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Abstract 

Motivation Chemical space embedding methods are widely utilized in various research settings for dimensional 
reduction, clustering and effective visualization. The maps generated by the embedding process can provide valu‑
able insight to medicinal chemists in terms of the relationships between structural, physicochemical and biological 
properties of compounds. However, these maps are known to be difficult to interpret, and the ‘‘landscape’’ on the map 
is prone to ‘‘rearrangement’’ when embedding different sets of compounds.

Results In this study we present the Hilbert‑Curve Assisted Space Embedding (HCASE) method which was designed 
to create maps by organizing structures according to a logic familiar to medicinal chemists. First, a chemical space 
is created with the help of a set of ‘‘reference scaffolds’’. These scaffolds are sorted according to the medicinal chemis‑
try inspired Scaffold‑Key algorithm found in prior art. Next, the ordered scaffolds are mapped to a line which is folded 
into a higher dimensional (here: 2D) space. The intricately folded line is referred to as a pseudo‑Hilbert‑Curve. The 
embedding of a compound happens by locating its most similar reference scaffold in the pseudo‑Hilbert‑Curve 
and assuming the respective position. Through a series of experiments, we demonstrate the properties of the maps 
generated by the HCASE method. Subjects of embeddings were compounds of the DrugBank and CANVASS libraries, 
and the chemical spaces were defined by scaffolds extracted from the ChEMBL database.

Scientific contribution The novelty of HCASE method lies in generating robust and intuitive chemical space 
embeddings that are reflective of a medicinal chemist’s reasoning, and the precedential use of space filling (Hilbert) 
curve in the process.

Availability https:// github. com/ ncats/ hcase

Keywords Chemical space embedding, Clustering, Hilbert‑curve, Scaffold‑Keys, HCASE, Dimension reduction

Introduction
Embedding molecular structures into a chemical space 
is a versatile technique that is central to a wide range 
of data analysis scenarios in cheminformatics. Meth-
ods, like principal component analysis (PCA) [1], multi-
dimensional scaling (MDS) [2], t-Stochastic Neighbor 

Embedding (t-SNE) [3], Uniform Manifold Approxima-
tion and Projection (UMAP)  [4] and the self-organizing 
maps (SOM) method [5], help reduce the dimensional-
ity of data to facilitate subsequent cluster analyses or to 
provide insightful visualizations. While most of these 
methods can be performed in a relatively straightforward 
manner from an operational point of view, this somewhat 
deceiving simplicity comes at the cost of certain limita-
tions to applicability and interpretability.*Correspondence:
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For instance, PCA can only analyze linear relations pre-
sent in the data at hand. This limitation is overcome by 
non-linear approaches, such as the related multi-dimen-
sional scaling (MDS) and manifold-supported methods 
[6], such as t-SNE and UMAP methods.

All these non-linear methods, except for MDS are chal-
lenged with the means of computing the distance between 
the embedded datapoints. Interpretation of the underlying 
organizing principle of the embedded structures is con-
voluted for all known space-embedding methods. Also, 
the chemical space created by both linear and non-linear 
methods is influenced by the dataset at hand. This affects 
the interpretation of results and makes the comparison of 
individually embedded datasets quite difficult. While this 
can be addressed to some extent by merging the datasets 
before the embedding process, this solution is not robust 
against the incorporation of additional data.

Background
The aim of performing a chemical space embedding anal-
ysis is to create a “map” of compounds. A compound’s 
position in this map ideally should reflect structural 
and/or other properties of interest (e.g., physicochemi-
cal properties), and as a result, the relative position of 
compounds within the map should be reflective of their 
similarities in these properties. A chemical space map 
can help medicinal chemists make quick, intuitive analy-
ses about the structure and properties of compounds in a 
project based on their location in the map. For example, 
one would expect that compounds of related chemotype 
in a structure–activity-relationship (SAR) series will be 
placed closely on the map, whereas dissimilar chemo-
types farther apart.

While creating such maps is entirely possible with exist-
ing methods, e.g., with t-SNE, medicinal chemists and 
data analysts are challenged with the interpretations of the 
results. For demonstration purposes, a map (embedding) of 
approved drugs has been generated using the t-SNE algo-
rithm. In order to demonstrate the chemical space embed-
ding process, five drug molecules were selected randomly, 
as well as the five nearest neighbors (NNs), i.e., structurally 
most similar five compounds of each (see: Fig. 1).

As shown on Fig. 2a, the resultant map shows a great 
clustering and separation of similar and dissimilar mol-
ecules, respectively, as one would expect. However, from 
a medicinal chemist’s standpoint some important aspects 
of the data analysis remain hidden.

For instance, a chemist might want to know if certain 
regions of this map encode a certain type of chemotype, 
e.g., based on size, complexity and so on. Unfortunately, 
maps generated with existing embedding methods pro-
vide little help to chemists in this regard. Furthermore, 

generating a map often requires setting certain non-intu-
itive parameters, like the perplexity in the case of t-SNE, 
which many chemists may not be familiar with. This 
parameter influences which compounds should be close 
or farther apart in the resultant chemical space map [7]. 
The choice of the parameter can affect the layout of the 
map, and often in an unpredictable manner, as it is dem-
onstrated on Fig. 2b vs. Figure 2a.

Finally, the layout of the map generated by the same 
space embedding method can be greatly altered when one 
adds or removes molecules when repeating the embed-
ding process, as demonstrated on Fig. 2b–c. This makes 
it challenging to compare the embedding of a library that 
is changing over time. The only difference between the 
two maps is that the Fig. 2c was generated using 90% of 
the molecules of the embedding used in Fig. 2b and the 
same highlighted molecules. The two maps show little 
resemblance despite the relatively small change in input. 
Further information regarding the embedding process of 
drug molecules with the t-SNE algorithm is provided in 
Section “Embedding of Drug Molecules with t-SNE Algo-
rithm” and Fig. S1-S2 in Supplementary Information (SI).

In this study we introduce a novel space embedding 
method that addresses the above detailed challenges of 
existing space embedding methods in creating an intui-
tive chemical space.

Related methods
Besides the general space embedding methods, chemistry 
specific space embedding methods exist [8]. The PCA-
based “ChemGPS” [9] and Molecular Quantum Number 
[10] methods address the issue of creating embedding via 
a mechanism that is not influenced by the dataset at hand 
[11]. The SOM-related “generative topographic mapping 
GTM” method by Lin et al. [12], and the “constellation 
plots” [13] take advantage of scaffold-compound rela-
tions to enhance the embedding. Furthermore, the GTM 
method defines a grid with the help of “landscape struc-
tures” that guides the subsequent embedding of com-
pounds. While the GTM and constellation plot methods 
indeed address many challenges, the organizing princi-
ple of the compounds, or landscape structures of both 
methods is not based on a medicinal chemistry inspired 
ruleset. A recent method (TMAP) [14] uses a combina-
tion of nearest neighbor and minimal-spanning trees and 
force-based network layout to generate embedding, but 
the organizing principle of the method is still based on 
heuristics. Thus, it cannot guarantee that regions in the 
resultant map can be intuitively interpreted.

The above methods intended to solve known challenges 
related to chemical space embedding, but none of them have 
solved all the aforementioned challenges to a degree that 
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would result in intuitive chemical space maps for medicinal 
chemists. Nevertheless, these methods gave rise to many 
important concepts and aspects that are utilized in this study.

In this proof-of-concept study, we set forth criteria for a 
chemical space embedding method that provides intuitive 
results and easy interpretation from a medicinal chemis-
try point of view and devised a new method that produces 
results reflective of such characteristics. In the following 
section, the new method is introduced in details and its 
applicability is demonstrated via a set of experiments.

Computational methods and datasets
In this section, we detail the development of a novel 
chemical space embedding method and introduce an 
essential component of it from prior art, the Scaffold-Key 

(SK) method. The description of other analytical methods 
and datasets involved in this study is also provided below.

Scaffold‑Key (SK) algorithm from prior art
The general idea behind the SK algorithm was to provide 
an ordering of BMSs to mimic the thinking process of a 
medicinal chemist in analyzing BMSs based on their size, 
complexity, and chemical composition. Furthermore, the 
SK algorithm aimed to provide a distance measure that 
surpasses fingerprint-based distance measure between 
scaffolds, due to known limitations [19]. To this end, 32 
so-called “Scaffold-Keys” were defined that each capture 
unique structural aspects of a given BMS. The definition 
behind these 32 keys defines the ruleset of the algorithm 
that is publicly disclosed in the original publication by 

Fig. 1 KNNs of randomly selected molecules. First column contains the query structures and subsequent columns contain the k = 5 
NNs in decreasing order of similarity. Tanimoto‑similarity was computed using Morgan‑fingerprints, radius = 3, length = 2048. The value 
of Tanimoto‑similarity coefficient and the label of compounds are shown after the compound IDs for NNs. The BMSs of compounds are highlighted 
by red
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Ertl [19]. The SK algorithm generates a 32-key SK for 
a given BMS which can be used to sort the BMSs or to 
define a distance measure between BMSs. Distance dSK(i, 
j) between a pair of SKs of respective BMSs i and j can be 
quantified with the help of their SK according to Eq. 1 as 
defined by Ertl. SKi(n) and SKj(n) denote the value of the 
nth key in the SK of BMS i and j, respectively.

