesis simulation, 
generating bridged bicyclic rings for greater chemical 
diversity, and adding multiple scoring models for drug-
likeness. Firstly, I performed pretraining of SAGE on 
various datasets to create a model capable of the most 
diverse compounds. Secondly, I carried out a benchmark 
to generate compounds for finding the bridged bicy-
clic ring structures based on the presence or absence of 
chemical diversification. Thirdly, I evaluated the chemi-
cal design ability of SAGE in generating compounds with 
desired properties by optimizing drug-likeness in six pro-
tein targets using six QSAR models for target specificity 
and 11 QSPR models for ADME/T properties. Lastly, I 
performed a task of identifying a dual inhibitor of AChE 
and MAO type B (MAOB) using two QSAR properties 
for target specificity and 12 QSPR models for ADME/T 
properties. My results showed that SAGE can effectively 
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explore chemical space and optimize multiple properties 
using various scoring models, making it useful for discov-
ering molecules with desired properties at an early stage 
of drug discovery.

Methods
Scoring‑assisted generative exploration (SAGE)
Scoring-Assisted Generative Exploration (SAGE) is an 
effective framework for generating high-scoring mol-
ecules with deep neural networks (DNN), chemical 
diversification operators, and various scoring models for 
desired objectives. The DNN in SAGE is pre-trained with 
chemical datasets and based on long-short-term mem-
ory (LSTM) networks [12]. Molecules are represented 
as a sequence of characters in the simplified molecular-
input line-entry system (SMILES) format [13]. Chemi-
cal diversification operators in SAGE consist of mutate, 
crossover, and virtual synthesis operators. The mutate 
operator makes various chemical modifications to the 
molecules at the atom level, such as appending atoms, 
inserting atoms, changing bond orders in covalent bonds, 
adding ring bonds, deleting ring bonds, and forming a 
bridge bicyclic ring in a ring substructure. The crosso-
ver operator randomly breaks a pair of parent molecules 
into fragments and combines two fragments to create a 

new molecule at the functional group level, where a frag-
ment can be attached to the bridgehead atoms in bridged 
bicyclic rings. The virtual synthesis operator is based on 
a virtual assembly employed in the design of innovative 
new chemical entities generated by optimization strate-
gies (DINGOS) [14] at the molecule level. The DINGOS 
algorithm consists of four key steps, including the gen-
eration of the molecular building block library, choosing 
a subset of the closest molecules to the original structure, 
construction of optimal intermediates and products, 
and repeating the process until a termination criterion 
is met. As a result, it allows for the generation of novel 
compounds through scaffold hopping based on ligand 
similarity and feasibility at the molecule level. After 
chemical generation and diversification, molecules are 
ranked based on their scores, and a fixed number of top-
ranked molecules are selected for fine-tuning of the DNN 
through a storage buffer in every step. It is worth noting 
that the top-ranked molecules in the storage buffer are 
maintained throughout the entire process, regardless of 
the step.

The compounds used for pre-training the SAGE mod-
els were categorized into three groups, namely synthetic 
compounds, natural products, and bioactive compounds, 
and are summarized in Table 1. Two groups of synthetic 

Table 1 Summary of datasets used in this study

Class Task Abbreviation Unit All set
(active/inactive)

Training set Test set

Pre-train ZINC Clean Leads ZINC – 249,456 244,456 5000

Commercial Vendors Synthetics 17,134,091 16,791,409 342,682

Natural Products ZINC-NP 234,997 230,297 4700

Bioactives ChEMBL24 369,860 362,463 7397

Target specificity Acetylcholinesterase AChE Binary 940 (453/487) 752 188

Cyclooxygenase-2 COX-2 879 (435/444) 703 176

Protein kinase C beta PKCB 288 (135/153) 230 58

Fibroblast growth factor receptor 1 FGFR1 285 (139/146) 228 57

Protein-tyrosine phosphatase 1B PTP1B 283 (130/153) 226 57

Monoamine oxidase B MAOB 251 (122/129) 200 51

Absorption Caco-2 membrane permeability Caco2 cm/s 910 728 182

Human intestinal absorption HIA Binary 578 (500/78) 461 117

P-glycoprotein inhibition Pgp 1218 (650/568) 973 245

Distribution Human plasma protein binding rate PPBR % 2790 2231 559

Blood–brain barrier permeability BBB Binary 2030 (1551/479) 1624 406

Metabolism CYP-P450 inhibition (CYP2D6) CYP2D6 Binary 13,130 (2514/10,616) 10,504 2626

CYP-P450 inhibition (CYP3A4) CYP3A4 12,328 (5110/7218) 9861 2467

CYP-P450 inhibition (CYP2C9) CYP2C9 12,092 (4045/8047) 9673 2419

Toxicity Lethal dose 50 LD50 log(1/mol/kg) 7385 5907 1478

Human ether-à-go-go hERG Binary 655 (451/204) 523 132

Mutagenicity AMES 7278 (3974/3304) 5821 1457

Drug-induced liver injury DILI 475 (236/239) 379 96
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compounds were obtained from the ZINC Clean Leads 
[15, 16], and 11 commercially available vendors (BIO-
NET, Chembridge, ChemDiv, Enamine, IBS, LifeChemi-
cal, Maybridge, MolPort, Specs, TargetMol, and VitasM). 
Natural products were collected from ZINC20 [17], while 
bioactive compounds were collected from ChEMBL24 
[18]. The compounds were randomly partitioned into 
training, validation, and test sets with proportions of 
0.882, 0.098, and 0.02, respectively.

The DNN in SAGE for pretraining comprises a 3-lay-
ered LSTM with 1024 hidden units and a dropout prob-
ability of 0.2. Optimization was performed using the 
Adam optimizer [19], with a learning rate of 0.001 and 
a batch size of 1024. The DNN was pre-trained for 300 
epochs on four datasets (ChEMBL24, Synthetics, ZINC, 
and ZINC-NP) and the final model weights were selected 
based on the minimum average loss on the validation and 
test sets. The generated molecules were evaluated for 
validity, uniqueness, novelty, and internal diversity. Valid-
ity assesses how well the DNN incorporates chemically 
reasonable constraints and grammar in SMILES, such 
as maintaining proper valence. Uniqueness measures 
how well the DNN avoids generating only a few typical 
molecules, while Unique_1k is the uniqueness obtained 
by examining the first 1000 valid molecules in the gener-
ated set. Novelty calculates the percentage of generated 
molecules that do not exist in the training set. IntDiv_1 
and IntDiv_2 measure the chemical diversity within the 
generated molecule sets, with higher scores indicating 
greater diversity.

SAGE adopts an iterative fine-tuning approach, 
wherein each iteration leverages the principles of fine-
tuning and reuses the parameters in the pretraining 
phase. This strategy allows the model to retain the knowl-
edge gained through pretraining while fine-tuning it 
on the target task, resulting in improved performance 
and convergence. During each iteration of SAGE, the 
DNN generates 8192 molecules, which undergo filter-
ing to remove invalid SMILES or non-drug-like mol-
ecules through Muegges drug-like filters. The remaining 
molecules are then evaluated using scoring models that 
are suitable for each task objective, and the top 1024 
molecules are saved in the storage buffer. The crossover 
operator is then applied to at most 8192 pairs of mol-
ecules randomly selected from the storage buffer. If the 
crossover operator cannot be applied due to overly sim-
plistic molecules, the operation is skipped with a prob-
ability of 0.01. Upon a successful crossover operation, 
the mutate (M), virtual synthesis (V), and bridged bicy-
clic (B) operators are applied according to pre-defined 
probabilities (M100, M75/V20/B05, M50/V45/B05, and 
M25/V70/B05). If a new molecule is not generated from 
the parent pair, the process can be repeated up to 10 to 

generate a new compound. The invalid or non-drug-
like ones are filtered out, and the top 1024 molecules 
are saved in the storage buffer. The duplicate-removed 
storage buffer, which can have at most 1024, is used for 
fine-tuning the DNN. Optimization for the fine-tuning 
was performed using the Adam optimizer, with a learn-
ing rate of 0.001 and a batch size of 256 for 8 epochs. For 
benchmarking purposes, I conducted 100 iterations of 
SAGE for the GuacaMol and bridged bicyclic ring tasks 
and 50 iterations for inhibitor design tasks, with a maxi-
mum SMILES length of 100. To establish baseline models 
(SMILES LSTM and SMILES GA), I introduced specific 
modifications to SAGE. The reward parameter was fixed 
at a minimal value of 0.01, and I refrained from proceed-
ing with the DNN training under these conditions. This 
approach effectively disables the ranking-based fine-tun-
ing mechanism, a core component of SAGE, allowing us 
to isolate and analyze the algorithm’s fundamental capa-
bilities. The SMILES LSTM and SMILES GA models gen-
erated 16,384 molecules in the GuacaMol benchmark, 
while the SAGE in inhibitor design tasks generated 8,192 
molecules through SMILES LSTM and 8192 molecules 
through SMILES GA.

