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Abstract 

In drug discovery, virtual screening is crucial for identifying potential hit compounds. This study aims to present 
a novel pipeline that employs machine learning models that amalgamates various conventional screening methods. 
A diverse array of protein targets was selected, and their corresponding datasets were subjected to active/decoy 
distribution analysis prior to scoring using four distinct methods: QSAR, Pharmacophore, docking, and 2D shape 
similarity, which were ultimately integrated into a single consensus score. The fine-tuned machine learning models 
were ranked using the novel formula “w_new”, consensus scores were calculated, and an enrichment study was per-
formed for each target. Distinctively, consensus scoring outperformed other methods in specific protein targets such 
as PPARG and DPP4, achieving AUC values of 0.90 and 0.84, respectively. Remarkably, this approach consistently prior-
itized compounds with higher experimental  PIC50 values compared to all other screening methodologies. Moreover, 
the models demonstrated a range of moderate to high performance in terms of  R2 values during external validation. 
In conclusion, this novel workflow consistently delivered superior results, emphasizing the significance of a holistic 
approach in drug discovery, where both quantitative metrics and active enrichment play pivotal roles in identifying 
the best virtual screening methodology.

Scientific contribution
We presented a novel consensus scoring workflow in virtual screening, merging diverse methods for enhanced 
compound selection. We also introduced ‘w_new’, a groundbreaking metric that intricately refines machine learn-
ing model rankings by weighing various model-specific parameters, revolutionizing their efficacy in drug discovery 
in addition to other domains.
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Graphical Abstract

Introduction
In the realm of modern drug discovery, virtual screening 
stands as a pivotal cornerstone [1]. This computational 
strategy serves as the beacon for researchers, direct-
ing them through vast chemical libraries to efficiently 
uncover potential drug candidates [2]. As elucidated by 
Baber, Shirley [3], there exists a burgeoning interest in 
consensus approaches tailored explicitly for ligand-based 
virtual screening. Such approaches are not mere theo-
retical constructs; they are the culmination of intricate 
combinations of multiple properties, each contribut-
ing a unique facet to the screening process. Among the 
properties integrated into these consensus approaches 
are structural, 2D pharmacophore, and property-based 
fingerprints. Additionally, scores derived using BCUT 
descriptors, an Eigenvalue-based molecular descriptor 
[4], and 3D pharmacophore methods further enhance 
the screening’s breadth and depth [5]. Consensus scor-
ing enhances data set enrichment over single scoring 
functions by approximating the true value more closely 
through repeated samplings akin to multiple scoring 
functions, improving active compound clustering thereby 
recovering more actives than decoys [3].

Exploring the methodologies employed in consen-
sus docking programs, Houston and Walkinshaw [6] 
introduced consensus docking as a method to enhance 
the accuracy of pose prediction in virtual screening by 
combining the results from multiple docking programs. 
The study tested Autodock [7], DOCK [8], and Vina [9], 
finding that while individual success rates for accurate 
pose prediction ranged from 55 to 64%, using a consen-
sus approach increased this accuracy to over 82%. This 
method reduces false positives by advancing only those 
compounds to the scoring stage that are similarly docked 
by multiple programs, thereby improving the efficiency 
of virtual screening and the likelihood of identifying 
viable drug candidates. Consensus molecular docking 
workflows are regarded as critical methodologies within 
virtual screening approaches, primarily aimed at enhanc-
ing the identification of genuine actives during virtual 
screening campaigns [10–12]. But the exploration doesn’t 
halt in consensus docking software.

Additional studies delve into the intricate tapestry 
of virtual screening methodologies, uncovering both 
sequential [13] and parallel [14] approaches. Sequential 
approaches, as the name suggests, unfold in a stepwise 
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manner, systematically applying various techniques on 
a progressively decreasing number of compounds. This 
meticulous workflow encompasses stages such as phar-
macophore screening, judicious application of prop-
erty filters, followed by docking, culminating in manual 
selection. In stark contrast, parallel approaches deploy 
a multitude of methods independently but on a consist-
ent number of compounds. Techniques such as pharma-
cophores, similarity methods, and docking are executed 
simultaneously, culminating in a robust automated 
selection process [15, 16]. In a bid to augment virtual 
screening’s precision, researchers introduce a novel prob-
abilistic paradigm. This framework, meticulously crafted 
to combine structure- and ligand-based screening meth-
ods to improve the accuracy of virtual screening predic-
tions by fusing them into robust probabilities of activity, 
providing a quantitative bioactivity likelihood for com-
pounds, thereby enhancing predictions [17].

Navigating further into the heart of the virtual screen-
ing, a comprehensive exploration of traditional consen-
sus scoring unfolds. Four distinct methods emerge in this 
domain: Mean, Median, Min, and Max consensus scor-
ing. Each method, while unique in its approach, seeks to 
compute compound scores, harnessing quantile-normal-
ized scores drawn from various docking programs. Yet, it 
is the introduction of advanced consensus strategies that 
truly exemplifies the study’s innovation [18]. The mean–
variance consensus and gradient boosting consensus 
stand out in this study, seamlessly merging advanced sta-
tistical models, gradient boosting mechanisms, and intri-
cate algorithms to refine and enhance score computation 
[18]. With the debut of machine learning techniques, the 
introduction of the Deep Docking (DD) method marks 
the culmination of this research odyssey. This innovative 
method, fortified with the prowess of artificial intelli-
gence, addresses the challenges posed by the exponential 
growth of chemical libraries, offering a beacon of hope 
for researchers navigating the intricate maze of virtual 
screening [19–21]. In our recent work, we introduced a 
workflow that combines four structure- and ligand-based 
scoring systems to improve the hit rate with a challenge 
of a narrow range of active compounds dataset. The 
results showed that the consensus scoring method out-
performed separate screening methods, achieving the 
highest ROC value [22].

In this study, various protein targets, including G pro-
tein-coupled receptors (GPCRs), kinases, nuclear pro-
teins, proteases, DNA repairing enzymes, and suppressor 
proteins, were explored. We introduce a novel consen-
sus scoring method for holistic virtual screening. This 
method employs a sequence of machine learning models 
organized in a pipeline, with weights assigned based on 
individual model performance using a novel equation. 

We have developed an original formula, termed “W_
new,” which integrates five coefficients of determination 
and error metrics into a single metric to assess model 
robustness. Using this pipeline, we comprehensively 
evaluated multiple molecular targets, scoring them based 
on docking, pharmacophore, shape similarity, and QSAR 
properties, which were used to train machine learning 
models. The selection of the optimal model, based on its 
assigned weight, enabled retrospective scoring of each 
dataset through a weighted average Z-score across the 
four screening methodologies. Additionally, we validated 
the robustness of these models using an external dataset 
to assess predictive performance and generalizability. 
Enrichment studies were conducted to evaluate the effi-
cacy of the workflow.

Methods
Dataset
The datasets for this study were obtained from the 
PubChem database [23] and the Directory of Useful 
Decoys: Enhanced (DUD-E) repository [24], which were 
utilized to amass active compounds and corresponding 
decoys for the selected proteins.  IC50 activity metrics 
were curated from PubChem, encompassing a range of 
forty to sixty-one active compounds per protein. Addi-
tionally, a substantial collection of decoys was meticu-
lously compiled, numbering between 2300 and 5000 for 
each protein. To ensure the robustness and reliability of 
our study, an assessment for identifying and quantify-
ing bias in datasets was conducted, addressing potential 
biases in active compound selection and decoy distribu-
tion. The active compounds were subsequently segre-
gated into distinct sets for testing and validation, as well 
as for external validation purposes. The molecular struc-
tures were neutralized and compound duplication was 
removed, salt ions and small fragments were excluded. 
The  IC50 values were further converted into  pIC50 values 
using the formula  pIC50 = 6 − log  (IC50(μM)). Stereoiso-
mers were systematically generated due to the presence 
of compounds characterized by undefined stereocenters 
within their SMILES representations.