Since the SK algorithm does not have a publicly avail-
able implementation it was necessary to create an in-
house implementation based on the published ruleset. 
The implementation follows the ruleset as truthfully as 
possible, with the only exception that optionally, it is 
possible to generate the InChI-Key [22] of BMS as an 
extra (last) key on the top of the original 32 keys. Moreo-
ver, a few of the original rules were defined in a slightly 

(1)dSK (i, j) =

32
∑

n=1

√

|SKi(n)− SKj(n)|3

n

vague manner, therefore we could only attempt to match 
those as closely as possible in light of insufficient infor-
mation. Nevertheless, clarification of rules, where it was 
necessary, is provided in “Appendix” in SI. Implementa-
tion of the SK algorithm is publicly available as a source-
code repository at: https:// github. com/ ncats/ hcase [23].

SKs were generated with the in-house implementa-
tion of the SK algorithm, as well as the dSK distances 
between BMSs.

Development of the intuitive structure embedding methods
Rationale
Here, we define a set of criterions underpinning a method 
that is capable of providing a chemical space embedding 
so that the outcome of the analysis can be interpreted 
intuitively from a medicinal chemistry point of view:

1. Coordinates of structures generated by space embed-
ding process is not influenced by the structural fea-

Fig. 2 Maps generated by t‑SNE Analysis of Drug Molecules. Embedding of DrugBank molecules performed by the original t‑SNE algorithm 
at various perplexity values and repeating the embedding with a 90% sized subset of drug molecules. The randomly selected five molecules are 
marked by enlarged (X) symbol. Green: DB00006, orange: DB00849, purple: DB00977, aqua: DB01362, blue: DB04837. The NNs of each molecule are 
indicated by ( +) symbol with matching color. Molecules are labeled according to Fig. 1. A t‑SNE embedding of drug compounds, perplexity = 5. B 
t‑SNE embedding of drug compounds, perplexity = 40. C 90% sized subset of drug compounds, perplexity = 40

https://github.com/ncats/hcase
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tures of other compounds in the compound set to be 
embedded

2. Similar chemotypes should be placed closely on the 
generated map, closely placed coordinates should be 
similar chemotypes [46]

3. Mapping of structures to coordinates is deterministic, 
therefore reproducible

4. The organizing principle behind placing chemo-
types on the map should rely on a well-defined func-
tion which is reflective of how medicinal chemists 
approach the similarity and complexity of chemotypes

5. Outcomes of space embeddings performed indepen-
dently should be directly comparable both numerically 
and visually

6. Method must not be limited to capturing only linear 
relations

7. Ability to process reasonably large datasets (consisting 
of thousands of structures)

8. Ability to quantify distance between structures in the 
embedded space.

Existing chemical  space embedding methods, to our 
knowledge, don’t meet all of the above criteria (see: Table S1, 
Supporting Information). However, most of these methods 
could be turned into one that meets almost all these crite-
ria following a two-step procedure, as follows. First, a pre-
embedding is generated with the help of a pre-defined set of 
“landscape” structures, e.g. Bemis-Murcko scaffolds (BMSs) 
[15]. Next, the most similar landscape structure (here: clos-
est BMS based on SK-distance) is identified for each com-
pound in the data set at hand. Then, each compound would 
assume the coordinates of the landscape structure identified 
as the most similar to a given compound. In section “Pseu-
docode of the Scaffold t-SNE Method” in SI we demonstrate 
how the original t-SNE method can be modified in accord-
ance with these considerations. However, one of the most 
important criteria from the interpretation point of view 
is not met when using the above embedding strategy with 
existing methods. That is, the organizing principle of pre-
embedding of landscape structures remains mostly hidden 
for the researcher. Moreover, the organizing principle is 
practically the result of certain optimization processes that 
largely depend on the input data at hand.

In this study, we aimed at constructing an embedding 
method that addresses this limitation so that it provides 
a simple, yet practical, embedding that can be interpreted 
intuitively by medicinal chemists and data analysts.

Method design
In the light of the above collected criteria, we devised a 
novel chemical space embedding method. The devised 
method was built on incorporating critical concepts intro-
duced by prior art methods: use of landscape objects 

organized on a grid, use of embedding mechanism that is 
not influenced by the compound set to be embedded, and 
the ability to change resolution of the embedding [5, 9, 12].

The foundation of the novel method is provided by a 
family of so-called space filling curves, namely by Hilbert-
Curves [16–18]. Provided that an ordering between data 
points, here BMSs, exists, with the help of Hilbert-Curve 
it is possible to embed the data points into a space of 
higher dimension, such as 2D, following an exact mathe-
matical process. This embedding is a limit of embeddings 
resulted by utilizing so-called pseudo-Hilbert-Curves 
(PHCs) of increasing order. The order of the PHC can be 
thought of as the number of identical parts a unit of an 
area (or volume in higher dimensions) is divided into. The 
PHC of given order connects the middle points of these 
parts, and the number of identical parts can be derived 
from Eq.  2. The peculiar characteristics of PHCs is that 
increasing the order of the PHC the position of a given 
data point will converge to a limit in the higher dimension. 
In other words, the positions of data points are stabilized 
utilizing PHCs of increasing order in the embedded space. 
Considering that implementation exists for embedding 
PHCs, the question remained: How can one obtain a well-
defined ordering of BMSs that is reflective of a medicinal 
chemist’s approach to this problem? Luckily, the Scaffold-
Key (SK) algorithm addresses this exact question by pro-
viding a solution for the “intuitive” ordering of BMSs that 
was motivated by the analytical thinking of medicinal 
chemists [19]. For more information on the SK algorithm 
please refer to section “Scaffold-Key Algorithm”.

In the following section we provide the details of the 
structure embedding method that was designed with all 
the considerations detailed above.

Hilbert‑Curve assisted structure embedding method
In order to define the chemical space of the Hilbert-
Curve Assisted Structure Embedding (HCASE) method, 
a set of reference BMSs needs to be collected. The choice 
of reference BMS set depends on the context of scientific 
investigation. However, using a diverse set of BMSs or a 
collection of BMSs derived from compounds of a large 
bioactivity data set represent choices that can be adopted 
in a wide range of research settings. Note that compound 
structures that cannot be associated with a valid BMS 
structure are eliminated from the input set when gener-
ating the reference BMS set. Next, the SKs of reference 
BMSs are generated, and the BMSs are ordered according 
to their SK using alphanumeric ordering. In case of a tie, 
the InChI-Keys of BMSs are used to determine priority. 
In the arguably rare case when the InChI-Keys would be 
identical, then the “first” of such BMSs will gain prior-
ity. Of note, depending on the implementations of sort-
ing algorithm, the choice of “first” BMS in a tie can be 
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nondeterministic. Still, considering the low probability 
of such events, we consider the SK and InChI-Key based 
ordering practically deterministic.

Next, the reference BMS set is mapped on a line based 
on the rank of each BMS emerged from the SK-based 
ordering process. This line can be thought of a PHC which 
can be folded to a 2D space, or even higher dimensions fol-
lowing a well-known process [16]. The embedding of com-
pounds with the help of such a line happens in a few steps.

First, the BMS of the compound at hand is extracted 
and the corresponding SK is generated. With the help of 
the SKs, the closest reference BMSs to the compound is 
identified. Next, the compound will assume the position of 
the closest reference BMS on the PHC. Finally, the PHC is 
mapped to a higher dimension space.

The process of mapping a PHC to higher dimension 
requires only two parameters as input: the order of the 
PHC and the number of dimensions. The latter was always 
set to 2D in this study, while the former was varied. Given 
the nature of PHCs, increasing the order of the PHC will 
lead to the stabilization of coordinates in the embedded 
space and to a more fine-grained embedding.

Reducing the algorithm to practice required us to con-
sider two observations. First, the number of potential 
coordinates in the embedded space is a function of the 
order of PHC and the number of dimensions in the avail-
able implementation of PHC algorithm [20, 21].

In 2D, the PHC can be mapped on a N × N grid, where 
the value of N is given by Eq.  2, whereas z denotes the 
order of the PHC. Accordingly, the x and y coordinates 
can take on values between 0 and N − 1, inclusive. Of 
note, we use the PHC-z notation in the text to distinguish 
PHCs of different order.

Second, the PHC emerged from the reference BMS set 
contains a finite set of data points, i.e., BMSs. In the light 
of these limitations, it was necessary to introduce a bin-
ning-mechanism in order to mimic the behavior of PHCs.