Goal‑directed benchmarks
Six goal-directed benchmarks for model performance 
evaluation were derived from the GuacaMol [20]. Redis-
covery tasks involve the rediscovery of specific target 
compounds, namely Celecoxib, Troglitazone, Thiothix-
ene, and all bridged bicyclic compounds. Meanwhile, 
similarity tasks aimed to generate molecules closely 
resembling specific target compounds, such as Aripipra-
zole, Aluterol, Mestranol, and all bridged bicyclic com-
pounds. For each of these target compounds, I selected 
the top 100 generated molecules that exhibited a similar-
ity score above a 0.75 threshold. In the rediscovery tasks 
of the GuacaMol and bridged bicyclic benchmarks, the 
similarity between each target compound and the top 1 
generated molecule was assessed using the ECFP4 molec-
ular fingerprint. The similarities between the respective 
molecules and Aripiprazole, Aluterol, Mestranol, and all 
bridged bicyclic compounds were measured using dis-
tinct molecular fingerprints: ECFP4 for Aripiprazole and 
all bridged bicyclic compounds, FCFP4 for Aluterol, and 
AP for Mestranol. Isomer tasks revolve around the crea-
tion of molecules that align with a given molecular for-
mula, assessing the overfitting problem of only producing 
molecules with a simple pattern.

Multiple property optimization (MPO) tasks involve 
the modification of known drug molecules, such as Fex-
ofenadine, Ranolazine, Perindopril, Amlodipine, Sitag-
liptin, and Zaleplon, for structural or physicochemical 
properties, where I selected the top 100 generated 



Page 5 of 20Lim  Journal of Cheminformatics           (2024) 16:59  

molecules and compared the multiple properties. In the 
Fexofenadine MPO task, I employed the geometric mean 
of AP fingerprint-based similarity, a LogP target of 4, 
and a topological polar surface area (TPSA) with a tar-
get of 90. For the Ranolazine MPO task, the geometric 
mean of AP fingerprint-based similarity, a LogP target 
of 7, a TPSA target of 95, and the presence of one fluo-
rine atom were used as the optimization criteria. In the 
case of Perindopril MPO, I utilized the geometric mean 
of ECFP4 fingerprint-based similarity and the number of 
two aromatic rings. The Amlodipine MPO task involved 
using the geometric mean of ECFP4 fingerprint-based 
similarity and the presence of two carbon rings. Finally, 
the Sitagliptin MPO task included an ECFP4 fingerprint-
based similarity, a LogP of 2, a TPSA of 77, and a simulta-
neous isomer task targeting the  C16H15F6N5O molecular 
formula.

The Valsartan SMARTS task focuses on molecules 
that manifest SMARTS pattern associated with val-
sartan, and that have similar physicochemical prop-
erties with the sitagliptin. Scaffold- and decorator 
hopping tasks endeavor to maximize the congruity with 
SMILES string, either preserving or excluding particu-
lar SMARTS patterns. It can maintain specific substitu-
ents and modify the scaffold of a compound, while it 
can maintain a consistent scaffold and alter the substitu-
tion pattern. The scaffold and decorator hopping tasks 
in the GuacaMol used one SMARTS pattern for scaf-
fold (‘[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) 
and three SMARTS patterns for decoration (‘CS([#6])
(= O) = O’, ‘[#7]-c1ccc2ncsc2c1’, and ‘[#6]-[#6]-[#6]-
[#8]-[#6] ~ [#6] ~ [#6] ~ [#6] ~ [#6]-[#7]-c1ccc2ncsc2c1’). 
To evaluate the ability to generate bridged bicyclic ring 
structures, I adopted four goal-directed benchmarks 
named rediscovery and similarity tasks. All similarities of 
the molecules with bridged bicyclic rings were measured 
with the ECFP4.

Chemical filters and score definition
The development of a precisely defined scoring func-
tion was essential for the SAGE model’s effectiveness in 
generating chemicals with targeted properties. An inad-
equately defined scoring function could lead to subop-
timal outcomes, diverging from intended objectives. To 
align the scoring functions with the desired molecular 
properties, I focused on five key factors: simple drug-
likeness, target specificity, synthetic accessibility, solubil-
ity, and ADME/T properties.

Initially, my SAGE model involved implementing sev-
eral chemical filters based on simple rule-based drug-
likeness. These filters categorize molecules as potential 
drugs or non-drugs, drawing upon their similarity to 
known drugs in the feature space. To provide a rough 

estimate of a molecule’s drug-likeness, I employed the 
Muegge filter [21]. This filter disqualifies compounds if 
they fall outside specific criteria: a molecule weight out-
side the range of 200 to 600, a LogP greater than 6, more 
than six hydrogen donors, over twelve hydrogen accep-
tors, more than fifteen rotatable bonds, more than seven 
aromatic rings, fewer than two heteroatoms, or less than 
five carbon atoms. By applying these criteria, I ensure 
that only molecules conforming to essential drug-like-
ness standards progress to further evaluation. This pre-
liminary filtering step is crucial as it assesses molecular 
properties against established benchmarks, effectively 
eliminating compounds that are less likely to demonstrate 
the desired pharmacological profiles. Following this ini-
tial filtering, I introduced four distinct scoring functions 
into the SAGE model. Each function contributes a maxi-
mum of one point, cumulatively reflecting a comprehen-
sive assessment of the molecule’s characteristics.

Score 1 exclusively focuses on target specificity, lever-
aging the predictive power of the QSAR model for each 
protein target. Ranging from 0 to 1, this score quantifies 
the likelihood of a molecule being an effective inhibitor 
for a given protein target. For the dual inhibition task 
(AChE/MAOB), Score 1 is determined by averaging 
the prediction scores from both targets. This approach 
ensures a balanced assessment of molecules aimed at 
multiple targets. The values obtained from my QSAR 
classification models provide a quantitative measure 
of the likelihood that a molecule will act as an effective 
inhibitor. These probabilities reflect the probability that a 
molecule’s binding affinity to its protein target is greater 
than 1 µM. This probability is a crucial indicator of a mol-
ecule’s potential as an inhibitor, ensuring that the SAGE 
model prioritizes compounds with a higher likelihood of 
being potent and specific to the intended targets.

Score 2 builds upon the foundation established by 
Score 1, integrating the concept of synthetic accessibil-
ity into the assessment. This score, with a range from 0 
to 2, is calculated by summing the target specificity score 
(Score 1) and the synthetic accessibility measure. For 
determining synthetic accessibility, I employed the ret-
rosynthetic accessibility score (RAscore), a metric that 
enables the rapid estimation of a molecule’s synthetic 
feasibility [22]. RAscore ranges from 0 to 1 and assesses 
the likelihood of successfully identifying retrosynthetic 
routes for a molecule using the AiZynthFinder tool [23]. 
A score closer to 1 indicates a higher probability of find-
ing feasible retrosynthetic pathways, reflecting the mol-
ecule’s ease of synthesis.