Assessment of datasets for identifying and quantifying 
bias
In this study, we employed a rigorous strategy to mitigate 
bias in analyzing active and decoy datasets for each tar-
get, bolstering the credibility of our findings. An essen-
tial aspect was the incorporation of an external validation 
dataset, unseen during model training. This, coupled 
with satisfactory R2 values, enhances the credibility of 
AUC and other performance metrics, confirming the 
robustness of our models. Additionally, our methodology 
deviates from conventional virtual screening practices, 



Page 4 of 27Moshawih et al. Journal of Cheminformatics           (2024) 16:62 

which typically maintain a 1:50 to 1:65 ratio of active to 
decoys [25–27]. By adopting a more stringent 1:125 ratio, 
we increase the challenge of accurately identifying actives 
within the decoy dataset. Notably, these performance 
metrics primarily facilitate comparative assessments 
between consensus scoring and other screening meth-
ods, demonstrating the superior efficacy and precision of 
consensus scoring.

In this assessment, we’ve employed a three-stage work-
flow to validate the datasets, following Sieg and Flach-
senberg’s criteria for comparative analysis with MUV 
datasets to identify differences [28]. This methodology 
addresses issues highlighted by Sieg et  al., particularly 
biases arising from uneven distributions of physicochem-
ical properties among active and inactive groups, which 
can skew model outcomes. We also examined “ana-
logue bias,” where numerous active analogues from the 
same chemotype inflate model accuracy. This approach 
enhances structural diversity within the datasets, reduc-
ing variability in predictive accuracy and yielding more 
robust and generalizable machine learning models [29].

We initially assessed seventeen physicochemical prop-
erties to ensure balanced representation between active 
compounds and decoys for each protein target. Frag-
ment fingerprints were then used to prioritize diversity 
in compound selection and analyze patterns of similarity 
and diversity among active compounds and decoys. Two-
dimensional principal component analysis (2D PCA) was 
applied to visualize the positioning of active compounds 
relative to decoys for each target. To refine the calcula-
tion of median active neighbors among decoys, adjust-
ments were made to align with the actual decoy pool 
size and the 1:125 active-to-decoy ratio. This enhanced 
the evaluation of spatial relationships within chemical 
space and improved detection of compound distribution 
patterns and potential dataset biases. To compare with 
established datasets, we sampled two random datasets 
from the Maximum Unbiased Validation (MUV) dataset, 
maintaining the same active-to-decoy ratio used in our 
study [30, 31].

Calculation of fingerprints and descriptors for active 
compounds and decoys
In this study, RDKit [32] open-source scripts were uti-
lized to compute a wide range of molecular fingerprints 
and descriptors for both active and decoy compounds 
associated with each protein target. These descriptors 
encompassed Atom-pairs, Avalon, Extended Connectiv-
ity Fingerprints-4 (ECFP 4), (ECFP 6), MACCS, Topo-
logical Torsions fingerprints, as well as partial charges. 
Additionally, a set of ~  211 descriptors provided by 
RDKit was incorporated as chemical compound fea-
tures. For a comprehensive understanding of the specific 

features employed, the pertinent code snippets are avail-
able in the GitHub source repository.

Selection of protein targets and crystal structures
We selected a carefully curated set of protein targets, 
including nuclear receptors, kinases, and enzymes, for 
investigation. These targets underwent robust validation 
using both active compounds and decoy ligands. Addi-
tionally, we deliberately excluded a subset of external 
datasets from the training and testing datasets to prevent 
data leakage and enable evaluation of the computational 
models’ predictive robustness. Crystal structures of 
macromolecular targets (AA2AR, AKT1, CDK2, DPP4, 
PPARG, and EGFR) were obtained from DUD-E, along 
with their corresponding sets of active and decoy ligands. 
Active compounds for TDP1 and the p53 suppressor 
protein were sourced from PubChem and the scientific 
literature, encompassing anthraquinones and chalcone 
chemical classes [33–35].

To prepare the protein and ligand structures for sub-
sequent analyses, Autodock Tools were employed. Pro-
tein crystal structures were retrieved from the Protein 
Data Bank (PDB) [36], where hydrogen atoms were sys-
tematically added, and water molecules were effectively 
removed. Furthermore, the dimensions and resolution 
of the grid maps were established utilizing the AutoGrid 
tool. All compounds were subjected to docking against 
the reference receptor, confined within an 18 Å cubic 
enclosure centered around a co-cyrstalized ligand. Pro-
tonation states were computed for all proteins within a 
pH range of 7 ± 2, with the aim of aligning them with the 
physiological pH conditions. The redocking procedure 
was applied to all protein targets with their respective co-
crystallized ligands.

Pharmacophore scoring
In the analysis of each of the eight datasets, we con-
ducted an assessment aimed at identifying the most 
diverse molecules, with the objective of quantifying their 
resemblance to the remaining compounds within the 
dataset. Utilizing the RDKit and SKlearn packages, an 
algorithm was employed to systematically traverse the 
data rows within the DataFrame. The ECFP4 for each 
compound were calculated, and these fingerprints were 
then subjected to K-means clustering using the scikit-
learn KMeans algorithm. Notably, the selection of a 
cluster count within the range of three to five was made 
to ensure that each resultant cluster would distinctly 
represent a chemically disparate group. Each cluster 
was subjected to a superimposition process, enabling 
the detection of common pharmacophore attributes, 
guided by a set threshold mandating the minimum pres-
ence of 3 to 5 of these features. Pharmacophore features 
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were computed for each cluster using phase module in 
Schrödinger suite [37]. Each compound was scored by 
the group of features calculated in its cluster. This mod-
ule allowed us to generate a pharmacophore model that 
encapsulates the essential structural elements required 
for potent ligand binding. To assess the predictive power 
of our pharmacophore model, we calculated the Root 
Mean Square Error (RMSE) for each active compound 
based on their feature matches with the model. This 
quantitative measure provided a reliable indicator of the 
model’s accuracy in predicting bioactivity.

Docking scoring
The protein structures were retrieved in PDB format and 
processed using AutoDock Tools [7]. Active compounds 
were formatted accordingly and converted to PDBQT 
format using AutoDock Tools, which contains cru-
cial ligand property information and is compatible with 
AutoDock. Ligand preparation involved adjustments for 
stereochemistry, protonation, and the addition of polar 
hydrogen atoms using AutoDockTools. Gasteiger partial 
charges were assigned, and details regarding rotatable 
bond torsions were incorporated into the PDBQT for-
mat. Identification of the protein’s binding pocket was 
based on available structural data or by referencing the 
binding site with the co-crystallized ligand in the origi-
nal PDB file. A cubic grid box was defined around this 
identified binding site, tailored to encompass the pocket 
adequately while allowing ample space for ligand explo-
ration. Grid spacing was determined at an optimal value 
(0.375 Å) to balance computational efficiency and preci-
sion. Molecular docking involved exploring the optimal 
conformation and orientation of the ligand within the 
receptor’s binding site. AutoDock Vina was utilized to 
accommodate flexible ligands, prioritizing conformations 
and binding interactions resembling those of the co-crys-
tallized ligand to calculate docking scores.