The binning-mechanism treats the number of potential 
coordinates (|D|) in the embedded space as the number of 
bins (see: Eq. 3, 4). Then, the bin-size l is determined based 
on the ratio of the size of the reference BMS set (|S|) and 

(2)N = 2
z

the number of bins minus one (see: Eq. 5). Note, that the 
correction term is necessary as the Hilbert-curve imple-
mentation uses zero-indexing, hence the minus one term.

Given a compound i and its closest reference BMS Si, the 
bin index bi of the compound is computed by first divid-
ing the SK-based rank of Si by the bin-size, then rounding 
the resultant number to the nearest integer (see: Eq.  6). 
Of note, when setting the parameters of the algorithm, it 
should be considered that the limit of the resolution of the 
HCASE method is defined by the parameter combination 
where the number of potential coordinates exceeds the 
size of the reference BMS set.

Computing the bin indices of each compound gives 
rise to a mapping on a PHC which can be folded to 2D 
by defining parameter z [16, 20]. The main steps of the 
HCASE algorithm are visualized on Fig. 3.

Pseudocode of the HCASE Method
The pseudocode of the HCASE method is provided below. 
Note that most of the functions highlighted with bold 
fonts represent well-known methods, therefore their pseu-
docode is not included. Such functions are: generatePseu-
doHilbertCurve(), getHCCoordinates(), getScaffoldKey() 
and getBemisMurckoScaffold(). The binScaffolds() and get-
SKDistance() functions are computed according to Eqs. 2, 
3, 4, 5, 6 and Eq. 1, respectively.

Note that the lists in the pseudocode are zero-indexed. 
Furthermore, the elements of lists and tuples are also ref-
erenced according to array notation. Accordingly, the 
D[0][0] in the pseudocode reads: in the first item of list D 
(which is a tuple), the value of the first variable.

(3)
D = {(x, y)} | ∀x : x ∈ [0,N − 1], ∀y : y ∈ [0,N − 1]

(4)|D| = N 2

(5)l =
|S|

|D| − 1

(6)

Fig. 3 HCASE method. The process of embedding compounds into a chemical space with the HCASE method is demonstrated. The chemical 
space is defined by reference scaffolds which are ordered based on their Scaffold‑Keys (SK). The HCASE method maps the reference scaffolds 
on a series of PHCs of increasing order. Then, a compound of the library to be embedded are mapped to its closest scaffold based on their 
Scaffold‑Key distances  (dSK). A binning step is also included in the process to make sure that each of the reference scaffolds, hence each 
compound, can be mapped to one of the possible coordinates in the higher dimension space. The number of possible coordinates is influenced 
by the order of the PHC the scaffolds are mapped to. A compound highlighted by yellow is tracked in this process. As it can be seen, the position 
of the compound in a 2D space is the function of the order of the PHC it was mapped to. Due to the nature of PHCs the position of compounds 
converges to a “stable” position when increasing the order of PHCs

(See figure on next page.)



Page 7 of 25Zahoránszky‑Kőhalmi et al. Journal of Cheminformatics           (2024) 16:87  

Fig. 3 (See legend on previous page.)
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Algorithm 1 HCASE method
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General Cheminformatics Operations
Structures of substances were subject to the same stand-
ardization scheme unless otherwise stated. Standardiza-
tion comprised of keeping only the largest compound of 
each substance and was performed in KNIME [24] with 
the help of CDK nodes [25–28]. Bemis-Murcko scaffolds 
(BMSs) [15] were generated for molecules using RDKit 
[29] cheminformatics suite and RDKit KNIME nodes 
[30]. Molecule structures were depicted with RDKit and 
ChemAxon’s Marvin Sketch [31]. Embeddings were only 
generated for compounds that could be associated with a 
BMS.

k‑nearest‑neighbor analysis
Using the RDKit implementation of Morgan algorithm 
[29, 32], Morgan-fingerprint was generated for com-
pounds with parameters of radius = 3 and fingerprint 
length = 2,048. The k-Nearest-Neighbors (KNNs) were 
identified for query compounds with the help of com-
puting the Tanimoto-similarity coefficient [33, 34] of 
pairs of compounds. In this study the value of k was set 
to 5.

Distance measure in embedded 2D space
The distance of compounds i, j mapped to a PHC can be 
quantified as the difference of the respective bin indices 
bi and bj. This distance can be referred-to-as rank dis-
tance, i.e.,  dr (see: Eq. 7).

However, the idea of an intuitive embedding into 
2D suggests that structural proximity of compounds 
should be reflected in proximity of 2D coordinates. 
Therefore, given the nature of the HCASE method, 
it is possible to define a perceived distance measure 
of the compounds in the embedded space as detailed 
below.

Compounds embedded in 2D using the HCASE 
method are mapped to a latent grid. Each point of the 
grid represents a specific BMS or a group of BMSs, 
depending on the size of the reference BMS set and the 
parameter z. Therefore, the distance of two embedded 
compounds i, j “stretched” on this grid can be perceived 
as their Chebyshev-distance [35] (see: Eq.  8). Of note, 
the Chebyshev-distance is a metric. However, since it is 
applied as a perceived distance measure, in this study we 
will refer to the Chebyshev-distance metric as Cheby-
shev-distance measure.

(7)dr(i, j) =
∣

∣bi − bj
∣

∣

(8)dC(i, j) = max
n

∣

∣in − jn
∣

∣

Quantifying space overlap similarity of different 
embeddings
Given an embedding generated by the HCASE method, 
one can compute the number of compounds associ-
ated with a reference BMS. More precisely, one need 
to count the number of compounds mapped to the bin 
the respective BMS was assigned to. In the function of 
z the number of bins is provided by |D| (see: Eq. 4). This 
information can be condensed into an |D| -dimensional 
embedding-vector. In such vector, the value of each 
dimension reflects the number of compounds associated 
with a specific bin, which bin is a point in the latent grid 
behind the embedding.

Quantifying the similarity of two embedding-vectors 
A and B can be performed in analogous manner to com-
puting the similarity of two molecular count-fingerprints 
[36] with the help of a modified Tanimoto-similarity 
coefficient (see: Eq. 9) [33, 34, 37, 39].

Input data
Compound libraries
Compound libraries were collected from two sources: 
approved drugs of DrugBank database (version: 2.0.9) 
[40], and the CANVASS library [41]. These libraries are 
comprised of 2,073 and 344 compounds, respectively.

ChEMBL scaffolds
A set of unique BMSs of size 63,783 has been extracted 
from ChEMBL database (version: 24.1) [42] using the 
same procedure and KNIME workflow [43] that was used 
to derive the knowledge base of SmartGraph platform 
[44]. This set was derived from the set of all unique BMSs 
included in ChEMBL database based on the number of 
compounds they are associated with. That is, only BMSs 
were selected if they are connected to less than 100 and 
at least 5 unique compounds. Out of 63,783 scaffolds, 
after processing by RDKit and deduplication by SKs, we 
identified 55,961 unique BMSs.

Natural products scaffolds
A set of natural products were extracted from the 
ChEMBL database (version: 23) consisting of 1,921 com-
pounds [41]. BMSs of these compounds were identified 
and their SKs were generated. Subsequently, the BMSs 
were deduplicate based on the SKs, which resulted in a 
set of 546 scaffolds (NatProd scaffolds).

For the sake of reproducibility of the experiments, all 
source code and data used to perform the experiments 

(9)θA,B =

∑|D|

i=1
AiBi

∑|D|

i=1
A
2
i
+

∑|D|

i=1
B
2
i
−

∑|D|

i=1
AiBi
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are publicly available in  the source-code repository: 
https:// github. com/ ncats/ hcase [23].

Cherry‑Picked scaffold set
In some of the experiments we sought to monitor the 
position of certain scaffolds as a result of the embed-
ding process. To this end, a subset of ChEMBL scaffolds 
(see above) was manually cherry-picked in a way so that 
their ranks are separated by larger and smaller inter-
vals. The 9 cherry-picked BMSs are shown in Table  1 
and Fig. S3 in Supporting Information (SI). Addition-
ally, the immediate 50 SK-ordering based nearest 
neighbors (in both directions) were also included into 
this set. The resultant set, therefore, consists of 9 man-
ually selected BMSs and 100 SK-ordering based nearest 
neighbors of each. This set is referred to as "cherry-
picked scaffold set" throughout the text, and it consist 
of 909 scaffolds in total.

Due to the separation of the 9 manually selected 
BMSs based on their SK-ordering rank, there is no 
overlapping scaffold between the neighbors of the 9 
BMSs. The 100 SK-ordering based nearest neighbors 
are marked with the corresponding color of one of the 
9 manually selected BMSs throughout the text and SI.