Score 3 further advances the evaluation process by 
adding the concept of solubility. This score, with a range 
from 0 to 3, is derived by summing up Score 2 with the 
apparent solubility of the molecule. To accurately and 
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efficiently predict aqueous solubility, I utilized the mol-
ecule attentions transformer (SolTranNet) [24]. SolTran-
Net is adept at predicting the solubility of small organic 
molecules in water, thereby facilitating the identification 
of compounds with favorable solubility properties. In this 
context, the solubility measure is quantified in a binary 
manner: a score of 1 is assigned if the generated mole-
cule is soluble, and a score of 0 if it is not. The determina-
tion of a molecule’s solubility is based on its LogS value. 
Typically, a molecule is considered soluble if its LogS falls 
within the range of − 4 to 0.5 log mol/L [24]. However, 
due to the relatively high false discovery rate of SolTran-
Net at the − 4 threshold (28.6%), I have adopted a more 
flexible threshold of − 6, which significantly reduces the 
false discovery rate to 1.3% [24].

Score 4 represents the advanced stage of my compre-
hensive molecule assessment, where I integrated phar-
macokinetic aspects through ADME/T profiling. This 
score, with a range of 0 to 4, is calculated by combin-
ing the value of Score 3 with the ADME/T profile score. 
However, the inclusion of the ADME/T profile score with 
the ADME/T profile score within Score 3 is subject to 
two specific conditions. Firstly, all scores of target speci-
ficity, synthetic accessibility, and solubility must exceed 
a threshold of 0.75. This criterion ensures that ADME/T 
profiling is typically conducted on molecules that have 
already shown substantial potential efficacy. Secondly, 
the ADME/T profile score is only added if the QSAR 
score for the human Ether-à-go-go-Related Gene (hERG) 
inhibition remains below a critical threshold of 0.5. Given 
the crucial role of hERG in maintaining heart rhythm, its 
inhibition can lead to significant adverse effects, where 
molecules with a binding affinity (IC50) of 40  µM or 
stronger were classified as positive while those weaker 
than 40 µM were classified as negative in the dataset [25], 
thus making it a vital consideration in evaluating drug 
safety, especially concerning cardiac health.

The ADME/T profile score is a key component of my 
comprehensive molecule assessment and includes 11 
QSPR models for single-target tasks and 12 for the dual 
inhibitor task. The AChE/MAOB dual task includes 
an additional indicator for the blood–brain barrier 
(BBB) permeability. In my ADME/T profile evaluation, 
I employed QSPR models to predict a range of phar-
macokinetic and toxicity properties. Each indicator in 
the ADME/T profile, ranging from 0 to 1, is integral in 
determining a molecule’s overall suitability as a thera-
peutic agent. To calculate the ADME/T profile score, I 
averaged the scores from all relevant QSPR models. For 
single-target tasks, I used 11 QSPR models, each contrib-
uting approximately 2.27% to Score 4. For the dual-target 
task, I averaged 12 QSPR models, with each contributing 
around 2.08% to Score 4. This approach ensures the score 

remains within a maximum of 1, providing a consistent 
and balanced evaluation across different tasks.

For absorption, I assessed Caco-2 membrane perme-
ability (Caco2), human intestinal absorption (HIA), and 
P-glycoprotein inhibition (Pgp). The Caco-2 cell line is 
used to estimate drug permeation through intestinal tis-
sue, where the maximum value is −  3.51, the minimum 
value is −  7.76, and the average value is −  5.24 in the 
dataset [26]. A compound is generally considered to have 
proper permeability if its predicted Caco2 permeabil-
ity exceeds − 5.15 log cm/s [27], so I have set − 5.15 log 
cm/s as the threshold for determining acceptable perme-
ability in my assessment. HIA is crucial for drug delivery 
through the gastrointestinal system to the intended tar-
get, where molecules with intestinal fraction absorption 
of 30% or higher were classified as positive while those 
below 30% were classified as negative in the dataset [28]. 
Pgp is an ABC transporter responsible for transport-
ing substances in and out of cells, and its inhibition can 
impact a drug’s bioavailability and safety, where the mol-
ecules with a binding affinity (IC50) stronger than 15 µM 
were classified as positive while those with binding affin-
ity weaker than 100 µM were classified as negative in the 
dataset [29].

In evaluating distribution, I considered the human 
plasma protein binding rate (PPBR) and BBB perme-
ability. PPBR measures the proportion of a drug bound 
to plasma proteins in the bloodstream, and the rate sig-
nificantly affects the drug’s delivery to its target, where 
the maximum value is 99.95, the minimum value is 10.09, 
and the average value is 86.73 in the dataset [30]. A com-
pound is generally classified as having high binding if its 
PPBR exceeds 80%. I have established 80% as the thresh-
old for acceptable plasma protein binding, ensuring that 
compounds meet this criterion for effective drug deliv-
ery. BBB serves as a protective layer separating the cir-
culating blood from the extracellular fluid in the brain, 
where molecules with BBB penetration partition of −  1 
or higher were classified as positive while those lower 
than − 1 were classified as negative in the dataset [31]. Its 
penetration is a critical factor in drug delivery, as a mol-
ecule must pass through the BBB to reach its intended 
target within the brain.

For metabolism, my focus is on the inhibition of 
cytochrome P450 genes (CYP2C9, CYP2D6, and 
CYP3A4). These genes are necessary for the metabo-
lism or breakdown of many molecules within cells, and 
if a drug can block these enzymes, it may result in poor 
metabolism, where molecules showing no response at 
concentrations up to 57  µM were classified as nega-
tive while those exhibiting a response were classified 
as positive in the dataset [32]. In toxicity assessment, 
I considered lethal dose 50 (LD50), hERG inhibition, 
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mutagenicity (AMES), and drug-induced liver injury 
(DILI). LD50 measures rat acute toxicity and determines 
the lowest dose of a substance that can cause lethal side 
effects, where the maximum value is 10.207, the mini-
mum value is −  0.343, and the average value is 2.544 
in the dataset [33]. A compound is classified as acutely 
toxic if its LD50, determined via rodent oral administra-
tion, is below 300 mg/kg. Assuming a molecular weight 
of 300, this LD50 corresponds to 5 log(1/mol/kg), a value 
I have adopted as the threshold criterion. AMES refers 
to a drug’s capacity to harm DNA and lead to cell death 
or other negative consequences, where molecules, which 
increased the number of revertant colonies per plate in a 
dose-related manner in the Ames test, were classified as 
positive while those that do not were classified as nega-
tive in the dataset [34]. DILI is a serious liver disease that 
can be caused by certain drugs, where molecules with a 
high risk of DILI or the potential to cause any adverse 
liver effects in their annotations were classified as posi-
tive while those with no risk of DILI or not associated 
with any adverse liver effects in the dataset [35].

Data sets for target specificity and ADME/T prediction
The ligand structures used for target specificity were 
obtained from the DUD-E benchmarking sets [36] and 
ChEMBL32 [18], as summarized in Table 1. To ensure a 
comprehensive evaluation of my SAGE program’s appli-
cability across diverse biological functions and structures, 
I strategically selected six protein targets: Acetylcho-
linesterase (AChE), Cyclooxygenase-2 (COX-2), Protein 
kinase C beta (PKCB), Fibroblast growth factor receptor 
1 (FGFR1), Protein-tyrosine phosphatase 1B (PTP1B), 
and Monoamine oxidase B (MAOB). These targets were 
chosen not only for their evenly distributed active and 
inactive experimental data, which helps to avoid bias 
from unbalanced datasets, but also because they repre-
sent a diverse range of functional classes in pharmaco-
logical contexts. This variety in selection underscores the 
versatility and potential broad applicability of the SAGE 
program, demonstrating its effectiveness across different 
types of protein targets with unique structural and func-
tional attributes.

To create QSAR models for predicting ADME/T prop-
erties, I gathered ligand structures from Therapeutics 
Data Commons [37], which are summarized in Table 1. 
I selected 12 ADME/T properties, including Caco2 [26], 
HIA [28], Pgp [29], PPBR [30], BBB [31], CYP2D6 [32], 
CYP3A4 [32], CYP2C9 [32], LD50 [33], hERG [25], 
AMES [34], and DILI [35], with three (Caco2, PPBR, 
and LD50) being predicted as regression tasks and the 
remaining nine as classification tasks.