2D fingerprint shape similarity scoring
From each of the eight datasets, we computed the most 
diverse molecules to evaluate their resemblance to the 
remaining compounds within the set. The code used 
RDKit and SKlearn to extract SMILES notations from the 
DataFrame, compute ECFP4 fingerprints, and perform 
K-means clustering with K-Means algorithm. To ensure 
each cluster had a representative compound, the number 
of clusters was limited to three or four. Representative 
compounds were determined by choosing those with the 
longest SMILES notation, ensuring greater complexity 
and diversity as a selection criterion [38]. Subsequently, 
shape similarities between each active compound and 
the reference compounds were computed using the Tani-
moto similarity metric. This script serves to compare a 

specified chemical reference compound against a collec-
tion of additional compounds in a CSV file, quantifying 
their structural similarities via the Tanimoto coefficient. 
The highest index for each compound from the reference 
compound list was considered. Code snippets executed 
to perform this process have been added to the GitHub 
link.

Development of the weighted metric (W_new) 
for evaluating machine learning models
A comprehensive ensemble of twelve machine learning 
models was employed, each offering adaptable param-
eter tuning through grid search techniques tailored to 
the specific requirements of each case. These models 
encompassed Decision Trees, K-Nearest Neighbors 
(KNN), AdaBoost, Random Forest, Linear Regression, 
Elastic Net Regression, Gradient Boosting, XGBoost-
ing, and various Support Vector Regression (SVR) 
models, including linear, sigmoid, Radial Basis Function 
(RBF), and Nu-SVR kernels. These diverse models were 
seamlessly integrated into a unified codebase, offer-
ing two distinct options for feature selection: Princi-
pal Component Analysis (PCA) or Mutual Information 
(MI) feature selection. To assess the models’ robustness 
and performance across different cases, we introduced 
a weighted ranking system based on five key evaluation 
metrics: R-squared  (R2) for training and validation sets, 
Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), and Mean Absolute Error (MAE).

In the proposed composite metric formula, several 
statistical measures are integrated to comprehensively 
evaluate the performance of a model. The formula 
begins with the sum of squared R-values,  R2_train +  R2_
val, which represents the proportion of the variance 
in the dependent variable that is predictable from the 
independent variables, so this sum reflects the total 
explanatory power of the model over both datasets. 
When both  R2_train and  R2_val are high, their sum, is 
also high. This sum is part of the numerator in the for-
mula, so a higher sum of performance metrics (P) will 
contribute to a larger value of W_new [39].

Additionally, the formula includes the sum of error 
metrics (E), namely MSE, RMSE, and MAE. This sum 
represents the aggregate magnitude of prediction errors, 
irrespective of their direction. These terms form the 
denominator in the main fraction of the formula. Lower 
values of MSE, RMSE, and MAE result in a smaller 
denominator. Since dividing by a smaller number results 
in a larger value, this will increase W_new [40].

(1)P = R
2
train + R

2
val

.
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We computed the absolute difference (D) between 
R
2
train

 and R2
val

 , and then create an adjustment factor to 
account for the discrepancy:

Then, we added the adjustment factor to penalize dis-
crepancies between training and validation performance:

We combined the performance metric sum (P) with the 
error metric sum (E) and adjust based on the discrepancy 
adjustment factor (A):

Finally, we normalized W to ensure it’s within a specific 
range (0–1), by dividing it by 1+W  [41, 42].

Putting it all together, we get:

The proposed weight formula, “w_new,” assigns higher 
weights to models with superior performance, charac-
terized by elevated  R2 scores in training and validation, 
decreased MAE, RMSE, and MSE values, and smaller 
discrepancies between training and validation  R2 scores, 
indicating resistance to overfitting. Conversely, models 
with lower performance receive reduced w_new values, 
as evidenced by diminished  R2 scores, increased MAE, 
RMSE, and MSE values, and larger training-validation  R2 
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score gaps. Notably, w_new is applicable when training 
and validation  R2 scores range between 0 and 1, with the 
algorithm excluding results beyond this interval to ensure 
the identification of adequately performing models.

Furthermore, it’s noteworthy that each individual 
machine learning model integrated into the aforemen-
tioned code was fine-tuned using the w_new formula. 
This fine-tuning process involved specific cross-valida-
tion techniques and the selection of an optimal number 
of PCA components or features through the script. This 
meticulous approach facilitated the identification of the 
best-performing machine learning model, characterized 
by the highest w_new value. All the code snippets, per-
formed in this study, have been documented and made 
accessible on GitHub.

Establishing predictive workflow through consensus 
holistic virtual screening
Upon identifying the most robust model for each dataset 
using four scoring methods—PIC50 (QSAR), pharmaco-
phore, docking, and shape similarity—a detailed evalua-
tion was conducted. This included training each model 
on a training dataset and evaluating its performance on a 
separate validation dataset, split in a 70:30 ratio. Further 
validation was performed on an external dataset to com-
pute  R2 and confirm prediction robustness. For a holis-
tic model assessment, both active and decoy compounds 
were scored using the same approach, with scores stand-
ardized via z-scoring. Each score was then adjusted by 
the w_new factor from the previous step. A weighted 
average score was calculated for each compound, leading 
to their descending order ranking based on these scores. 
This ranked list underpinned the creation of an enrich-
ment curve, as depicted in Fig. 1.

Results
In this study, we analyzed eight protein targets across 
diverse functional categories, including GPCRs, kinases, 
nuclear proteins, proteases, DNA repair enzymes, and 
tumor suppressor proteins. Table 1 details the meticulous 
examination of active and decoy compounds sourced 
from the DUD-E database for each target. Notably, 
active compounds for TDP1 and p53 were exclusively 

Fig. 1 Comprehensive Workflow for the Consensus Holistic Virtual Screening. A Selection of protein targets spanning diverse categories, 
including G protein-coupled receptors (GPCR), kinases, nuclear proteins, proteases, and other targets. B Calculation of fingerprints and descriptors 
for both active and decoy datasets, along with the computation of four distinct scoring metrics for active datasets per target. C Integration 
of twelve machine learning models in the pipeline to identify the most optimal dataset within each scoring category. D Utilization of a novel 
formula to determine optimal parameters based on the highest w_new value. E Evaluation of the entire workflow’s performance, including ROC 
curve analysis and other metrics, to demonstrate its effectiveness

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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selected from anthraquinone and chalcone chemical 
classes, sourced from PubChem, BindingDB, and litera-
ture. Decoy sets for these targets were generated using 
the “Generate Decoys Tab” in DUD-E. This departure 
aimed to evaluate the efficacy of the consensus holistic 
virtual screening strategy across diverse datasets. Addi-
tionally, the methodology was evaluated for its impact on 
performance metrics within new settings [32], building 
on previous evaluations. External datasets were used for 
predictive capability assessment, and R2 values were cal-
culated for validation.

Comparative analysis of bias in datasets distribution 
and diversity
Figure 2A displays the distribution of active compounds 
among decoys across each target protein, along with 
their neighboring active and decoy compounds. Except 
for TDP1 and p53, distribution patterns across other 
targets closely resembled those in MUV datasets (par-
ticularly MUV-737 and MUV-810). Active compounds 
were positioned in central and peripheral regions, indi-
cating diverse interactions with other actives and decoys. 
Deviation in TDP1 and p53 datasets is attributed to their 
unique composition with anthraquinone and chalcone 
derivatives, suggesting stronger connections among 
themselves and differentiation from decoys. These data-
sets were designed to explore dataset incompatibilities, 
as previously studied [22], and their influence on perfor-
mance metrics was assessed in the current study.

The Rubber Band Scaling algorithm used in the simi-
larity maps assigns compounds random positions in a 
quadratic space to minimize the distance between them. 
Optimization cycles adjust compound positions based 
on their similarity relationships defined by the Fragment 
Fingerprint descriptor. Compounds are moved closer or 
further apart to reflect their chemical similarity, ensuring 
similar compounds are close neighbors in the visualiza-
tion [43]. The maps are color-coded based on diversity 

selection ranking, with higher values indicating less 
diversity (green) and lower values indicating more diver-
sity (red). Similarity in this metric between active com-
pounds and decoys suggests homogeneity in chemical 
class diversity. However, greater diversity among active 
compounds can enhance heterogeneity in training and 
testing sets, minimizing bias in machine learning scoring 
functions, as described by Li and Yang [29]. Refer to the 
Supplementary Material 3 file for a detailed view of the 
components in Figure 2A, B, and C.