Reduced scaffold set
In some of the experiments we utilized a subset of the 
ChEMBL scaffolds (see above). The subset was gener-
ated in two steps. First, we selected scaffolds randomly 
from the ChEMBL scaffolds so that the size of this set 
was 90% of that of the original set. Second, the union of 
this set and the cherry-picked scaffold set (see above) 
was created. The purpose of this step was to assure 
consistency across experiments aimed to investigate 
the relationship between the utilized space embedding 
method, the underlying reference scaffold set, and the 

positions of the embedded cherry-picked scaffolds in 
the map.

The resultant set is referred to as the "reduced scaf-
fold set" throughout the text and SI.

Results and discussion
Clustering of scaffolds mapped on a Hilbert‑curve
We sought to monitor the position of certain scaffolds as 
a result of the embedding process. Our expectation was 
that scaffolds that exhibit similarity in terms of chemi-
cal structure and complexity should be placed closely in 
the embedded space with the help of PHCs. Unlike real 
numbers, scaffolds cannot be mapped to a line in a linear 
fashion, as their “absolute value” cannot be readily deter-
mined. Instead, we used SKs to derive a relative ordering 
of BMSs. Employing the established relative ordering we 
were able to  map BMSs onto a line, in this case onto a 
PHC. This mapping provides the basis of embedding 
the BMSs into a 2D space by “folding” the PHC into 2D. 
The folding of the PHC is determined by the order of the 
PHC, i.e., parameter z. This parameter was varied in an 
interval, determined by the number of BMSs at hand. 
Therefore, for a given set of BMS we generated a series 
of embeddings resulted by utilizing PHCs of increas-
ing order (parameter z). The effect of increasing z is that 
the BMSs are embedded into 2D space according to an 
increasingly complex folding pattern. This can be inter-
preted as increasing the resolution of the embedding.

First, the ChEMBL reference BMSs were ordered 
according to their SKs.

The maximal order of PHC to be used was determined 
by the size of the ChEMBL reference scaffold set. A PHC 
of z = 8 gives rise to a space that is defined by a latent grid 
of 65,536 points (see: Eqs. 2, 3, 4). The size of ChEMBL 
reference scaffold set (55,961) is less than this value but 
is larger than the number of potential coordinate pairs in 
a space defined by a PHC of z = 7. Taken these in consid-
eration, the order of PHCs employed in this investigation 
was varied in the range of z = [2, 8].

As it was described in section “Hilbert-Curve Assisted 
Structure Embedding Method”, the reference scaffolds 
are assigned to bins in the function of z. Consequently, 
low values of z give rise to a low-resolution latent grid, 
where many of the marked scaffolds are assigned only to 
a few grid points, as expected (see: Fig.  4a–c). Increas-
ing the value of z, i.e., the resolution of embedding, it can 
be seen that the marked BMSs start to separate, giving 
rise to clusters, i.e. groups of closely-binned BMSs (see: 
Fig. 4d–g).

Based on the results of the embedding, it can be seen 
that the HCASE method is able to produce clusters of 
varying granularities in the function of parameter z. 
This feature therefore provide opportunity to control the 

Table 1 Cherry‑picked BMSs of the ChEMBL Reference Scaffold 
Set

Cherry‑picked reference scaffold rank Color

5000 Blue

15,000 Orange

16,000 Green

25,000 Red

26,000 Purple

35,000 Brown

44,000 Pink

45,000 Gray

55,000 Yellow‑green

https://github.com/ncats/hcase
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Fig. 4 Tracking the position of the cherry‑picked scaffold set on the PHCs in the ChEMBL reference scaffold space. ChEMBL scaffolds were mapped 
onto PHCs of varying order (value of z was incremented in the range of [2, 8] for subfigures a‑g, respectively). The order of the PHC is indicated 
by the suffix in the title of the subfigures. On each PHC we tracked the positions of the BMSs in the cherry‑picked scaffold set. The cherry‑picked 
scaffolds and their and respective colors are provided in Table 1. The color of the SK‑ordering based nearest neighbors is the same as that of 
the corresponding cherry‑picked scaffold
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resolution of the embedding depending on the use case 
at hand. Furthermore, the positions of clusters are the 
function of the bin indices of their underlying BMSs. The 
stabilization property of PHCs is demonstrated by the 
results, as the position of individual scaffolds converges 
to a point in 2D space as the resolution of the embedding 
(parameter z) is increased.

These findings support, that using the HCASE method, 
it is possible to develop an intuition for associating type 
of scaffolds, or group of scaffolds with various segments 
of the embedded 2D space. Therefore, we concluded 
that the properties of latent grid generated by HCASE 
method are adequate to serve as the basis for compound 
embedding.

Embedding of KNNs
Building on the promising results described in the pre-
vious section, we sought to analyze the embedding of a 
compound library with the help of ChEMBL reference 
scaffold set and the HCASE method. To this end, the 
embedding of the DrugBank data set was performed. The 
range of z values were identical to the range utilized in 
the previous section, considering that we used the same 
reference scaffold set, i.e., ChEMBL. To demonstrate the 
embedding process, we selected 5 molecules randomly 
from the DrugBank dataset and the k = 5 nearest neigh-
bors of each was determined as described in section 
“K-Nearest-Neighbor Analysis”. This gave rise to a unique 
set of 30 compounds. The list of query compounds, their 
NNs and the values of Tanimoto-similarity coefficients 
are provided in Table 2 and Fig. 1 in decreasing order of 
similarity.

Considering all data points, it can be seen in Fig. 5 that 
the positions of individual datapoints are stabilized with 
increasing order of the underlying PHC. Also, increasing 
values of z give rise to a finer-grained clustering of data 
points.

Regarding the KNNs, most of them are clustered 
closely to the query molecules, as expected, but some of 
them are placed further away. For instance, at z = 8 we 
can make the following observations. In the case of query 
molecule DB04837, i.e., “blue” series, two of the NNs 
(“X”, “V”) are positioned farther from DB04837, which is 
explained by the more complex BMS present in those two 
NNs as compared to the rest of the series. Interestingly, 
the fifth NN (“Y”) in the same series is co-positioned with 
the query compound DB01362 (color: aqua), but it can’t 
be seen due to overlap of markers. The reason for this is 
that “Y” and DB01362 share the same BMS, i.e., the ben-
zene ring. Consequently, they were mapped to the same 
reference scaffold hence positioned to the same coordi-
nate in the embedded space.

Similar trends can be observed in the other NN series 
as well. Typically, when the BMSs of NNs differ in exo-
cyclic groups, then they are embedded still relatively 
closely. However, when the BMSs differ by extra rings, 
then they will be placed further away. This phenomenon 
can be explained by the ordering of scaffolds based on 
their SKs. These observations argue that the embedding 
results in clustering that matches closely the mindset of 
a medicinal chemists when analyzing chemotypes. For 
example, in the case of the “purple” series (query mol-
ecule: DB00977) most of the NNs in the series share the 
same or very similar BMS, except compound “L”, whose 
BMS is more complex than that of other NNs, hence it 
is positioned further away from other members of the 
series. The peculiarity of this fact is more obvious when 
one considers the Tanimoto-similarity of the NNs to the 
query molecule in the “purple” series; compound “L” is 
the second NN of the query compound, still it is posi-
tioned the furthest from other compounds of the series. 

Table 2 K = 5 nearest neighbors of 5 randomly selected drug 
molecules

Fingerprint: Morgan (radius = 3, length = 2048). Cquery: query compounds, CNN: 
nearest neighbors of query compounds based on their Morgan fingerprint and 
Tanimoto‑similarity (Tsim)

Cquery CNN Rank Tsim

DB00006 DB04931 1 0.44444

DB00006 DB01284 2 0.40520

DB00006 DB00050 3 0.39316

DB00006 DB09067 4 0.38214

DB00006 DB06825 5 0.36975

DB00849 DB01174 1 0.48980

DB00849 DB00794 2 0.44231

DB00849 DB05246 3 0.32143

DB00849 DB01437 4 0.31667

DB00849 DB00252 5 0.27778

DB00977 DB01357 1 0.69863

DB00977 DB04575 2 0.62963

DB00977 DB00655 3 0.50649

DB00977 DB00783 4 0.50649

DB00977 DB04573 5 0.50000

DB01362 DB01249 1 0.88235

DB01362 DB09135 2 0.85714

DB01362 DB09134 3 0.61667

DB01362 DB09313 4 0.27174

DB01362 DB01578 5 0.21978

DB04837 DB11609 1 0.35000

DB04837 DB00257 2 0.30882

DB04837 DB00333 3 0.27273

DB04837 DB01231 4 0.26471

DB04837 DB08944 5 0.26154
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Separation of compound “L” from the rest of the series 
members would be considered correct from a medicinal 
chemist’s view, as compound “L” has the most dissimilar 
BMS in that series compared to the other BMSs.