Molecular fingerprints and machine learning
To quantify the structural similarity of chemical com-
pounds, I used two-dimensional (2D) chemical finger-
prints as binary features. Firstly, I used predefined 2D 
chemical fingerprint dictionaries, which were designed 
for the analysis of large chemical libraries. The molecu-
lar access system (MACCS) is one of the most frequently 
used fingerprint schemes for quantifying similarity with 
166-bit MACCS keys [38], while the PubChem system 
utilizes substructure fingerprints (PCFP) to represent 
chemical structures and enable similarity searching and 
neighboring with 881 structural keys [39]. Secondly, 
atom-connectivity fingerprints in the molecules were 
considered. The extended-connectivity fingerprints 
(ECFP) were designed for structure–activity modeling 
and representing circular atom neighborhoods rather 
than substructure and similarity searching [40]. Func-
tion-class fingerprints (FCFP) are a type of ECFP-based 
fingerprints but have different indexing of the roles of 
specific atoms in the environment. Because the FCFP 
does not distinguish between different atoms or groups 
with the same or similar function, it can be used for phar-
macophore-like fingerprints. I generated the ECFP with 
a diameter of 6 (ECFP6) and FCFP with a diameter of 4 
(FCFP4) as 1024 bits using RDKit [41] and Morgan algo-
rithms [42]. By concatenating MACCS keys and three 
fingerprints (PCFP, ECFP6, and FCFP4), the more com-
plex fingerprints (MACCS + PCFP, MACCS + ECFP6, 
and MACC + FCFP4) were generated and used as fea-
tures for QSAR models.

To develop QSAR models for target specificity, I used 
the Scikit-learn package [43] in Python to perform a 
stratified split of the data, with 80% of the compounds 
used for training and 20% for test sets, while maintain-
ing a fixed random seed. For QSAR models related to 
ADME/T, I employed a scaffold-based split in Therapeu-
tics Data Commons [37]. During the training phase, I 
used tenfold cross-validation with GridSearchCV in the 
Scikit-learn package [43]. To evaluate classification tasks 
on the test sets, I used various metrics such as AUC, 
Precision, Recall, and F1-score. AUC measures the area 
under the receiver operating characteristic curve, which 
shows the model’s ability to distinguish between classes. 
Precision, or positive predictive value, indicates the pro-
portion of true positives among the predicted positives. 
Recall is sensitivity or true positive rate and represents 
how many of the actual positives the model correctly 
identified as positive. F1-score is a harmonic average 
of precision and recall and is a better measure to use if 
a balance between precision and recall is needed. Addi-
tionally, a threshold value of 0.5 was used in the classifi-
cation model to decide the class labels.
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I utilized four ensemble-based machine learning algo-
rithms: gradient boosting machine (GBM), light gradi-
ent boosting machine (LGBM), random forest (RF), and 
extreme gradient boosting (XGB). These algorithms use 
decision trees to prevent overfitting and reduce variance, 
with each decision tree analyzing numerical features 
to generate continuous outputs. The decision trees are 
constructed sequentially and adjusted to the differences 
between actual and predicted values generated by previ-
ous trees.

The hyperparameter tuning parameters are summa-
rized in Additional file  1: Table  S1. I conducted a grid 
search to find the best model in four hyperparameters in 
GBM, two in LGBM, and two in RF and XGB. In GBM, 
I used four hyperparameters for tuning the models: the 
number of gradient-boosted trees (n_estimators), the 
maximum tree depth for base learners (max_depth), 
the number of features to consider when selecting the 
best split (max_features), and the boosting learning rate 
(learning_rate). In LGBM, I used two hyperparameters: 
the number of gradient-boosted trees (n_estimators) and 
the boosting learning rate (learning_rate). In RF, I used 
two hyperparameters: the number of gradient-boosted 
trees (n_estimators) and the number of features to con-
sider when selecting the best split (max_features). In 
XGB, I used three hyperparameters: the number of gra-
dient-boosted trees (n_estimators), the maximum tree 
depth for base learners (max_depth), and the boosting 
learning rate (learning_rate).

I conducted a tenfold cross-validation and grid search 
to find the optimal values of each set of descriptors. The 
optimal hyperparameters were determined based on 
the model performance in the cross-validation sets, and 
I selected the 12 optimal models for each task. The best 
model was selected from the 12 optimal models based on 
the geometric mean of two performances in the cross-
validation and test sets.

Molecular simulations
X-ray crystal structures of human AChE (PDB ID: 6NTO 
[44]) and human MAOB (PDB ID: 1S3B [45]) were 
obtained from the Protein Data Bank (PDB) [46]. Missing 
side chains were predicted using Prime [47], and hydro-
gen atoms were added to these protein structures at a pH 
of 7.0. The coordinates of these atoms were subsequently 
optimized with PROPKA3 [48]. The restrained energy 
minimization was performed with OPLS3 within 0.3 Å 
root-mean-square deviation (RMSD) [49].

Molecular docking was performed using Glide-SP in 
Prime [50], selecting the docking poses with the high-
est docking scores for dual targets (AChE and MAOB). 
The protein–ligand complexes of AChE with Ladostigil 
and the top-ranked molecule were incorporated into an 

orthorhombic box containing 15,329 and 15,303 water 
molecules (TIP3P model), respectively, as generated by 
a 10  Å buffer distance. The protein–ligand complexes 
of MAOB with Ladostigil and the top-ranked molecule 
were similarly inserted into an orthorhombic box with 
15,930 and 15,305 water molecules, respectively. To 
achieve a neutral system and simulate a physiological 
concentration of 0.15  M, the AChE system with Lados-
tigil incorporated 52  Na+ and 43  Cl− ions, while the 
AChE system with the top-ranked molecule included 
54  Na+ and 43  Cl−. Similarly, the MOAB system with 
Ladostigil involved 47  Na+ and 44  Cl− ions, whereas the 
MAOB system with the top-ranked molecule incorpo-
rated 48  Na+ and 43  Cl− ions.

Molecular dynamics simulations were conducted 
employing Desmond [51] using an OPLS3 force field 
and an NVT ensemble, ensuring a constant number of 
particles, volume, and temperature. The Particle-mesh 
Ewald method was applied to compute long-range and 
short-range interactions with a cutoff of van der Waals 
and electrostatic interactions of 9 Å [52]., Nose–Hoover 
thermostats were employed to maintain a constant tem-
perature of 300 K [53]. The RESPA integrator was utilized 
to combine the equations of motion with a time step of 
2.0  fs for bonded and non-bonded interactions [54]. A 
50  ns simulation was conducted using the default Des-
mond protocol, and the conformations and energies were 
stored at 50 and 1.2 ps intervals, respectively. For analy-
sis, only conformations extracted from the 10 to 40  ns 
timeframes were considered, thereby excluding poten-
tially unstable conformations from the initial and ter-
minal phases of the simulations. I measured the RMSD 
values with heavy atoms of the protein and ligand struc-
tures based on a reference frame.

Results
Scoring‑assisted generative exploration (SAGE)
Scoring-assisted generative exploration (SAGE) com-
bines deep neural networks (DNN), genetic improve-
ment operators, and multiple scoring models to generate 
highly rewarding molecules through iterative fine-tuning 
(Fig. 1). To enhance the generation of structurally diverse 
compounds, I have expanded the capabilities of SAGE 
by incorporating features that enable virtual synthesis 
simulation and the creation of bridged bicyclic rings. The 
effectiveness of the SAGE algorithms was validated with 
three goal-directed benchmarks and the datasets used in 
this study are summarized in Table 1. I introduced four 
distinct models named M100, M75/V20/B05, M50/V45/
B05, and M25/V70/B05 for the newly added operators, 
each based on their probability distribution of the newly 
added operators. Notably, the M100 operates identically 
to the original GEGL.
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Firstly, I applied the SAGE algorithms to general goal-
directed benchmarks in GuacaMol [20], with the summa-
rized results in Table 2. For the GuacaMol benchmark, I 
initialized the LSTM models using the weights provided 
by Brown et  al. [20], which were pre-trained with the 
ChEMBL24 database [18]. In the GuacaMol benchmark, 
the performance scores for M100, M75/V20/B05, M50/
V45/B05, and M25/V70/B05 were 16.401, 16.507, 16.443, 
and 16.458, respectively, demonstrating an improve-
ment over the scores achieved by two baselines without 
the ranking-based fine-tuning mechanism (a reward 
system), including SMILES LSTM (11.258) and SMILES 
GA (9.440). Both M100 and my SAGE models incorpo-
rate elements from SMILES LSTM and SMILES GA, 

with my SAGE models showing equal or superior per-
formance compared to the highest scores obtained by 
M100, SMILES LSTM, and SMILES GA in the GuacaMol 
benchmark tasks.