Data from the similarity maps, presented in Table  2, 
reveal average diversity rank differences between active 
compounds and decoys across various target datasets. 
The diversity range of these datasets aligns with that of 
the two MUV datasets in this study, facilitating compara-
tive diversity analysis against a recognized benchmark. 
Notably, some datasets, like DPP4, show no significant 
diversity differences between actives and decoys, while 
most exhibit significant differences. Unlike MUV-810 
and DPP4, most datasets feature more diverse actives 
(lower values) than decoys, potentially enhancing train-
ing and testing compound diversity relative to decoys 
[44]. The most pronounced differences in diversity ranks 
between active compounds and decoys were identified 
within the TDP1 and p53 datasets, translating the graphi-
cal clustering of active compounds into a quantifiable dis-
parity in diversity rank. This distinction does not imply 
higher overall diversity but rather delineates the active 
compounds’ separation from decoys, attributed to their 
aggregation in confined areas of the maps.

In Fig.  2B, seventeen physicochemical properties 
were computed for all datasets and compared with 
two MUV datasets. The minimal differences between 
actives and decoys across the protein target datasets, 
ranging from 7 to 11, mirror the consistency seen in the 
MUV datasets, where 10 to 11 non-significant prop-
erty differences were observed in MUV-810 and MUV-
737, respectively (see Table  2). This indicates fewer 

Table 1 Enumeration of the protein targets studied, detailing counts of active compounds, decoys, the number of external validation 
datasets, and the respective PDB IDs used to score active compounds within each target dataset

Protein target No. of actives No. of decoys No. of actives in the external 
validation

PDB ID

AA2AR 40 5000 10 3EML

AKT1 40 5000 10 3CQW

CDK2 40 5000 10 1H00

DPP4 47 5000 10 2I78

TDP1 51 2700 11 6N0D

PPARG 43 5000 10 2GTK

EGFR 50 5000 10 2RGP

P53 20 2300 5 6GGB
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disparities between actives and decoys, enhancing data-
set reliability and comparability with established bench-
marks [45]. In the final validation phase, PCA was used 
to visualize both active compounds and decoys, incor-
porating all utilized fingerprints and descriptors from 
model training. Classification was performed to dif-
ferentiate between active and decoy compounds based 
on predefined titles, enabling focused examination 

of molecular characteristics distinguishing active 
compounds from inactive ones. Euclidean distances 
between each active compound and all decoys within 
the dimensionally reduced space were computed, with 
a threshold distance set by the 10th percentile of these 
distances facilitating identification and enumeration 
of decoys considered ’neighbors’ to each active com-
pound. This neighbor count served as an indicator for 

Fig. 2 Comparative analysis of active compounds and decoys across eight datasets employed in this study and two MUV datasets. A Similarity 
maps, generated via the 2D Rubber Band Scaling algorithm utilizing fragment fingerprints, depict the spatial arrangement of active compounds 
in comparison to decoys. These maps are color-coded according to the diversity selection rank, offering a visual representation of the compounds’ 
distribution. B Distribution of physicochemical properties for seventeen distinct properties between actives and decoys. C Principal Component 
Analysis maps constructed from eight types of descriptors, demonstrating the segregation of active compounds from decoys
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assessing the similarity level between actives and the 
decoy-dominant chemical space. The analytical results 
were summarized into a statistical metric, the median 
number of neighbors, subsequently normalized against 
the decoy count and the active-to-decoy ratio percent-
age. For a graphical representation of this process, refer 
to Fig. 2C.

As demonstrated in Table 2, AKT1 exhibited the high-
est median number of active neighbors among decoys, 
with a value of 563, followed by MUV-737 at 552.6. 
Conversely, TDP1 and p53 displayed the lowest median 
numbers of neighbors, at 112.23 and 74.35, respectively, 

with MUV-810 showing the third lowest at 318.60. The 
diminished neighbor count observed for these active 
compounds suggests a higher selectivity or a lower 
chemical similarity compared to actives surrounded by 
a greater number of decoy neighbors [46]. As previously 
mentioned, the actives within the TDP1 and p53 data-
sets belong to two distinct chemical classes, leading to a 
propensity for clustering amongst themselves rather than 
mingling with decoys. This distribution highlights how 
the protein datasets in question align with the bench-
mark established by the MUV dataset.

Fig. 2 continued
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Analysis of different screening scores 
across macromolecular targets
It is noteworthy, as illustrated in Fig.  3, that the distri-
bution of  PIC50 values of both p53 and TDP1 diverges 
significantly from the broader spectrum of other macro-
molecular targets, with the latter target dataset exhibit-
ing a considerably wider range of activities. Additionally, 
we must highlight the relatively balanced distribution 
observed across various scoring metrics, encompassing 

pharmacophore analysis, docking simulations, and simi-
larity scoring for both TDP1 and p53. Of particular inter-
est is the exceptional performance observed in the case 
of similarity scores, which are distributed more evenly 
across the entire cohort of targets. In contrast, pharma-
cophore scores, followed by docking scores, reveal less 
uniform distributions for specific targets. Nevertheless, it 
becomes apparent that distinct computational methodol-
ogies yield varying levels of performance, not intrinsically 

Fig. 2 continued
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associated with their respective average “w_new” val-
ues. Among these methodologies, the pharmacophore 
approach emerges as the most robust, displaying the 
highest average “w_new” value of ~ 0.965. Closely fol-
lowing, the shape similarity method demonstrates com-
mendable performance, with an average “w_new” value 
of ~ 0.895. Conversely, the results of Docking screening 
yield a comparatively lower average “w_new” value, ~ 
0.681. Lastly, the “PIC50” scoring approach exhibits the 
least favorable performance, denoted by its lowest aver-
age “w_new” value of ~ 0.671. These findings underscore 
the considerable variability in the predictive capabilities 
of these screening methodologies within the context of 
our study.

Machine learning models generated and their 
performance
In this study, several machine learning models exhibit 
distinct performance metrics. SVR models that include 
all kinds of SVR and Nu-SVR models with different ker-
nels, on average, yield an  R2-training score of ~  0.854 
and an  R2-validation score of 0.749. Its MAE stands 
at 0.147, with an RMSE of about 0.180. The Adaboost 
models achieve an average  R2-training score of 0.967 
and an  R2-validation score of 0.825. Decision Trees, 

characterized by a more flexible structure, report an 
 R2-training value of 0.843 and an  R2-validation value 
of 0.709. The Elastic Net and linear Regression models 
present an  R2-training score of 0.878 and a validation 
score of 0.792. Gradient Boosting, a boosting ensemble 
method widely used in QSAR modeling [47], showcases 
impressive scores with an  R2-training of 0.999 and an 
 R2-validation of 0.978. The k-Nearest Neighbors (KNN) 
models register an  R2-training score of 0.999 and a vali-
dation score of 0.878. Across these models, the w_new 
parameter displays a range of values, with Gradient 
Boosting exhibiting the highest average value of 0.974, 
suggesting its superior performance in the given context 
as depicted in Fig. 4.