Embedding of randomly selected compounds
In order to contrast the above findings, we selected 25 
random molecules from the DrugBank dataset (see: Fig. 
S4 in SI) and compared their embedding with that of 
the NN series. In Fig. S5 in SI, the embedding of these 
25 compounds is shown besides the embedding of the 5 
query molecules of the previous experiment. As it can 
be seen, the embedding of the random set exhibits a 
reduced level of clustering as compared to the case of the 
NN series. While some clustering is present in this set, 
mainly contributed to the presence of benzene ring as the 
BMS in several compounds, the overall picture resembles 
a random distribution of the embedded coordinates.

In summary, the above findings demonstrate that it is 
possible with the HCASE method to embed compounds 
in a chemical space that is able to differentiate molecules 
based on chemotypes, and to provide a logical and intui-
tive arrangement of these chemotypes. Therefore, it can 
be argued that clustering emerging in the embedded 
space will be reflective of a medicinal chemist’s analytical 
thinking.

Comparison of the results of different embedding 
outcomes
After concluding the HCASE method is able to generate 
intuitive embedding of a chemical library we intended to 
analyze how we can compare the outcome of different 
embeddings. This first required to investigate the effect 
of utilizing different scaffold reference sets, then to quan-
tify how well different embedding results are aligned with 
each other.

To this end, we performed separately the embedding of 
the DrugBank and CANVASS libraries utilizing two dif-
ferent reference scaffold sets: ChEMBL and NatProd. As 
explained in section “Clustering of Scaffolds Mapped on 
a Hilbert-Curve” the upper limit of z depends on the size 
of the reference scaffold set at hand. We determined that 
this upper limit is z = 8 in case of the ChEMBL set. The 
NatProd scaffold reference set is comprised of 546 BMSs, 
hence the upper limit of z is 5.

Qualitative comparison
First, let us consider the embeddings in the NatProd 
chemical space as shown in Fig. S6 in SI. The positions 
of compounds of both libraries are also distributed across 
all possible 16 coordinates at z = 2. At z = 3 the CAN-
VASS compounds are assigned to only 59 coordinate 
pairs, whereas in the case of DrugBank library to 61 (see: 
Fig. 6a).

In the case of the ChEMBL chemical space (see: Fig. S7 
in SI) at z = 2, the coordinates associated with the embed-
ded compounds of both libraries are distributed across all 
potential 16 coordinates. At z = 3, in the case of the CAN-
VASS library, the compounds are only assigned to 43 
different coordinates. However, the compounds of Drug-
Bank dataset are assigned to all potential coordinates. At 
higher values of z, the overlap of the respective pairs of 
embeddings becomes less and less pronounced, i.e., the 
two dataset start to separate, as in the previous case (see: 
Fig. 6b).

Based on the qualitative comparison, it can be observed 
that the DrugBank dataset occupies larger portion of the 
embedded space. This is not surprising considering that 
CANVASS is a smaller library, and a less diverse one. 
Nevertheless, the overlap of the two libraries seems to be 
larger in the NatProd space. As seen at z = 4 the CAN-
VASS library is more spread-out in this space. Since this 
space is defined by scaffolds extracted from natural prod-
ucts, the CANVASS library indeed seems like a good 
representative of the natural product space. However, 
the drug molecules represent structures with BMSs that 
even better represent the underlying NatProd reference 
scaffold set. Considering that many drug molecules are 
natural product derivatives, and the presence of larger 
diversity in the DrugBank vs. the CANVASS library, the 
fair amount overlap in this space of the two libraries can 
be considered reasonable.

In the ChEMBL chemical space both libraries show 
clustering which becomes prominent at z > 5 values, 
although the clustering is more obvious in the case of 
CANVASS library. Drug molecules represent this chemi-
cal space also to a reasonable degree, whereas the CAN-
VASS molecules form “islands”. These islands are mostly 
overlapping with members of the DrugBank library. Fur-
ther, in this chemical space the unoccupied area is visible 
to a larger extent as compared to the NatProd space.

Fig. 5 HCASE embedding of drug compounds into ChEMBL scaffold space. Shown is the HCASE embedding of k = 5 nearest neighbors of 5 
randomly selected compounds from the DrugBank dataset. The order of PHC utilized for structure embedding is indicated by suffix in the titles 
of the subfigures. Enlarged (X) signs indicate the query compound of KNN analysis; green: DB00006, orange: DB00849, purple: DB00977, aqua: 
DB01362, blue: DB04837. ( +) signs indicate the NNs of a query compound with identical color. Gray circles indicate other DrugBank compounds. 
Compounds are labeled according to Fig. 1

(See figure on next page.)
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Fig. 5 (See legend on previous page.)



Page 15 of 25Zahoránszky‑Kőhalmi et al. Journal of Cheminformatics           (2024) 16:87  

Based on the above findings, we concluded that the 
choice of the reference scaffold set influences the 
embedding in two major manners. First, the reference 
scaffold set serves as a perspective which the structural 
similarities are analyzed from. Accordingly, the embed-
ding of CANVASS and DrugBank libraries paint a more 
similar picture in the NatProd space than in ChEMBL 

space. Second, the separation of structures can be pro-
moted by the choice of the reference scaffold set.

Quantitative comparison
In the previous section we investigated how the embed-
dings of two chemical libraries can be compared 
qualitatively. However, there can be cases when one 

Fig. 6 Comparison of the HCASE embeddings of compounds in Natural Product and ChEMBL scaffold space. Blue: CANVASS compounds, yellow: 
drugs. Overlapping datapoints are colored by green–brown color due to the transparency of the datapoints. A) NatProd Scaffold Space, PHC‑5 
( z = 5 ). B ChEMBL Scaffold Space, PHC‑8 ( z = 8)
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might want to quantify the overlap (similarity) of two 
embeddings.

To this end, one of the natural solutions is provided by 
aggregating the number of compounds associated with 
each given point in a 2D coordinate system. In the case of 
the HCASE method we can rely on only integers as coor-
dinate values. The aggregated values can be condensed 
to a heatmap, in which cells correspond to specific coor-
dinates in the embedded space. The color of each cell is 
the function of the number of molecules assigned to the 
respective coordinate. This solution is shown in Fig.  7a 
and 7b, which reflect the aggregated results of embed-
ding the DrugBank and CANVASS libraries in the Nat-
Prod chemical space with the HCASE method at z = 5, 
respectively. The heatmap provide an intuitive way to 
quickly see which regions of the same chemical space are 
covered by either of the libraries.

In a more qualitative approach, it is also possible to 
present the coverage of the chemical space in a binary 
way. That is, the value of a point in the 2D HCASE 

space is 1, if at least one compound is mapped to that 
point. Otherwise, the value of the point is 0. This infor-
mation can also be represented as a heatmap as shown 
in Fig. 7c and 7d.

Beyond the graphical solution, it also possible to 
quantify the overlap of the embedding of two librar-
ies by using a measure (θ) analogous to the Tanimoto- 
similarity coefficient of count-fingerprints, as described 
in section “Distance Measure in Embedded 2D Space”. 
The results of quantifying the overlap of two libraries 
based on θ is provided in Table 3. The results confirm 
the qualitative observations that the overlap of the 
two datasets decreases with increasing values of z, i.e., 
by increasing the resolution of the embedding. At the 
highest resolution, the overlap is greater in the Nat-
Prod space than in the ChEMBL space, just as it was 
observed in the qualitative analysis. While the values of 
θ are quite small in most cases, still, it can be used to 
quantify the extent of overlap.

Fig. 7 Distribution of compounds in the map obtained by HCASE embedding. Compounds were embedded into the NatProd scaffold space 
with the help of HCASE method. The intensity of each cell of the heatmaps is proportional to the number of compounds assigned to each cell, 
i.e., position in the embedded space. A Aggregated number of drug compounds embedded into HCASE NatProd space. B Aggregated number 
of CANVASS compounds embedded into HCASE NatProd space. C Aggregated number of drug compounds embedded into HCASE NatProd space, 
binarized. D Aggregated number of CANVASS compounds embedded into HCASE NatProd space, binarized



Page 17 of 25Zahoránszky‑Kőhalmi et al. Journal of Cheminformatics           (2024) 16:87  

Perceived distance in the embedded 2D space
The promise of utilizing a PHC for chemical space 
embedding is that the objects mapped to close proximity 
on the curve will also be embedded in the higher dimen-
sional space in close proximity. Therefore, we sought to 
explore whether those distance values translate in the 
embedded 2D space in a way that can be perceived as dis-
tance measure.

Considering that the reference scaffolds create a latent 
grid behind the embedded space, it seemed natural to 
investigate the relation between the rank-distances (dr) of 
compounds and the Chebyshev-distances (dC) of embed-
ded coordinates (see: section “Distance Measure in 
Embedded 2D Space”).

To this end, we first investigated the Pearson-correla-
tion [47] of the two different types of distance measures 
with the help of the DrugBank and CANVASS compound 
libraries embedded both in ChEMBL and NatProd chem-
ical spaces. First, the correlation was determined by tak-
ing into account all compounds per dataset. Results are 
shown in Table 4. It can be seen that there is a reasonable 
level of correlation between dr and dC. The highest cor-
relation was found to be 0.73 and 0.72 for the DrugBank 
and CANVASS datasets, respectively, when using the 
ChEMBL reference scaffold set.