In contrast to the M100, my SAGE models can gen-
erate more complex molecules due to the addition of 
virtual synthesis and bridged bicyclic ring operators. 
Virtual synthesis operators allow for the exploration of 
a broader chemical space by simulating potential syn-
thetic pathways, which can lead to novel molecular 
scaffolds. The inclusion of bridged bicyclic ring opera-
tors specifically aids in constructing more intricate 
ring systems, which are often found in bioactive com-
pounds. These enhancements in molecular complexity 

Fig. 1 Scoring-assisted generative exploration (SAGE)
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are advantageous for MPO tasks that require balancing 
multiple physicochemical properties simultaneously. 
This is evident in MPO tasks involving compounds like 
Perindopril, Amlodipine, Sitagliptin, and Zaleplon in 
Table  2, which are octahydroindole, dihydropyridine, 
triazolopiperazine, and pyrazolopyrimidine deriva-
tives, respectively, demanding complex molecular 
structures. The Amlodipine task focused on maintain-
ing three carbon rings, and the Sitagliptin and Zaleplon 
tasks involved generating isomers. In these intricate 
tasks, where maintaining a specific number of rings 
or generating isomers while optimizing other proper-
ties is crucial, my SAGE achieved a higher score than 
that of M100. This enhanced performance is attributed 
to the increased complexity that the virtual synthesis 
and bridged bicyclic ring operators add to the molecule 
generation process.

Secondly, in my exploration of SAGE’s abilities, I paid 
particular attention to its performance on the rediscov-
ery and similarity tasks, where the SAGE should gener-
ate compounds resembling a specified target molecule 
removed from the training set. I further validated the 
ability of SAGE to discover eleven compounds with struc-
turally complex bridged bicyclic rings, which is summa-
rized in Table 3. For the bridged bicyclic ring benchmark, 
I initialized the LSTM models using the weights provided 

by Ahn et al. [7], which were pre-trained with the ZINC 
database [55]. As a result, the M75/V20/B05 showed 
the best score of 21.141 by more effectively generating 
bridged bicyclic ring structures, while the M100 achieved 
a score of 20.790. Moreover, in the benchmark tasks in 
Tables 2 and 3, the M75/V20/B05 did not record a lower 
score than the M100 in a single instance. It indicates that 
SAGE is not only capable of replicating the functionali-
ties of the M100 but is also adept at de novo design for 
more structurally complex molecules than the M100. 
Therefore, I employed the M75/V20/B05 probability for 
SAGE.

Pre‑training the SAGE models with four databases
To validate the suitability of SAGE for de novo design, 
I applied the SAGE algorithm to identify new potential 
inhibitors for a target protein. I pre-trained SAGE on four 
datasets (ChEMBL24, Synthetics, ZINC, and ZINC-NP), 
the details of which are summarized in Table  1. Then I 
generated 1000, 3000, and 5000 molecules for each data-
set with the pre-trained SAGE, which are summarized 
in Additional file  1: Table  S2. I employed commonly 
used four metrics in de novo design for comparison 
(validity, uniqueness, novelty, and internal diversity). 
Firstly, all pre-trained models showed high validity and 
high uniqueness scores, which indicates that all models 

Table 2 Results of the SAGE models for the goal-directed benchmarks in GuacaMol

M is a mutate operator, V is a virtual synthesis operator, and B is a bridged bicyclic ring operator
a Without the ranking-based fine-tuning mechanism

Bold value indicates the best results

Task Target Compound SMILES  LSTMa SMILES  GAa M100
(GEGL)

M75/V20/B05 M50/V45/B05 M25/V70/B05

Rediscovery Celecoxib 0.609 0.506 1.000 1.000 1.000 1.000
Troglitazone 0.465 0.333 1.000 1.000 1.000 1.000
Thiothixene 0.544 0.433 1.000 1.000 1.000 1.000

Similarity Aripiprazole 0.740 0.609 1.000 1.000 1.000 1.000
Albuterol 0.835 0.644 1.000 1.000 1.000 1.000
Mestranol 0.822 0.466 1.000 1.000 1.000 1.000

Isomer C11H24 0.716 0.872 1.000 1.000 1.000 1.000
C9H10N2O2PF2Cl 0.738 0.769 1.000 1.000 1.000 0.984

Multiple Property Optimization Fexofenadine 0.794 0.752 1.000 1.000 1.000 1.000
Ranolazine 0.799 0.758 0.948 0.948 0.955 0.951

Perindopril 0.556 0.519 0.848 0.882 0.845 0.883
Amlodipine 0.690 0.622 0.906 0.913 0.924 0.924
Sitagliptin 0.494 0.470 0.912 0.926 0.929 0.925

Zaleplon 0.540 0.510 0.788 0.838 0.795 0.792

Valsartan SMARTS 0.334 0.027 0.999 1.000 0.997 0.999

Decorator Hopping 0.912 0.624 1.000 1.000 1.000 1.000
Scaffold Hopping 0.670 0.525 1.000 1.000 1.000 1.000
Total 11.258 9.440 16.401 16.507 16.443 16.458
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can generate minimal duplicate molecules. Secondly, 
the novelty metric increased in the order of ZINC-NP, 
ChEMBL24, Synthetics, and ZINC. A lower value in this 
metric suggests that the pre-trained model is generating 
molecules similar to those found in the training set. The 
natural product (ZINC-NP) and bioactive compounds 
(ChEMBL24) datasets led to the generation of molecules 
that reflect the characteristics inherent to the training 
sets. It indicates that the DNN is learning the features 
of natural products or bioactive compounds through 
the pre-training process, which is an expected outcome. 
Given my objective to generate new potential inhibi-
tors, not present in the training set, for a target protein, 
I selected synthetic compounds. Thirdly, I compared 
internal diversity scores between Synthetics and ZINC 
databases, where the model pre-trained with Synthet-
ics showed a better score than that with ZINC. Based 
on these outcomes, I employed the SAGE, which is pre-
trained on commercially available synthetic compounds 
(Synthetics).

QSAR models for target specificity and single property 
optimization with SAGE
After pre-training, I made single property optimiza-
tion tasks for target specificity. To make QSAR mod-
els for target specificity, I selected six protein targets 
(AChE, COX-2, PKCB, FGFR1, PTP1B, and MAOB), 
which have balanced sets of experimentally active and 
inactive ligands and represent a range of different func-
tional classes and possess unique structural and func-
tional characteristics among the protein targets in the 
DUD-E benchmarks [36]. I fine-tuned the hyperparam-
eters through tenfold cross-validation and selected the 
best model based on the geometric mean of the AUC 
scores in cross-validation and test sets (Additional file 1: 
Tables S3, S4). The performance metrics of the best-
found models are summarized in Table 4. These models 
were then integrated into SAGE for inhibitor design tasks 
against the six protein targets. To restrict the chemi-
cal space into drug-like molecules, I employed Muegge’s 
drug-likeness for chemical filters. I gradually added extra 
points for synthetic accessibility (Score 2) and solubility 
(Score 3), starting with a single target specificity (Score 

Table 3 Results of rediscovery and similarity tasks for bridged bicyclic ring structures

M is a mutate operator, V is a virtual synthesis operator, and B is a bridged bicyclic ring operator

Bold value indicates the best results

Task Target
Compound

M100
(GEGL)

M75/V20/B05 M50/V45/B05 M25/V70/B05

Rediscovery Ingenol mebutate 0.732 0.798 0.732 0.732

Morphine 0.676 0.707 0.632 0.676

Amantadine 1.000 1.000 1.000 1.000
Rimantadine 1.000 1.000 1.000 1.000
Vildagliptin 1.000 1.000 1.000 1.000
Memantine 1.000 1.000 1.000 1.000
Tromantadine 1.000 1.000 1.000 1.000
Adapalene 1.000 1.000 1.000 1.000
Saxagliptin 1.000 1.000 1.000 1.000
Azaprophen 0.790 1.000 1.000 1.000
Psiguadial A 0.767 0.787 0.787 0.798

Similarity Ingenol mebutate 0.976 1.000 0.976 0.893

Morphine 0.935 0.935 0.901 1.000
Amantadine 0.918 0.918 0.913 0.912

Rimantadine 1.000 1.000 1.000 1.000
Vildagliptin 1.000 1.000 1.000 1.000
Memantine 0.996 0.996 0.996 0.996
Tromantadine 1.000 1.000 1.000 1.000
Adapalene 1.000 1.000 1.000 1.000
Saxagliptin 1.000 1.000 1.000 1.000
Azaprophen 1.000 1.000 1.000 1.000
Psiguadial A 1.000 1.000 1.000 1.000

Total 20.790 21.141 20.937 21.007
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1) to evaluate the ability of SAGE to design inhibitors 
(Fig.  2A). As my baseline, I selected each median score 
of the generated molecules at every step from the SAGE 
model without the fine-tuning strategy.