The evaluation of an external validation dataset reveals 
variable predictability among proteins, with  R2 values 
ranging from 0.625 for p53 to 0.891 for AA2AR, reflect-
ing differences in inhibitory concentrations. High  R2 val-
ues for AA2AR (0.891) and EGFR (0.797) indicate potent 
inhibitory effects, demonstrating the models’ predictive 
accuracy. Pharmacophore scores, particularly for AA2AR 
 (R2 = 0.905) and PPARG  (R2 = 0.810), suggest reliable 
pharmacophore model predictions. Docking scores vary, 
with CDK2  (R2 = 0.766) and PPARG  (R2 = 0.739) indicat-
ing precise docking efficiency predictions. The analysis of 

Table 2 Analysis of the mean diversity rank of active compounds and decoys, significant and insignificant differences between actives 
and decoys in the physicochemical properties, and the corrected median number of neighbors for actives within the PCA framework 
in the dataset targets

*Indicates a significant difference between actives and decoys in the T-test at p < 0.05

Dataset Actives mean 
diversity rank

Decoys mean 
diversity rank

Physicochemical
Significant Differences

Number of median 
nieghbors for the actives in 
the PCA

Corrected number of median 
nieghbors for the actives in the 
PCA

Significant Non-
Significant

AA2AR 1851.72* 2525.85 7 10 444.50 444.50

AKT1 1717.10* 2526.92 8 9 563.00 563.00

CDK2 1783.22* 2526.39 6 11 395.00 395.00

DPP4 2651.82 2522.29 9 8 576.00 490.21

TDP1 448.11* 1402.07 10 7 167.00 112.23

PPARG 1798.53* 2527.71 10 7 567.00 527.44

EGFR 1471.02* 2546.04 10 7 371.50 371.50

P53 577.25* 1132.39 9 8 74.00 74.35

MUV-737 2277.36* 1887.40 6 11 415.50 552.60

MUV-810 2210.06 1887.15 7 10 239.00 318.60

Fig. 3 Distribution of various bioactivity metrics across different protein targets. The four panels represent the distributions of Docking, PIC50, 
Pharmacophore, and Similarity values for eight protein targets (AA2AR, AKT1, CDK2, DPP4, TDP1, PPARG, EGFR, and p53). Each violin plot depicts 
the distribution of values for the respective metric, with the width of the plot at different values indicating the density of data points. The inner lines 
represent quartiles of the distribution

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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2D fingerprint shape similarity metrics shows significant 
variation, with DPP4 and TDP1 exhibiting higher scores, 
while p53’s lower value is attributed to the dataset’s small 
size, as shown in Fig. 4.

In the pursuit of robust scoring methods for producing a 
robust consensus holistic virtual screening within a diverse 
set of molecular targets, various machine learning models 
and kernels were employed, each yielding specific w_new 
values indicative of their performance. The Docking scor-
ing method primarily employed SVR ML models with an 
RBF kernel, resulting in a w_new value of 0.872. In con-
trast, the QSAR  (PIC50) scoring method utilized the same 
SVR ML model with an RBF kernel, yielding w_new aver-
age value of 0.888. The shape similarity scoring method was 
predominantly associated with the Adaboost ML model, 
which produced w_new value at 0.969. Similarly, the phar-
macophore scoring method was best represented by the 
Adaboost ML model, achieving the highest w_new value of 
0.986 among all scoring methods screened as illustrated in 
Table 3.

Factors influencing w_new values
To find out the factors with a higher influence on w_new 
and the effects of model complexity against performance 
metrics we employed several techniques. We analyzed the 
correlation between the five performance metrics previ-
ously mentioned with cross-validation times, number of 
PCA components/features, and model parameters such as 
model cost and gamma, Nu value in SVR, L1 (Lasso), and 
L2 (Ridge) regularization in addition to other hyperpa-
rameters according in the model employed as clarified in 
the Supplementary information Table 1. From Fig. 5, The 
correlation coefficients between w_new and the various 
metrics are as follows:  R2-training equals 0.1265, R2-val-
idation is 0.4638, MAE =  − 0.9022, RMSE =  − 0.9324, 
MSE =  − 0.8729.  R2-training and  R2-validation have posi-
tive mild and moderate correlations with w_new, respec-
tively. However, the correlation with MAE, RMSE, and 
MSE have strong negative correlations with w_new. As the 
error metrics increase, w_new tends to decrease. Among 
the error metrics, RMSE has the strongest negative rela-
tionship with w_new, followed by MSE and then MAE.

In pursuit of a deeper understanding of the contribu-
tions of various metrics to the variable w_new, a multiple 
linear regression analysis was conducted. This rigorous 

examination sought to discern the individual influence of 
each metric on w_new while effectively controlling for the 
presence of other metrics. The formulated multiple linear 
regression model is articulated as follows:

The multiple linear regression model constructed 
here consists of β0 representing the intercept, while 
β1 to β5 correspond to the coefficients of the variables, 
and ϵ denotes the error term. Analysis of these coeffi-
cients reveals the relationship between w_new and the 
metrics as follows: β0, the intercept, at 0.7902 indicates 
the predicted value of w_new when all variables are at 
zero. β1  (R2-training) suggests a decrement of 0.1588 
in w_new per unit increase in  R2-training, holding 
other variables constant. Conversely, β2  (R2-validation) 
shows an increase of 0.4065 in w_new per unit rise in 
 R2-validation, with other variables fixed. β3 (MAE) 
implies w_new increases by 0.6306 for each unit escala-
tion in MAE, controlling for other variables. β4 (RMSE) 
indicates a reduction of 1.5866 in w_new per unit aug-
mentation in RMSE, maintaining other variables. β5 
(MSE) reveals an increase of 0.1938 in w_new for each 
unit increase in MSE, with other variables steady. The 
error term (ϵ) coefficient demonstrates a marginal 
positive influence on w_new, quantified at 0.0002. 
Statistical significance was assessed using associated 
p-values, where p-values < 0.05 were considered signifi-
cant. The analysis indicates significant coefficients for 
 R2-training,  R2-validation, RMSE, and the error term, 
while MAE and MSE may not be statistically significant 
predictors of w_new when considered alongside other 
variables. Overall,  R2-validation and RMSE emerge as 
the most influential factors impacting w_new, based on 
their coefficient magnitudes and statistical significance 
levels. These findings suggest that factors such as PCA/
features components, parameters of each model, and 
cross-validation times have less impact on w_new.

w_new =β0+ β1× R2
train + β2× R2

validation
+ β3×MAE
+ β4 × RMSE + β5×MSE + ε.

(See figure on next page.)
Fig. 4 Comparative Analysis of Machine Learning Model Performances in the consensus holistic workflow: The upper panel presents a series 
of box plots showcasing the distribution of performance metrics such as  R2 validation and training, W_new, MAE, MSE, and RMSE for various 
machine learning models. The lower panel illustrates the  R2 values for external validation of four key predictive features—PIC50, Pharm, Docking, 
and Similarity—across multiple target proteins, providing insights into the predictive accuracy and reliability of the models employed
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Fig. 4 (See legend on previous page.)
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The effects of different factors on w_new in individual 
models
The exploration of various machine learning mod-
els unveiled consistent patterns in the relationship 
between the parameter w_new and model perfor-
mance metrics. Across models like Adaboost, Decision 
Tree, Elastic Net Regression, SVR, and KNN, w_new 
displayed discernible associations. Notably, positive 
correlations were observed between w_new and cer-
tain performance indicators like ’Cross-validation’ 
and  R2-validation, suggesting that higher w_new val-
ues align with improved validation scores. Conversely, 

w_new consistently exhibited negative relationships 
with error metrics such as RMSE, MAE, and MSE, 
indicating that an increase in w_new corresponded to 
decreased error rates across models. Additionally, some 
models showcased nuanced relationships between w_
new and specific parameters, like ’Minimum sample 
split’ in the Decision Tree and ’Model gamma’ in SVR. 
Overall, the consistent trends suggest that w_new plays 
a significant role in influencing model performance, 
particularly in relation to validation scores and error 
metrics, across diverse machine learning models [48]. 
See the Supplementary Fig. 1 for more details.