Interestingly, in the case of NatProd reference scaf-
fold set the correlation values were lower as compared 
to other data series, observed in the range of [0.50, 
0.58]. This might be an indication that the underlying 
latent grid has limited capacity to distinguish between 
chemotypes.

Furthermore, the highest correlation values were not 
observed at the highest value of z. This might indicate 
that the resolution associated with the highest z value 
might not be the “ideal” one in the light of the reference 

scaffolds and the compound set at hand. A more in-depth 
analysis of this phenomenon is beyond the scope of this 
study.

To further support these finding, we generated non-
overlapping sets of randomly selected compounds from 
the DrugBunk dataset. Each set was comprised of 100 
compounds. The mean and standard deviation of the cor-
relation between the two distance measures is provided 
in Table 5. It can be seen that the observed correlations 
are well aligned with those obtained from considering the 
positions of all compounds in a given embedding.

In addition, we performed the identical analyses on the 
entire set and subsets of the same embeddings but using 
the Kendall-correlation [48] instead of the Pearson-corre-
lation. The results paint a similar picture (see: Tables. S2–
S3). That is, we observe acceptable correlation between 
the Chebyshev-distance and rank distance values, albeit 
typically of modestly lower values than their Pearson-cor-
relation counterparts. Notably, the Kendall-correlation 
values tend to favor lower z-values, but the differences 
observed at the lowest and other z-values do not reflect 
qualitative differences. Overall, we concluded that Ken-
dall-correlation values, similarly to Pearson-correlation 

Table 3 Space overlap between DrugBank and CANVASS 
libraries in different chemical spaces

z: order of the PHC, θ: overlap

Reference Scaffold Set z θ

ChEMBL 2 0.2042

ChEMBL 3 0.1609

ChEMBL 4 0.1138

ChEMBL 5 0.0864

ChEMBL 6 0.0593

ChEMBL 7 0.0525

ChEMBL 8 0.0519

NatProd 2 0.1836

NatProd 3 0.1041

NatProd 4 0.0785

NatProd 5 0.0758

Table 4 Pearson‑correlation of Chebyshev–distances and SK–
rank distances

z: Order of the PHC

Dataset Reference Scaffold 
Set

z Correlation

DrugBank ChEMBL 2 0.6974

DrugBank ChEMBL 3 0.7195

DrugBank ChEMBL 4 0.7186

DrugBank ChEMBL 5 0.7278

DrugBank ChEMBL 6 0.7299

DrugBank ChEMBL 7 0.7297

DrugBank ChEMBL 8 0.7292

DrugBank NatProd 2 0.5797

DrugBank NatProd 3 0.5569

DrugBank NatProd 4 0.5772

DrugBank NatProd 5 0.5740

CANVASS ChEMBL 2 0.6458

CANVASS ChEMBL 3 0.7157

CANVASS ChEMBL 4 0.7162

CANVASS ChEMBL 5 0.7175

CANVASS ChEMBL 6 0.7217

CANVASS ChEMBL 7 0.7210

CANVASS ChEMBL 8 0.7201

CANVASS NatProd 2 0.5586

CANVASS NatProd 3 0.5044

CANVASS NatProd 4 0.5343

CANVASS NatProd 5 0.5337
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values are indicative of acceptable correlation between 
the rank and Chebyshev-distances.

In order to investigate the relationship between the 
position of compounds on the unfolded pseudo Hil-
bert-curve and their 2D coordinates, we performed 
further analyses as described in details in sections 
“Distance Rank Correlation Analysis” and “Detection 
of Canyons on the 2D Maps”, in SI [46]. Based on the 
results of these analyses we concluded that the dis-
tances between compounds on 2D maps generated by 
HCASE method are reasonably reflective of their close 
or distant placement on the unfolded pseudo Hilbert-
curve (see: Fig. S23, in SI). Furthermore, we investi-
gated the emergence of anomalies (“canyons”) on 2D 
maps, where points in close proximity in 2D space are 
relatively distantly placed in the underlying pseudo 
Hilbert-curve. We concluded that the extent of these 
canyons introduced by the HCASE method in terms 
of coverage on the 2D maps is reasonably low, hence 
acceptable (see: Fig. S24, in SI).

In summary, there is an acceptable correlation between 
the two distance measures dr and dC. Therefore, we pro-
pose that Chebyshev-distance measure can be considered 
as a perceived distance measure to quantify distances 
in the embedded 2D space generated by the HCASE 
method.

Comparison of HCASE method with prior art
In the final set of experiments, we set forth to compare 
the HCASE method with prior art. Considering the broad 
use of t-SNE algorithm and its premise to preserve neigh-
borhood information of objects in the embedded space, 
we decided to use this method for comparison. The com-
parison of the two methods involved three scenarios.

In the first scenario, we investigated the clustering 
property of the two embedding methods. Clustering is 
important, because medicinal chemist would expect sim-
ilar structures to be positioned closely in a map, whereas 
dissimilar ones further away.

To this end, we generated and compared the HCASE 
and t-SNE embeddings of the ChEMBL scaffolds. Of 
note, the t-SNE embedding operates on the Morgan-fin-
gerprints of the ChEMBL scaffold set, which approach is 
independent from utilizing SKs in the case of the HCASE 
method. Results of the embeddings are shown in Fig. 8A 
and Fig. 9A. For better visibility, we only indicated a sub-
set of ChEMBL scaffolds, namely those that belong to the 
cherry-picked scaffold set (see: section "Computational 
Datasets and Methods"), and the coloring schemes are 
identical across the two figures. Furthermore, Fig.  10. 
shows example structures of the cherry-picked scaffolds, 
whereas Fig. S14-S22. in SI shows all members of the 
respective series.

As shown on Fig.  8A, the positions of the 100 SK-
ordering based nearest neighbors belonging to a par-
ticular cherry-picked scaffold are scattered. Likely, this 
is not something a medicinal chemist would expect in a 
map. Further, the logic regarding the relative positioning 
of scaffolds in the t-SNE map is not transparent, there-
fore it is difficult to intuitively interpret the resultant map 
produced by t-SNE embedding. As shown on Fig. S8 in 
SI this phenomenon was observed across a range of per-
plexity values that were suggested as optimal for t-SNE 
[7, 45].

In contrast to the t-SNE embedding of ChEMBL scaf-
folds, in the map resulted from HCASE embedding the 
cherry-picked scaffold set demonstrates a great degree 
of clustering, see Fig.  9A. This is likely what a medici-
nal chemist would expect, that is, similar scaffolds are 
placed closely on the map, whereas dissimilar ones are 
placed further. In Fig.  9A a PHC of z = 8 was used for 
the HCASE embedding. Further results related to the 
HCASE embedding of the same ChEMBL scaffolds 
shown in Fig. 4 obtained by varying the order of PHC. In 
Fig. 4. the same cherry-picked scaffold set is highlighted 
in the maps as in the case of Fig. 9A. As it can be seen, 
maps of great degree of clustering emerged where the 
order of PHC was at least 6 (see: Fig. 4E–G).

In the second scenario, we investigated how robust 
the embeddings generated by the HCASE and the Scaf-
fold t-SNE methods are against the change in dataset to 
be embedded. To this end, we chose the "reduced scaffold 
set" (see: section "Computational Dataset and Methods") 
as the subject of the embedding, which set is a ~ 90% 
sized subset of the ChEMBL scaffolds utilized in the pre-
vious scenario. The difference between the two scaffold 
sets is less than 10%, which is a relatively small difference. 

Table 5 Pearson‑correlation of chebyshev‑distances and SK‑rank 
distances in embedded subsets of DrugBank dataset

Reference 
Scaffold Set

z Correlation—Mean Correlation—Std

ChEMBL 2 0.7015 0.0278

ChEMBL 3 0.7233 0.0310

ChEMBL 4 0.7224 0.0323

ChEMBL 5 0.7315 0.0295

ChEMBL 6 0.7334 0.0293

ChEMBL 7 0.7331 0.0294

ChEMBL 8 0.7325 0.0293

NatProd 2 0.5832 0.0541

NatProd 3 0.5599 0.0540

NatProd 4 0.5799 0.0495

NatProd 5 0.5771 0.0503
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Note, that the reduced scaffold set includes the entirety 
of the cherry-picked scaffold set for consistency reasons, 
as it was described earlier in the text. The results of the 
t-SNE and HCASE embedding of the reduced scaffold set 
is shown in Fig. 8C and Fig. 9C respectively.

When comparing the t-SNE embedding of the 
ChEMBL scaffolds vs. the reduced scaffold set (compare: 
Fig. 8A and Fig. 8C) the two maps are visually quite dif-
ferent despite the relatively small difference in the data-
sets that were subject to embedding. This holds true for 
all perplexity values applied over the experiments (com-
pare: Figs. S8, S10, in SI).