AChE breaks down acetylcholine, but its inhibitor pre-
vents this breakdown and increases neurotransmitter lev-
els in the brain [56]. The MACCS + PCFP/RF model for 
AChE showed the best performance ( AUC = 0.947 ), with 
precision, recall, and F1-score of 0.945 in test sets. To 
maximize target specificity, I combined the best model 
for AChE with SAGE and performed iterative fine-tuning 
with 50 steps. For Score 1, the SAGE achieved a median 
score of over 0.75 from the 4th step and over 0.90 from 
the 7th step. For Score 2, the SAGE achieved a median 
score of over 1.75 from the 4th step and over 1.90 from 
the 7th step. For Score 3, the SAGE achieved a median 
score of over 2.75 from the 4th step, with a median score 
of over 2.90 from the 7th step.

COX-2 is an enzyme that converts arachidonic acid to 
prostaglandin endoperoxide H2, and selective inhibitors 
of COX-2 can lower the risk of peptic ulceration [57]. 
The MACCS + FCFP4/RF model for COX-2 showed the 
best performance ( AUC = 0.818 ) in grid search, with 
precision, recall, and F1-score of 0.816 in test sets. I used 
SAGE and performed iterative fine-tuning with 50 steps 
to optimize Score 1, 2, and 3 for COX-2. For Score 1, the 
SAGE achieved a median score of over 0.75 from the 4th 
step, while it found molecules with median scores over 
0.90 from the 11th step. For Score 2, the SAGE achieved a 
median score over 1.75 from the 5th step, with a median 

score over 1.90 from the 11th step. When optimizing 
Score 3, the SAGE achieved a median score higher than 
2.75 from the 5th step, while it showed a median score 
over 2.90 from the 12th step.

PKCB is a crucial protein in the maintenance of nerve 
functions, and inhibiting its activity has the potential as 
a tumor treatment [58]. The MACCS + FCFP4/RF model 
performed best for PKCB, with an AUC of 0.894 and an 
F1-score of 0.885 in test sets. By combining this model 
with SAGE, I conducted iterative fine-tuning with 50 
steps to optimize Score 1. The SAGE achieved a median 
score of over 0.75 in the median from the 5th step and a 
median score of over 0.90 from the 9th step. When I con-
ducted iterative fine-tuning for Score 2 and Score 3 with 
50 steps, the SAGE for Score 2 achieved a median score 
of over 1.75 from the 5th step and a median score of over 
1.90 from the 12th step. For Score 3, the SAGE achieved a 
median score of over 2.75 from the 5th step and a median 
score higher than 2.90 from the 12th step.

The deregulation of FGFR1 signaling is associated with 
various human cancers, and targeted inhibitors of this 
pathway have proven successful in tumor therapy [59]. 
The MACCS + ECFP4/RF model showed the best perfor-
mance for FGFR1 with an AUC of 0.930, precision, recall, 
and F1-score of 0.929 in test sets. Using SAGE with 50 
steps, I optimized Score 1, 2, and 3 for FGFR1, achieving 
median scores over 0.75 from the 5th step and over 0.90 
from the 10th step for Score 1. For Score 2, the SAGE 
achieved a median score over 1.75 from the 6th step 
and 1.90 from the 16th step, while for Score 3, it found 

Table 4 Performance metrics of the best-found QSAR models

Name Task Metric Model Train Set Validation set Test set

AChE Target
Specificity

AUC MACCS + PCFP/RF 1.000 ± 0.000 0.968 ± 0.022 0.947

COX-2 AUC MACCS + FCFP4/RF 1.000 ± 0.000 0.789 ± 0.104 0.818

PKCB AUC MACCS + FCFP4/RF 1.000 ± 0.000 0.941 ± 0.070 0.894

FGFR1 AUC MACCS + ECFP6/RF 1.000 ± 0.000 0.954 ± 0.064 0.930

PTP1B AUC MACCS + PCFP/RF 1.000 ± 0.000 0.944 ± 0.069 0.947

MAOB AUC MACCS + ECFP6/RF 1.000 ± 0.000 0.901 ± 0.085 0.842

Caco2 Absorption MAE MACCS + FCFP4/RF 0.125 ± 0.002 0.391 ± 0.047 0.348

HIA AUC MACCS + PCFP/XGB 0.988 ± 0.002 0.935 ± 0.055 0.889

Pgp AUC MACCS + FCFP4/RF 1.000 ± 0.000 0.900 ± 0.049 0.874

BBB Distribution AUC MACCS + FCFP4/XGB 0.967 ± 0.002 0.878 ± 0.041 0.807

PPBR MAE MACCS + FCFP4/RF 3.736 ± 0.088 10.926 ± 1.414 9.126

CYP2D6 Metabolism AUC MACCS + FCFP4/LGBM 0.858 ± 0.002 0.820 ± 0.016 0.795

CYP3A4 AUC MACCS + FCFP4/XGB 0.925 ± 0.002 0.854 ± 0.030 0.811

CYP2C9 AUC MACCS + PCFP/LGBM 0.865 ± 0.002 0.834 ± 0.014 0.795

LD50 Toxicity MAE MACCS + PCFP/RF 0.154 ± 0.001 0.450 ± 0.047 0.575

hERG AUC MACCS + FCFP4/RF 1.000 ± 0.000 0.820 ± 0.069 0.717

AMES AUC MACCS + FCFP4/RF 1.000 ± 0.000 0.822 ± 0.064 0.776

DILI AUC MACCS + FCFP4/XGB 0.965 ± 0.004 0.854 ± 0.082 0.861
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Fig. 2 SAGE-based Single Target Specificity Optimization for Six Targets. A A series of boxplots are represented, depicting the steps in the SAGE 
process across six target proteins, as evaluated with Scores 1, 2, and 3. These scores are represented in green, orange, and blue, respectively. The 
medians of each boxplot are highlighted in red, and the baselines are depicted with dashed lines. B For Score 4, a series of boxplots is shown, 
illustrating the steps in the SAGE process across the same six target proteins. The medians of these boxplots are indicated in red, while the baselines 
are shown with dashed lines in cyan
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molecules over 2.75 from the 7th step and over 2.90 from 
the 14th step in the median.

PTP1B overexpression can cause a decrease in insulin 
receptor phosphorylation, and mutations in the PTP1B 
gene can lead to diabetes, making its inhibitor a poten-
tial diabetes treatment [60]. The MACCS + PCFP/RF 
model demonstrated the best performance for PTP1B, 
achieving an AUC of 0.947, a precision of 1.000, a recall 
of 0.885, and an F1-score of 0.939 in test sets. Using the 
SAGE to optimize Score 1, 2, and 3 for PTP1B, I found 
that the SAGE identified molecules with a median score 
over 0.75 from the 8th step and those over 0.90 from 
the 21st step. Similarly, when the desired property was 
changed to Score 2, the SAGE generated molecules 
with median scores over 1.75 from the 11th step and 
those over 1.90 from the 20th step. For Score 3, the 
SAGE achieved a median score of over 2.75 from the 
11th step and over 2.90 from the 14th step.