Table 3 Machine learning models used for each target protein within four screening methods,  PIC50, pharmacophore, docking, and 
shape similarity with models’ performance metrics

Target protein Scoring method ML model Model metrics

R2-train R2-val MAE RMSE MSE w_new R2-ext

AA2AR PIC50 SVR RBF 0.910 0.838 0.270 0.339 0.115 0.673 0.891

pharm KNN 0.999 0.880 0.037 0.048 0.002 0.944 0.905

Docking Elastic net Reg 0.887 0.855 0.281 0.339 0.115 0.689 0.864

Similarity Nu-SVR linear 0.943 0.789 0.073 0.089 0.008 0.882 0.818

TDP1 PIC50 Dec. Tree 0.999 0.465 0.125 0.200 0.040 0.549 0.631

pharm Dec. Tree 0.914 0.889 0.030 0.049 0.002 0.955 0.726

Docking Dec. Tree 0.939 0.586 0.241 0.342 0.117 0.510 0.621

Similarity Elastic net Reg 0.755 0.614 0.058 0.077 0.006 0.880 0.667

EGFR PIC50 Random forest 0.790 0.820 0.406 0.434 0.188 0.596 0.797

pharm Adaboost 0.925 0.786 0.009 0.014 0 0.983 0.791

Docking Adaboost 0.992 0.883 0.340 0.403 0.106 0.625 0.721

Similarity Adaboost 0.999 0.863 0.067 0.086 0.007 0.899 0.603

Akt1 PIC50 SVR RBF 0.682 0.743 0.185 0.216 0.047 0.738 0.642

pharm KNN 0.999 0.940 0.022 0.031 0.001 0.969 0.782

Docking SVR RBF 0.812 0.806 0.176 0.242 0.059 0.770 0.700

Similarity Adaboost 0.974 0.805 0.076 0.076 0.011 0.886 0.761

DPP4 PIC50 Nu-SVR
RBF

0.883 0.847 0.088 0.104 0.011 0.888 0.728

pharm Nu-SVR
RBF

0.994 0.632 0.027 0.034 0.001 0.925 0.776

Docking Adaboost 0.942 0.760 0.166 0.187 0.035 0.752 0.716

Similarity Adaboost 0.979 0.901 0.022 0.028 0.001 0.969 0.842

CDK2 PIC50 Random Forest 0.758 0.604 0.319 0.359 0.129 0.553 0.674

pharm Dec. Tree 0.786 0.809 0.012 0.016 0 0.982 0.678

Docking SVR RBF 0.708 0.644 0.074 0.092 0.008 0.872 0.766

Similarity Dec. Tree 0.708 0.828 0.064 0.099 0.010 0.874 0.737

PPARG PIC50 Adaboost 0.939 0.780 0.358 0.412 0.170 0.570 0.711

pharm Gradient boosting 0.999 0.978 0.022 0.027 0.001 0.974 0.810

Docking Nu-SVR RBF 0.903 0.690 0.285 0.324 0.105 0.591 0.739

Similarity KNN 0.999 0.814 0.038 0.047 0.002 0.935 0.605

P53 PIC50 Dec. Tree 0.714 0.676 0.144 0.159 0.025 0.797 0.624

pharm Adaboost 0.985 0.959 0.012 0.015 0 0.986 0.607

Docking Elastic net Reg 0.993 0.906 0.351 0.401 0.161 0.636 0.651

Similarity Adaboost 0.969 0.691 0.086 0.092 0.009 0.834 0.586
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Fig. 5 Pairplot shows the correlations between performance metrics and models parameters, cross-validation, and numbers of PCA and features 
components
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The effects of hyperparameters on w_new in individual 
models
In computational modeling, the relationship between 
model complexity and hyperparameters, particularly 
in KNN models, highlights the critical influence of the 
number of neighbors (“K”) on model performance, show-
ing a negative correlation of -0.877 with w_new. Decreas-
ing “K” simplifies the model and improves prediction 
accuracy, notably in shape similarity and pharmacophore 
models, diverging from other QSAR model outcomes 
[49]. For Elastic Net models, model_alpha and the “L1 
Ratio” hyperparameters significantly impact complexity, 
with negative correlations of −  0.349 and −  0.978 with 
w_new, respectively, indicating their strong influence on 
reducing model complexity [50]. Refer to Fig. 6 for a visu-
alization of these relationships.

The Random Forest model demonstrates complex-
ity modulation through hyperparameters, where “Max 
depth” and “Number of Estimators” exhibit high positive 
correlations with w_new, indicating an increase in model 
intricacy as these parameters increase [51] as depicted in 
Fig. 6. Conversely, “Min sample leaf” and “Min samples 
split” show significantly high negative correlations with 
w_new, implying a decrease in w_new with the escala-
tion of these parameters [52]. In the Adaboost mod-
els, the “Number of Estimators” shows a slight positive 

correlation (0.014) with w_new, while the “learning rate” 
exhibits a significant negative correlation (− 0.321), sug-
gesting a decrease in model complexity with a higher 
learning rate. In SVR, the “Model cost” and “Model 
gamma” parameters show negative correlations of 
− 0.247 and − 0.149 with w_new, respectively, indicating 
their roles in slightly reducing model complexity as they 
increase [53, 54].

Overall, the analysis highlights the varied impacts of 
hyperparameters on model complexity, with some lead-
ing to increased complexity and others to simplification, 
depending on the model and hyperparameter [55]. Sim-
plified models favored in this study enhance interpret-
ability and computational efficiency, offering advantages 
in real-time scenarios and environments with limited 
computing capacity [56]. Moreover, their simplicity is 
advantageous in situations with restricted data availabil-
ity, showcasing superior performance relative to more 
complex models prone to overfitting and sensitivity to 
noise in sparse datasets [57].

Enrichment metrics for the consensus holistic scoring 
in comparison to individual screening methods
In evaluating various screening methods against consen-
sus screening for different protein targets, we detailed 
their performance metrics, including AUC ROC, EF1%, 

Fig. 6 Bar plot illustrating the correlation strengths between various model parameters and the metric ‘w_new’ across different machine 
learning models. Each bar represents the correlation value of a specific parameter with ‘w_new’ for a given model. Positive values indicate a direct 
relationship, while negative values suggest an inverse relationship between the parameter and ‘w_new’
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EF5%, decoy percentage at 1%, and Boltzmann-Enhanced 
Discrimination of ROC (BEDROC) values, as defined in 
the Supplementary information and Fig. 7. For the AKT1 
protein target, docking screening exhibited superior 
performance with an AUC ROC score of 0.87, margin-
ally higher than the consensus score of 0.85. Similarity 
screening followed with a score of 0.79, while Pharmaco-
phore and QSAR methods registered scores of 0.74 and 
0.64, respectively. In terms of EF1%, Similarity screening 
outperformed with a score of 63.0, surpassing the con-
sensus score of 57.5. Docking and QSAR methods both 
achieved 40.0, and Pharmacophore screening was lower 
at 22.68. BEDROC scores showed Similarity screening 
leading with 0.5443, above the consensus of 0.523, fol-
lowed by QSAR (0.3935), Docking (0.3174), and Pharma-
cophore (0.224).

For the CDK2 protein, docking screening again excelled 
with an AUC score of 0.84, slightly above the consensus 
of 0.83. Similarity and Pharmacophore screenings scored 
0.61 and 0.59, respectively, with QSAR trailing at 0.56. 
EF1% values showed Docking leading significantly with 
78.12, well above the consensus of 65.0. QSAR recorded 
45.36, with Similarity and Pharmacophore screenings at 
25.2 and 27.72, respectively. BEDROC values for Docking 
and QSAR were close to the consensus score of 0.4192, 

at 0.4864 and 0.3203, respectively, while Similarity and 
Pharmacophore screenings had lower values of 0.2168 
and 0.2354. This comprehensive evaluation, detailed in 
Supplementary Table 2, underscores the variable efficacy 
of screening methods across protein targets, informing 
their strategic application in virtual screening.