As compared to the t-SNE embedding, the HCASE 
embedding of the reduced scaffold set shows a clear 
contrast. That is, the position of the cherry-picked scaf-
folds in the HCASE embedding of the reduced scaffold 
set (see: Fig. 9C) barely changed compared to the embed-
ding of the entire ChEMBL scaffold set (see: Fig.  9A), 
when using a PHC of z = 8 . This observation between 
the HCASE embedding of the ChEMBL scaffolds and the 
reduced scaffold set holds true for all order (2 ≤ z ≤ 8 ) of 

the employed PHCs (compare: Fig. 4 and Fig. S12, in SI). 
In summary, we can conclude that the HCASE method 
is more robust to changes in the dataset to be embed-
ded as compared to the t-SNE method. This observation 
matches our experience with t-SNE from practice.

In the third scenario, we investigated the result of 
embedding a set of compounds into an already exist-
ing chemical space, generated by the respective meth-
ods. From a medicinal chemist’s point of view, it would 
be desirable that the existing chemical space remained 
unchanged regardless of the nature of the compound 
set subject to embedding. With other words, a chem-
ist would expect to see a certain chemotype being posi-
tioned in the same part of the map regardless of the 
dataset it comes from, as long as the datasets are to be 
embedded into the same underlying chemical space.

To exemplify this scenario, we intended to embed 
drug compounds into the ChEMBL scaffold space 
with the HCASE and t-SNE methods and compare the 
outcomes. While the HCASE method was devised to 
be able to embed compounds into an already existing 

Fig. 8 Cherry‑picked scaffold set and drug molecules in t‑SNE chemical spaces. The parameters of t‑SNE embedding were set to default values, 
except for perplexity, i.e., learning rate = 200, iteration number 1000. A ChEMBL t‑SNE space defined by the t‑SNE embedding of ChEMBL scaffolds 
at perplexity = 40. Highlighted are the BMSs in the cherry‑picked scaffold set. B Scaffold t‑SNE embedding of k = 5 nearest neighbors of selected 
DrugBank molecules into ChEMBL t‑SNE space. C Reduced scaffold t‑SNE space defined by the t‑SNE embedding of the reduced scaffold set. 
Highlighted are the BMSs in the cherry‑picked scaffold set. D Scaffold t‑SNE embedding of k = 5 nearest neighbors of selected DrugBank molecules 
into reduced scaffold t‑SNE space. The cherry‑picked scaffold set is colored according to colors provided in Table 1. The colors of the cherry‑picked 
scaffolds were used to indicate their respective 100 SK‑ordering based nearest neighbors. Enlarged (X) signs in Fig. 8B and 8D indicate the query 
compound of KNN analysis; green: DB00006, orange: DB00849, purple: DB00977, aqua: DB01362, blue: DB04837. ( +) signs indicate the NNs 
of a query compound with identical color. Compounds are labeled according to Fig. 1
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chemical space e.g., ChEMBL scaffolds, without alter-
ing it, the situation is different in the case of the t-SNE 
method.

In the case of t-SNE method, embedding of additional 
structures into an already generated t-SNE chemical 
space is not possible. One could, of course merge the 
drug compounds with the ChEMBL scaffolds and per-
form the t-SNE embedding of the resultant set. Two 
problems arise from this approach. First, we could no 
longer consider the two t-SNE chemical spaces as being 
identical. Therefore, the addition of drug compounds 
alters the chemical space. Second, we have shown in the 
previous scenario, the t-SNE embedding is not robust 
to the change of the dataset subject to embedding (see: 
Fig. 8A, C). The change of the chemical space will, there-
fore, likely result in the change of the relative positions 
of the chemotypes as compared to the original map. A 
medicinal chemist would likely not expect the change in 

the positions of chemotypes in the underlying chemical 
space.

To address the above issues, we found it necessary to 
modify the original t-SNE algorithm. The idea behind the 
modification is to enable the t-SNE embedding of com-
pounds into an existing t-SNE chemical space without 
altering it. Of note, this modification could be imple-
mented in the context of other space embedding meth-
ods, the discussion of this is outside the scope of this 
study. Nonetheless, the modification involves the t-SNE 
embedding of a reference scaffold set, e.g., ChEMBL scaf-
folds, which embedding will constitute the t-SNE chemi-
cal space. Once this is established, any compound set can 
be embedded to this t-SNE chemical space utilizing a 
mechanism borrowed from the HCASE method. That is, 
a compound in the resultant t-SNE embedding assumes 
the position of those reference scaffold whose SK-dis-
tance is the closest to the BMS of the compound.

Fig. 9 Cherry‑picked scaffold set and drug molecules in HCASE chemical spaces. A ChEMBL scaffolds were mapped onto a PHC of z = 8 . Positions 
of BMS belonging to the cherry‑picked scaffold set are highlighted on the PHC. B Embedding of k = 5 Nearest Neighbors of selected DrugBank 
Molecules with HCASE into ChEMBL space employing an PHC of z = 8 . C The reduced scaffold set was mapped onto a PHC of z = 8 . Positions 
of BMS belonging to the cherry‑picked scaffold set are highlighted on the PHC. D Embedding of k = 5 Nearest Neighbors of selected DrugBank 
Molecules with HCASE into reduced scaffold set space employing an PHC of z = 8 . The cherry‑picked scaffold set is colored according to colors 
provided in Table 1. The colors of the cherry‑picked scaffolds were used to indicate their respective 100 SK‑ordering based nearest neighbors. 
Enlarged (X) signs in B, D indicate the query compound of KNN analysis; green: DB00006, orange: DB00849, purple: DB00977, aqua: DB01362, blue: 
DB04837. ( +) signs indicate the NNs of a query compound with identical color. Compounds are labeled according to Fig. 1
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This altered t-SNE method is referred to as ‘‘Scaffold 
t-SNE’’ throughout the text and is described in detail in 
section ‘‘Scaffold t-SNE Method’’, in SI. The modifications 
implemented in the Scaffold t-SNE method minimize 
the differences as compared to the HCASE method. In 
fact, the difference in the placement of the compounds 
in the resulting maps can be solely explained by the dif-
ferences in the positions of the reference scaffolds in the 
HCASE and t-SNE embeddings. This facilitates the com-
parison of the results of the HCASE and Scaffold t-SNE 
embeddings.

In a comparative analysis, we performed the Scaffold t-
SNE and HCASE embedding of drug compounds into the 
ChEMBL scaffold space. In the resultant maps we high-
lighted the positions of 5 randomly selected compounds 
and their k = 5 nearest neighbors that were described in 
section ‘‘Embedding of KNNs’’. The results of the Scaffold 
t-SNE and HCASE embeddings are shown in Fig. 8B and 
Fig.  9B, respectively. Interestingly, in the Scaffold t-SNE 
embedding (see: Fig. 8B) a high degree of clustering can 
be observed in all KNN-series that is comparable to that 
produced by the HCASE method (see: Fig.  9B) using a 
PHC of z = 8 . The reason for this is that Scaffold t-SNE 

method takes advantage of the predefined chemical space 
when mapping compounds to the closest reference scaf-
folds. Therefore, the embedding will reflect the differ-
ences and similarities of chemotypes to a great degree. 
This observation was true in the case of all the applied 
perplexity values (see: Fig. S9, in SI).

While the clustering properties of the HCASE and 
Scaffold t-SNE embedding methods seem comparable, it 
is difficult to explain the reasons leading to the relative 
positioning of the 5 drug molecules and their KNNs in 
the Scaffold t-SNE map. In the case of both methods, 
the positions of the compounds are determined by the 
positions of the reference scaffolds as discussed above. 
Unlike t-SNE, the HCASE method provides a transparent 
mechanism with regards to the laying out the reference 
scaffolds on the map. This mechanism is driven by the 
organization of scaffolds according to a medicinal chem-
istry viewpoint encoded into the Scaffold-Key algorithm.

As we have shown previously, t-SNE embedding is 
not robust against the change in the dataset subject 
to embedding. Also, we have discussed that the posi-
tion of the embedded compounds in the Scaffold t-SNE 
embedding is determined by the position of the reference 

Fig. 10 HCASE space defined by ChEMBL scaffolds, annotated by structures. The HCASE embedding of ChEMBL scaffolds at z = 8, shown in Fig. 9a, 
is annotated by structures. The cherry‑picked scaffold set is colored according to colors provided in Table 1. The colors of the cherry‑picked scaffolds 
were used to indicate their respective 100 SK‑ordering based nearest neighbors. Structures were annotated for the cherry‑picked scaffolds and two 
of their randomly selected neighbors among the 100 SK‑ordering based nearest neighbors for demonstration purpose. Among each group of three 
scaffolds, the middle one is the cherry‑picked scaffold. The structures of all 100 SK‑based nearest neighbors are provided in Figs. S14–S22., in SI
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scaffolds in the t-SNE space. Consequently, the Scaffold t-
SNE method is expected not to be robust to the change in 
the underlying reference scaffold set either. This phenom-
enon can be observed by comparing Fig. 8B and Fig. 8D. 
The latter shows the embedding of the 5 drug com-
pounds and their KNNs into a chemical space defined 
by the reduced scaffold set. Despite the relatively small 
difference between the underlying reference scaffold sets 
(ChEMBL scaffolds vs. reduced scaffold set) the change 
in the positions of compounds is obvious when compar-
ing Fig. 8B and Fig. 8D. Beyond the rotation of the map, 
which seems to be major cause for the “rearrangement” 
of the compounds, there are a few examples when the 
relative positions of compounds also changed.