MAOB is an enzyme that breaks down brain chem-
icals, such as dopamine, and its inhibitors of this 
enzyme can increase dopamine availability in the brain 
[61]. The MACCS + ECFP6/RF model showed the best 
performance for MAOB, with an AUC of 0.842, a preci-
sion of 0.870, a recall of 0.800, and an F1-score of 0.833 
in test sets. Using iterative fine-tuning with SAGE and 
the best model for MAOB, I optimized Score 1, 2, and 
3. The SAGE for Score 1 achieved a median score of 
over 0.75 from the 4th step and over 0.90 from the 6th 
step. For Score 2, the SAGE generated molecules with 
median scores over 1.75 from the 4th step, and over 
1.90 from the 7th step. Finally, the SAGE for Score 3 
identified molecules with median scores over 2.75 from 
the 6th step and over 2.90 from the 10th step.

The SAGE algorithm was used to optimize target speci-
ficity for six protein targets, achieving median scores over 
0.75 within 5 steps and higher than 0.9 within 10 steps 
for Score 1. Synthetic accessibility was then added to the 
desired property and the SAGE for Score 2 generated 
molecules with median scores over 1.75 and 1.90 within 
5 and 12 steps, respectively, for the six targets. Similarly, 
when considering solubility in addition to target speci-
ficity and synthetic accessibility, the SAGE for Score 3 
found molecules with median scores of over 2.75 within 
6 steps and higher than 2.90 within 14 steps. For gener-
ating top-ranked molecules, the SAGE found molecules 
over 0.90 for Score 1 in the 1st step, over 1.90 for Score 2 
in the 2nd step, and over 2.90 for Score in the 3rd step, on 
average across the six targets.

QSAR models for ADME/T and multiple property 
optimization with SAGE
Drug candidates’ success depends on their ADME/T pro-
file in addition to target specificity, synthetic accessibil-
ity, and solubility. With the accumulation of experimental 
data and the development of in silico prediction models, 
predicting ADME/T properties has become easier. There-
fore, I selected 12 ADME/T properties (Caco2, HIA, Pgp, 
BBB, PPBR, CYP2D6, CYP3A4, CYP2C9, LD50, hERG, 
AMES, and DILI) [37] and developed QSAR models for 
each. I fine-tuned the hyperparameters and selected the 
best-found models similar to the QSAR models for target 
specificity. The performance metrics of the best-found 
models for each ADME/T property are summarized 
in Table  4, while the performance metrics and optimal 
hyperparameters of all models are summarized in Addi-
tional file 1: Tables S5–S8.

The MACCS + FCFP4/RF for Caco2 ( MAE = 0.348 and 
R = 0.776 ), MACCS + PCFP/XGB for HIA ( AUC = 0.889 ), 
and MACCS + FCFP4/RF for Pgp ( AUC = 0.874 ) were 
selected for absorption prediction. The MACCS + FCFP4/
XGB for BBB ( AUC = 0.807 ) and MACCS + FCFP4/
RF for PPBR ( MAE = 9.126 and R = 0.479 ) were used 
to predict distribution. The MACCS + FCFP4/LGBM for 
CYP2D6 ( AUC = 0.795 ), MACCS + FCFP4/XGB for 
CYP3A4 ( AUC = 0.811 ), and MACCS + PCFP/LGBM for 
CYP2C9 ( AUC = 0.795 ) were selected for metabolism. 
The MACCS + PCFP/RF for LD50 ( MAE = 0.575 and 
R = 0.613 ), MACCS + FCFP4/RF for hERG ( AUC = 0.717 ), 
MACCS + FCFP4/RF for AMES ( AUC = 0.776 ), 
MACCS + FCFP4/XGB for DILI ( AUC = 0.861 ) were used 
to predict toxicity.

Similar to the optimization of single target specific-
ity with SAGE, I evaluated the ability of SAGE for MPO 
tasks of target specificity, synthetic accessibility, solubil-
ity, and 11 ADME/T properties, the results of which are 
illustrated in Fig. 2B.

When the SAGE was employed to maximize Score 4 
for AChE, it achieved a score of over 3.5 in the first step 
of the max and from the 10th step in the median. Moreo-
ver, a score of over 3.7 was attained from the second step 
of the max and the 23rd step in the median. Secondly, 
the SAGE was also used for COX-2, where it achieved a 
score of over 3.5 in the first step of the max and from the 
6th step in the median. In addition, a score of over 3.7 
was obtained from the 4th step of the max and the 19th 
step in the median. Thirdly, in PKCB, the SAGE obtained 
a score of over 3.5 from the third step of the max and 
the 20th step in the median. Additionally, it attained a 
score of over 3.7 from the 4th step of the max but did not 
achieve a score of over 3.7 in the median. Fourthly, simi-
larly, for FGFR1, the SAGE achieved a score of over 3.5 
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in the first step of the max and from the 10th step in the 
median. It also obtained a score of over 3.7 from the 6th 
step of the max and the 25th step in the median. Fifthly, 
in PTPB1, the SAGE attained a score of over 3.5 from 
the 5th step of the max and the 21st step in the median. 
Then, it achieved a score of over 3.7 from the 17th step 
of the max but did not obtain a score of over 3.7 in the 
median. Lastly, for MAOB, the SAGE achieved a score of 
over 3.5 in the first step of the max and the 7th step in 
the median. It also obtained a score of over 3.7 from the 
third step of the max and the 14th step in the median. As 
a result, the SAGE achieved a score of over 3.7 in all six 
targets, with the best scores being 3.82 for AChE, 3.826 
for COX-2, 3.706 for PKCB, 3.864 for FGFR1, 3.777 for 
PTPB1, and 3.868 for MAOB in 50 steps.

Application of SAGE to dual inhibitor design of AChE 
and MAOB
Multimodal drugs, having multiple targets, offer advan-
tages over traditional drugs, such as reducing the risk of 
drug resistance, improving efficacy, and reducing side 
effects. However, computational design is challenging 
due to the complexity of their mechanism. To apply the 
SAGE model to dual inhibitor design, I focused on AChE 
and MAOB proteins, inspired by the multimodal com-
pound Ladostigil. The compound is known for its dual 
action in Alzheimer’s Disease (AD), with IC50 values of 
37.1 and 31.8 uM for AChE and MAOB, respectively [11, 
62].

Similar to my approach in single-target tasks, I engaged 
in an iterative fine-tuning process with the SAGE model, 
extending this method over 50 steps for a dual-target 
task. However, due to the dual-target nature of the task, 
it was necessary to redefine the target specificity that I 

Fig. 3 SAGE-based dual target specificity optimization for AChE/MAOB A Boxplots for each step of the SAGE process in the AChE/MAOB dual 
target, categorized Scores 1, 2, and 3, are represented in green, yellow, and pink, respectively. The medians of each boxplot are highlighted in red, 
while the baselines are depicted with dashed lines in cyan. B For Score 4, boxplots depicting each step of the SAGE process in the AChE/MAOB dual 
target are presented in blue. The medians of each boxplot are highlighted in red, and the baselines are also depicted with dashed lines in cyan. C 
A top-ranked molecule and Ladostigil are illustrated. Their predicted values by SAGE are shown
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previously used for single-target tasks. To determine the 
target specificity for the dual-target task involving AChE 
and MAOB, I employed the average of the prediction val-
ues from the QSAR models for both AChE and MAOB. 
My primary objective during this process was to enhance 
the scores of the molecules generated by the SAGE. To 
address each score’s improvement, I implemented four 
independent rounds of enhancement within my itera-
tive fine-tuning process. Each round was independently 
dedicated to elevating one of the scores: Score 1, Score 2, 
Score 3, and Score 4, respectively. The multiple property 
optimization of SAGE for dual inhibitor design is shown 
in Fig. 3A and  B. The SAGE achieved a score of over 3.5 
from the second step (max) and the 13th step (median), 
and a score of over 3.7 from the 8th step (max) and the 
32nd step (median).