In the evaluation of DPP4 using consensus scoring, the 
QSAR screening method’s AUC score of 0.82 is closely 
matched to the consensus of 0.84, with Pharmacophore 
and Similarity methods yielding lower scores of 0.65 and 
0.66, respectively, and docking the lowest at 0.56. For 
EF1%, QSAR and consensus both achieve 46.81, with 
Similarity at 36.17, Pharmacophore at 31.91 and dock-
ing significantly lower at 8.51. In BEDROC scores, QSAR 
exceeds consensus with 0.4893 versus 0.4559, followed 
by Pharmacophore and Similarity methods at 0.381 and 
0.3646, respectively, and docking considerably behind at 
0.0969.

For the EGFR protein, Pharmacophore screening excels 
with an AUC of 0.93, exceeding the consensus of 0.77. 
Similarity screening is close to consensus at 0.73, with 
QSAR at 0.64, and docking significantly behind at 0.36. 
QSAR’s EF1% of 30.3 is near the consensus of 34.67, 
with Similarity and Docking trailing at 13.86 and 14.18, 
respectively, and Pharmacophore notably lower at 3.96. 

Fig. 7 Area under the ROC curve for (A) consensus scoring method in protein targets involved in this study in comparison to (B) each target 
evaluated by four different screening methods; QSAR  (PIC50), Docking, pharmacophore, and shape similarity screenings in comparison 
with the consensus scoring
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Fig. 7 continued
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BEDROC metrics show all methods aligning closely 
around the consensus of 0.6139, except for QSAR which 
lags at 0.3649. Refer to Fig. 7 for ROC curves of the vari-
ous scoring and screening methodologies.

For the AA2AR, the QSAR screening method achieved 
an AUC of 0.78, marginally higher than the consensus 
of 0.77, followed by Docking at 0.72. Pharmacophore 
screening recorded a lower AUC of 0.54, with Similarity 
trailing at 0.4. In the EF1% evaluation, Pharmacophore 
led with 50.4, above the consensus of 45.36, and docking 
at 42.84, while QSAR and Similarity both reported 0.0. 
BEDROC scores for Pharmacophore and Docking were 
close to the consensus of 0.4401, at 0.3962 and 0.3974, 
respectively.

In contrast, for the p53 protein, Pharmacophore 
screening achieved the highest AUC of 0.93, slightly 
above the consensus of 0.90, with Docking at 0.77 and 
Similarity at 0.64. QSAR was notably lower at 0.49. Phar-
macophore screening exhibited outstanding EF1% per-
formance at 88.96, surpassing the consensus of 76.82. In 
BEDROC metrics, Pharmacophore again led with 0.4661, 
exceeding the consensus of 0.4336, followed by Dock-
ing and Similarity at 0.3553 and 0.2952, respectively, and 
QSAR at 0.1445.

In the case of the PPARG protein, the Pharmacophore 
screening method achieved an AUC ROC of 0.80, near 
the consensus of 0.90, with Similarity, QSAR, and Dock-
ing methods following at 0.69, 0.67, and 0.66, respec-
tively. In EF1%, Docking led with 48.67, exceeding the 
consensus of 42.35. Docking also topped the BEDROC 
metric with 0.3135, surpassing the consensus of 0.2896, 
with Similarity and QSAR at 0.1354 and 0.2372, respec-
tively. Regarding the TDP1 protein, Pharmacophore 
screening outperformed with an AUC of 0.84, above the 
consensus of 0.73. Similarity matched the consensus at 
0.73, while Docking and QSAR lagged with 0.4 and 0.3, 
respectively. For BEDROC, Pharmacophore significantly 
led with 0.2319, doubling the consensus of 0.1184, with 
Similarity and Docking at 0.1271 and 0.0623, and QSAR 
at 0.0163, indicating a marked disparity in the early 
detection of actives across screening methods.

The consensus holistic scoring in comparison to other 
consensus virtual screening methods
A comparative analysis of three consensus docking 
approaches reveals distinct advantages and disadvan-
tages. Houston and Walkinshaw [6] demonstrated 
improved pose prediction accuracy (82% success rate) 
and reduced false positives by integrating multiple dock-
ing programs, albeit with increased computational costs 
and potential rise in false negatives. Besides, Ochoa, 
Palacio-Rodriguez [10] introduced a score-based consen-
sus docking approach with higher success rates in pose 

prediction and consideration of biological target flex-
ibility, but its efficacy may depend on individual docking 
program performance and could introduce biases toward 
certain molecules or poses. The pose rank consensus 
(PRC) method [11], significantly improves systematic 
performance and hit rates at minimal computational 
cost, yet its effectiveness relies on individual docking 
program performance and may have limitations in sce-
narios with few ligands or underperforming target pro-
teins. Studies indicate that increasing time allocated for 
consensus docking calculations may not significantly 
improve method performance, highlighting nuanced 
trade-offs between accuracy, computational efficiency, 
and inherent limitations of consensus docking in virtual 
screening [58].

The combined use of ligand- and structure-based 
methodologies in computer-aided drug design optimizes 
chemical and biological data integration, enhancing effi-
cacy through synergistic exploitation of their respective 
advantages while mitigating individual drawbacks. This 
integrated approach typically outperforms standalone 
methods, especially when employing parallel or other 
integrated techniques to automate and streamline virtual 
screening processes [15]. However, challenges persist, 
including the subjective and intricate nature of sequential 
approach selection, the complexity of method combina-
tion in parallel strategies, and limitations in accurately 
predicting future virtual screening performance through 
retrospective analyses. Prospective assessments, though 
more indicative of method efficacy in identifying diverse 
new hits, demand significantly greater resources and 
expertise for execution [59].

Swann, Brown [17] devised a novel consensus method 
merging structure-based and ligand-based screening 
into a unified probabilistic framework, demonstrating 
superior performance compared to individual metrics. 
This approach integrates comprehensive chemical and 
structural data, enhancing the diversity of identified 
active compounds and offering a fresh perspective on 
chemical similarity for drug discovery. Despite its trans-
formative potential in virtual screening, challenges arise 
from the complexity of developing and validating Prob-
ability Assignment Curves (PACs), potentially restrict-
ing accessibility to researchers without computational 
expertise. Furthermore, the method’s efficacy depends on 
data quality, necessitating caution regarding generaliz-
ability and advocating for inclusive tools or guidelines to 
improve accessibility. Extensive validation efforts under-
score concerns regarding dataset biases, highlighting the 
need for broader validation to ensure method robustness 
and mitigate overfitting risks.

The consensus holistic scoring method showcased 
in this study outperforms singular methodologies in 
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identifying potential hit compounds across diverse 
protein targets. Introduction of the “w_new” metric 
enhances drug discovery efficacy by refining ML model 
rankings, albeit without consistently yielding opti-
mal ROC curves. Nevertheless, it effectively prioritizes 
compounds with higher experimental activity, ensur-
ing a robust screening process. Validation against biases 
between active compounds and decoys enhances predic-
tion reliability. However, the method primarily serves 
as a scoring tool for refining true positives and does not 
offer insights into binding pose predictions. Integration 
of multiple screening methods and ML models demands 
substantial computational resources and expertise, along 
with labor and time-intensive validation and tuning for 
each target-specific ML model.