For example, in the “cyan series”, the relative positions 
of “S”, “P” and the query compound (plotted by a large 
cross symbol) are quite different comparing the embed-
dings shown on Fig. 8B and Fig. 8D. While “P” is slightly 
offset from a line defined by “S” and the series marker 
in Fig.  8B, these same three compounds define a pro-
nounced triangle in Fig.  8D. This “rearrangement” goes 
beyond simple rotation and/or “zooming in/out” effect(s). 
Another example involve the “X “, “V”, and query com-
pound of the “blue series” and “P” from the “cyan series”. 
In Fib. 8B, “X” and “V” are positioned closer to “P” than 
to the query compound of the “blue series”. In contrast, 
“X” is closer to the query compound in Fig.  8D than to 
“P”. Also, “V” is much closer the query compound, and 
farther from “P” than in Fig. 8B.

These demonstrate, that the Scaffold t-SNE embedding 
is not robust to the change in the underlying reference 
scaffold set. This makes the interpretation of embedding 
challenging for medicinal chemists. Although the per-
plexity value was set to 40 in the experiments resulted in 
Fig. 8B and Fig. 8D., similar examples can be observed at 
other perplexity values (compare: Fig. S9 and Fig. S11, in 
SI).

In contrast to the Scaffold-t-SNE embedding, the 
HCASE embedding ( z = 8 ) of the drug compounds and 
their KNNs into the reduced scaffold space remained 
robust as compared to their embedding in the ChEMBL 
scaffold space (compare: Fig. 9B and Fig. 9D). One differ-
ence involves the slight change in the relative positions of 
compound ‘‘P’’ and ‘‘S’’ to each other. Despite the change 
in positions, "P" and "S" is still closer related to each other 
than to any other compounds of the series highlighted 
on the maps. Another slight difference involves a triangle 
defined by compounds "L", "V" and "X". Although a slight 
change is visible in the positions of the nodes of this tri-
angle, overall, the relative positions of the three com-
pounds to each other and to other compounds on the 
map remains arguably stable. These observations hold 

true for PHCs of varying order (compare: Fig. 5 and Fig. 
S13, in SI).

The final viewpoint for comparison relates to the con-
vergent properties of the embedding methods. The 
HCASE methods operates with the help of PHCs. Points 
mapped to PHCs of increasing order (parameter z) are 
known to converge in the higher dimensional space the 
PHCs are embedded (folded) into. Indeed, this property 
is clearly reflected in the maps generated by the HCASE 
method (see: Figs.  4, 5 and Figs. S12, S13, in SI), since 
the position of compounds converges (stabilizes) by 
increasing the values of parameter z, i.e., the order of the 
employed PHC. As discussed earlier in the text, increas-
ing the value of parameter z can be thought of as increas-
ing the resolution of the map.

In the case of Scaffold t-SNE and t-SNE methods there 
is no obvious parameter that would affect the resolution 
of the map. Nonetheless, perplexity is a parameter known 
to affect the embedding outcomes, and we have shown 
results obtained by varying this parameter. However, we 
have not observed the convergence in the positions of 
the embedded compounds in the relation to varying the 
value of perplexity. On the contrary, varying the value 
of perplexity led to results that are likely confusing to 
medicinal chemist in the light of the rearrangements of 
the maps.

In summary, the embeddings produced by the HCASE 
and Scaffold t-SNE methods differ in three major 
standpoints.

First, the HCASE embedding provides a transparent 
and medicinal chemistry inspired mechanism regard-
ing how the chemotypes are arranged in map that arose 
from embedding process. The same cannot be stated for 
Scaffold t-SNE method and for its predecessor, the t-SNE 
method.

Second, the (relative) position of the coordinates of the 
embedded molecules produced by the Scaffold t-SNE 
method does not seem to converge, i.e., to stabilize, by 
varying the value of perplexity parameter. This feature of 
the Scaffold t-SNE method does not promote the intui-
tive interpretation of the results and is in great contrast 
with the converging property of embedded coordinates 
produced by the HCASE method.

Finally, the HCASE method allows for embedding any 
additional dataset into an existing chemical space with-
out altering it. This is not true for the t-SNE method, 
although modification can be introduced to alleviate this 
limitation, as we demonstrated in the case of the Scaffold 
t-SNE. However, the HCASE embedding seems more 
robust to the change in the underlying chemical space 
(reference scaffolds) as compared to the Scaffold t-SNE 
method.
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It can be concluded from the comparison of the two 
methods that existing space embedding methods can 
be modified successfully to produce embeddings with 
reasonable clustering properties for chemotypes. Still, 
the HCASE method provides a clear advantage for 
interpretability.

Conclusions
In this proof-of-concept study we present a HCASE 
space embedding method that stands out from existing 
methods by its unique ability to produce an embedding 
that can be easily interpreted by medicinal chemists and 
data analysts. The novelty of the method is to create a 
well-defined latent grid of reference scaffolds, where the 
scaffolds are organized by increasing structural complex-
ity. This is achieved by mapping the reference scaffolds 
based on their scaffold keys to a pseudo-Hilbert-Curve 
that can be readily embedded into higher dimensional 
space according to a well-established algorithm. Com-
pounds are subsequently embedded into this grid based 
on their proximity to reference scaffolds measured by 
Scaffold-Key distances.

With the help of a series of experiments, we demon-
strated that the HCASE method indeed meets all the 
criteria we set forth for an intuitive space embedding 
method. Namely, the embedding is able to cluster related 
chemotypes, and to lay out the chemotypes in a logical 
order in the embedded space. The ability to use a refer-
ence scaffold set to define a chemical space assures that 
independent compound libraries can be embedded into 
the same space in a consistent manner. This allows for 
direct comparison of the embeddings of different data-
sets visually, qualitatively and quantitatively, as long 
as the underlying reference scaffold set remained the 
same. Furthermore, the HCASE method is able to gen-
erate a series of embeddings with increasing resolutions. 
In these series the positions of compounds converge as 
the resolution increases, which is not a property that has 
been accomplished by the other methods. We have also 
demonstrated that it is possible to quantify the distances 
between the embedded points in the HCASE space by 
computing the pairwise Chebyshev-distance values.

The chemotype-clustering ability of HCASE method 
was characterized with the help of two reference scaffold 
sets (ChEMBL: 63,783 scaffolds, NatProd: 546 scaffolds) 
and two compound libraries (DrugBank: 2073 com-
pounds, CANVASS: 344 compounds). The analysis of 
embedding KNN series has shown that HCASE method 
is able to cluster closely related structures in the embed-
ded space. As expected, the degree of clustering was 
higher in the KNN series as compared to a series of ran-
domly selected molecules. Also, we compared the overlap 

of the HCASE embedding of the two compound libraries 
in two different reference scaffold set spaces. The results 
demonstrated that reference scaffold sets can be used to 
define a perspective for embedded space comparison, 
e.g., to compare embeddings in a natural product space. 
Furthermore, we provided the means to compare HCASE 
embeddings quantitatively.

Finally, we compared the properties of space embed-
dings generated by HCASE method and a prior art 
method, which was modified for the sake of meaning-
ful comparison. We found that the qualitative clustering 
properties of the modified prior art method was nearly as 
good as that of the HCASE method. However, the results 
of the HCASE method can be easily interpreted from a 
medicinal chemistry point of view, unlike the results of 
the other method.

In conclusion, the presented HCASE method is attrib-
uted with novel and unique characteristics that can ren-
der it as a desirable data reduction and clustering method 
in any research setting where medicinal chemistry per-
spective is essential.

Outlook
In light of the structurally interpretable property of the 
HCASE method, it would be a natural extension to create 
interactive visualization of results. That is, when select-
ing a region of interest on the embedding plot, the under-
lying scaffold(s) could be visualized in an application 
to provide more structural context for the position of 
embedded compounds. Furthermore, inspired by SOM 
and GTM method, it might be helpful to quantify how 
well the chemotype of an embedded compound matches 
that of the reference scaffolds associated with that posi-
tion. This property might be the mean of distances com-
puted between a given compound and the reference 
scaffolds associated with its position.
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