To identify the best molecule for the AChE/MAOB 
dual targets, I manually filtered all the molecules gen-
erated by SAGE. In the 50 steps of maximizing Score 4, 
SAGE generated 305,535 compounds. Among them, 377 
had scores lower than 1, 12,710 had scores between 1 
and 2, 169,895 had scores between 2 and 3, and 122,535 
had scores between 3 and 4. All 122,535 compounds 
had already passed the basic cut-off in Muegge’s drug-
like chemical space, as defined by Score 4. To pass the 
3-point threshold, a compound must have scores greater 
than 0.75 for average activity (Score 1), synthetic acces-
sibility, and solubility. Secondly, 65,317 compounds were 
predicted to have an activity score of 0.75 or higher for 
both targets when predicting dual-target activity against 
AChE/MAOB. Thirdly, based on the QSAR model pre-
dicting BBB permeability, 64,619 molecules were pre-
dicted to cross the BBB. Similarly, 21,669 compounds 
with HIA and Caco2 scores greater than 0.75 for both 
bioavailability and membrane permeability were pre-
dicted to pass the QSAR models. Finally, I ranked the fil-
tered molecules with Score 4 and selected the top-ranked 
molecule with a score of 3.736 (Score 4).

My scoring systems revealed the profiles of Ladostigil 
and the top-ranked molecule in Fig.  3C, highlighting 
their potential as dual inhibitors for AChE and MAOB. 
Firstly, Latostigil displays the QSAR values of 0.619 for 
AChE and 0.611 MAOB. In contrast, the top-ranked mol-
ecule exhibits QSAR values of 0.889 for AChE and 0.770 
for MAOB, indicating a stronger potential for interac-
tion with both AChE and MAOB enzymes. Additionally, 
Ladostigil is characterized by a RAscore of 0.994, a lipo-
philicity (LogP) of 2.347, a solubility (LogS) of −  2.679, 
BBB of 0.937, HIA of 0.987, and Caco2 of − 4.644, show-
ing good synthesizability and favorable pharmacokinetic 
properties. In comparison, the top-ranked molecule 
has a RAscore of 0.989, LogP of 3.297, LogS of − 4.097, 
BBB of 0.947, HIA of 0.953, and Caco2 of −  4.976, also 

suggesting good synthesizability and effective pharma-
cokinetic profiles.

Furthermore, I performed molecular docking and 
dynamics simulations to investigate the molecular 
interactions between the two molecules and dual tar-
gets (AChE/MAOB), which are illustrated in Fig.  4. I 
employed molecular docking simulations to make pro-
tein–ligand complexes for each target with this top-
ranked molecule. The most favorable docking poses were 
selected based on the best docking scores. Ladostigil 
achieved docking scores of − 4.202 for AChE and − 4.891 
for MAOB, while the top-ranked molecule exhibited 
higher docking scores of − 8.545 for AChE and − 11.059 
for MAOB. Subsequent molecular dynamics simulations 
were performed, with their results presented in Fig. 4A. 
These simulations revealed that the AChE and MAOB 
protein–ligand complexes with Ladostigil and the top-
ranked molecule exhibited fluctuations around the ther-
mal average (1–3 Å), demonstrating the stable binding 
to each target throughout the simulation. The predicted 
poses and important key residues in the simulations are 
shown in Fig. 4B and  C. In the AChE, Ladostigil showed 
interactions with Y124, W286, F295, Y337, F338, and 
Y341, while the top-ranked molecules had interactions 
with D74, W86, Y124, S125, F295, F338, and Y341. In the 
MAOB, Ladostigil had interactions with Y60, L171, Y188, 
Y326, F343, Y398, G434, and Y435, while the top-ranked 
molecule has interactions with Y60, L171, Q206, K296, 
Y326, F343, Y398, T426, Y435, and M436. Compared to 
Ladostigil, the top-ranked molecule showed better QSAR 
scores and molecular simulation results for both AChE 
and MAOB with similar pharmacokinetic properties in 
other metrics, such as LogP, LogS, BBB, HIA, and Caco2. 
Therefore, my SAGE methodology is effective in gener-
ating novel molecules with multiple predicted desirable 
properties for AChE/MAOB dual targets, attributed to 
my scoring-assisted generative exploration strategy with 
multiple QSAR models.

Discussion
Generative deep learning provides an alternative 
approach to traditional methods of drug design such 
as virtual screening and combinatorial sampling. In 
this study, I developed SAGE with three functions. 
First, SMILES-based DNN models generate a variety 
of chemical structures after pre-training on pre-exist-
ing compound libraries. Selecting an initial compound 
library for the pre-training suitable for the task is cru-
cial. I employed the commonly used metrics in de novo 
design (validity, uniqueness, novelty, and internal diver-
sity) to compare the pre-trained models, but it’s worth 
noting that internal diversity cannot capture all aspects 
of a compound’s diversity [63]. Second, these structures 
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Fig. 4 Molecular dynamics simulations for AChE/MAOB dual target A The trajectories in the molecular dynamics simulations are depicted in AChE 
and MAOB dual targets. The heavy atoms in AChE and MAOB systems with a top-ranked molecule are shown in blue, while those with Ladostigil are 
shown in red. B, C Key residues and important interactions observed in the molecular dynamics simulations in AChE (B) and MAOB (C) are depicted. 
These interactions within the protein–ligand complexes are categorized into three types: Hydrophobic, Pi-Pi, Hydrogen bonds, and Water-bridge 
interactions
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are chemically diversified with mutate, crossover, and 
virtual synthesis operators, which allow for the genera-
tion of more complex molecules such as bridged bicy-
clic rings. Third, various scoring models are applied 
to select top-ranking molecules based on key proper-
ties necessary for drug-likeness. The SAGE was evalu-
ated on six targets and achieved high scores of over 0.9 
within an average of 10 steps for Score 1. The SAGE for 
Scores 2 and 3 found high-scoring molecules of over 1.9 
and 2.9 within 12 steps and 14 steps on average, respec-
tively. The SAGE was able to maximize Score 4, achiev-
ing high scores of over 3.7 within 50 steps. In my study, 
I segmented the steps into evaluating the pharmacody-
namics and pharmacokinetics effects of the generated 
molecules, reflecting that addressing pharmacodynam-
ics is prioritized before considering pharmacokinetics 
in drug design, rather than adhering to the principles of 
curriculum learning. However, the SAGE can be further 
advanced by employing curriculum learning based on the 
principle that curriculum learning can reduce complexity 
by breaking down complex objectives into simpler con-
stituent objectives. As a result, SAGE generated drug-like 
molecules with desired properties by directing generative 
exploration towards high-scoring molecules, facilitating 
inhibitor discovery for six protein targets and even dual 
targets.

Muti-target drugs are gaining popularity in the fight 
against difficult diseases but designing them computa-
tionally is challenging. To explore new chemical entities 
for multi-target drugs, deep generative models can be 
used to generate molecules that meet the desired multi-
target specificity. In this study, the SAGE was used to 
predict dual-target specificity for AChE and MAOB and 
to search for molecules predicted to be active by each 
QSAR model. The QSAR is a cost-effective and time-
efficient method for identifying active compounds, but 
the reliability and accuracy of these models are reliant 
on the quality of the training data and limited to their 
application domain. The QSAR models implemented 
in SAGE were based on molecular fingerprints with 
general applicability for small molecules, which may 
help the successful applications in this work. However, 
extrapolation outside this domain may lead to reduced 
reliability and generative models may generate mol-
ecules outside this domain, leading to a biased explo-
ration of chemical space. To increase the likelihood of 
generating compounds with desired properties using 
generative models, careful consideration of the appli-
cation domain in the predictive models is necessary, 
allowing for efficient exploration of chemical space [64, 
65].

Deep generative models like SAGE are revolution-
izing drug discovery by enabling more efficient and 

cost-effective processes. By using various scoring mod-
els, SAGE identified molecules with high scores for 
each desired objective in a drug-like chemical space. 
Moreover, by defining desirable objectives with multi-
ple scoring models, SAGE can more effectively explore 
chemical space through iterative fine-tuning. This 
breakthrough in de novo molecular design using deep 
learning is paving the way for more efficient and cost-
effective drug discovery processes. With the ability to 
rapidly explore vast chemical spaces and generate novel 
molecules with desired properties, deep learning-based 
approaches like SAGE have the potential to revolution-
ize the field of drug discovery and development.
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