Discussion
Combining diverse methodologies in drug discovery 
yields comprehensive insights into ligand-receptor inter-
actions, crucial for designing potent binders. Molecular 
docking predicts binding affinity and ligand orientation in 
proteins, unveiling interaction insights. Pharmacophore 
modeling identifies critical features for spacial arrange-
ment required for binding, guiding enhanced compound 
design. 3D-QSAR analysis quantitatively links ligand 
structure to biological activity, enabling activity predic-
tions for new compounds [60]. Furthermore, the value of 
molecular similarity in drug discovery becomes apparent 
when integrating 2D and 3D shape similarity methods, 
which contribute significantly to a more comprehensive 
workflow for identifying molecules with similar struc-
tures and properties [61]. Integrating these methods 
offers a holistic view, elucidating key structural elements 
and their impact on activity. This integrated approach 
ensures precise predictions, empowering rational design 
and optimization of novel drug candidates.

Based on our analysis, the incorporation of weighted 
machine learning algorithms streamlined the identifi-
cation of the optimal model among the twelve machine 
learning models introduced in this study, which encom-
pass commonly-utilized ML models. This coding frame-
work holds applicability across a wide spectrum of 
applications and can readily integrate the novel “w_new” 
formula into various contexts, particularly within con-
tinuous regression models, whether applied to virtual 
screening or other domains. The amalgamation of three 
key performance enhancers, namely error reduction,  R2 
enhancement across training and validation sets, and 
mitigation of overfitting risks by minimizing the disparity 
between  R2 values in training and validation, represents, 
to the best of our knowledge, a novel conceptual advance.

In this investigation, we devised a streamlined 
approach for the examination of active and decoy 

distribution in the datasets, intending to identify bias and 
accurately evaluate the performance metrics of models. 
A three-stage workflow was developed for dataset valida-
tion, including quantification of physicochemical proper-
ties, diversity analysis through fragment fingerprints, and 
the graphical depiction of compound distributions using 
2D PCA. This methodology not only addressed biases 
from uneven physicochemical property distributions and 
analogue bias but also illustrated structural diversity. The 
results, supported by comparisons with Maximum Unbi-
ased Validation (MUV) datasets, indicated a high degree 
of similarity in distribution patterns, except for specific 
datasets with unique compositions. The diversity analysis 
further underscored the methodological strength, show-
ing a balanced chemical class diversity and an insightful 
disparity in diversity ranks towards actives. This compre-
hensive approach, marked by a meticulous assessment of 
physicochemical properties and innovative use of simi-
larity mapping and PCA, contributed to a more precise 
evaluation of the chemical space and dataset biases.

The study explores the factors impacting w_new and 
how model complexity interacts with performance met-
rics. Correlation analyses reveal positive correlations 
between w_new and  R2-training and  R2-validation, while 
error metrics like MAE, RMSE, and MSE negatively cor-
relate with w_new. Multiple linear regression reveals that 
among the considered variables,  R2-validation and RMSE 
most significantly affect w_new. Overall, hyperparam-
eters can either increase or decrease model complexity 
depending on the specific model and parameter. Besides, 
the models in this study consistently favor simplicity, 
which enhances interpretability, computational effi-
ciency, and robustness in data-scarce scenarios, making 
them suitable for diverse applications.

Across all models, the average external validation  R2 
value is ~  0.724, indicating a moderate to high perfor-
mance with a standard deviation of 0.088, highlighting 
significant variability across models. The  R2 values range 
from 0.586 to 0.905. The GPCR protein AA2AR, using 
the pharmacophore scoring method with the ’KNN’ 
machine learning model, achieved the highest external 
validation  R2 of 0.905, demonstrating excellent predic-
tivity with  R2-train of 0.999 and  R2-val of 0.88. In con-
trast, the protein p53, utilizing the 2D fingerprint shape 
similarity method with the ‘Adaboost’ model, showed 
the lowest  R2-ext of 0.586, despite a significantly high 
 R2-train of 0.969 and  R2-val of 0.691, suggesting limita-
tions in generalizability possibly due to dataset specifics, 
overfitting, or inherent protein characteristics.

In the context of the enrichment studies, it is of note 
that the area under the ROC curve achieved via con-
sensus screening within the framework of the AA2AR 
receptor exhibits a performance level closely comparable 
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to that of the QSAR screening, as expounded upon in 
the previous section. This modest augmentation in the 
ROC curve’s AUC assumes negligible significance when 
we ascertain that the initial active compound in the 
dataset, CHEMBL1093479, attains prioritization after 
an extensive cohort comprising 91 decoy compounds 
within QSAR screening. Meanwhile, in the consensus 
scoring, the first seven positions are occupied by active 
compounds, manifesting potency levels extending up to 
a  PIC50 value of 10. This observation receives additional 
corroboration through the inclusion of enrichment met-
rics delineated within Supplementary Table 2. These met-
rics encompass the BEDROC, along with the percentages 
denoting the early fractions (EF1% and EF5%), as well as 
the fraction of decoys at the 1% threshold.

A parallel scenario unfolds in our evaluation of the 
EGFR protein target. In the domain of consensus scor-
ing, the top four compounds are identified as active 
against EGFR, exhibiting  PIC50 values ranging from 
6.77 to 9.25. In contrast, the pharmacophore screening 

for EGFR, yielding a notably higher ROC value of 0.93, 
positions the first active compound, CHEMBL451513, 
and the second active compound, CHEMBL516022, at 
significantly lower ranks within the entire compound 
pool in the enrichment study, specifically at the 43rd 
and 47th positions, respectively. Remarkably, among the 
top-ranked compounds prominently enriched in the top 
ten ranks in the consensus scoring results for EGFR, are 
compounds such as CHEMBL63786, CHEMBL176582, 
and CHEMBL460723, each exhibiting the highest  PIC50 
values within the dataset, measuring 11.52, 11, and 9.25, 
respectively.

Continuing within the same analytical framework, we 
assess the ROC AUC for the AKT1 target when com-
paring consensus scoring to docking screening. While 
the AUC values appear to exhibit minimal disparity, a 
more discerning examination reveals that the metrics of 
EF1% and BEDROC unequivocally favor the consensus 
scoring approach. Furthermore, when we consider addi-
tional metrics such as EF5% and the decoy percentage 

Fig. 8 Top-ranked compounds in AKT1 and CDK2 targets in consensus and docking methodologies with their respective  PIC50 values
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at the initial 1%, it becomes evident that shape similar-
ity screening outperforms the docking method in this 
context. It is crucial to emphasize that a singular perfor-
mance metric cannot definitively establish the superiority 
of one scoring or screening method over another. Hence, 
a comprehensive evaluation must also consider the pri-
oritization of active compounds within each method. 
In Fig.  8, we observe that compounds identified as top-
ranked by the consensus scoring method exhibit supe-
rior  PIC50 values compared to those identified by the 
docking approach. Specifically, CHEMBL212566 and 
CHEMBL1098938, top-ranked by consensus scoring, 
display  PIC50 values of 8.49 and 9.70, respectively. In the 
same vein, the consensus scoring prominently enriches 
CHEMBL523586 at the 24th rank. However, within the 
docking approach, despite its noteworthy  PIC50 value of 
10.52, CHEMBL523586 assumes a considerably lower 
rank, standing at 1816th. Similarly, in the shape similarity 
screening, its ranking descends even further, settling at 
the 5037th position, thereby unveiling a substantial diver-
gence across these methodologies. These findings under-
score the multifaceted nature of our evaluation, where a 
holistic assessment considers not only quantitative met-
rics but also the prioritization of active compounds as a 
pivotal aspect of the screening process.

In the CDK2 screening analysis, it is notable that the 
enrichment metrics derived from consensus and dock-
ing screening exhibited a close alignment concerning 
various parameters, including AUC, EF1%, EF5%, BED-
ROC, and Decoy Percentage at 1%, albeit with a slight 
advantage observed in favor of the docking method. 
However, a more nuanced assessment reveals that the 
consensus scoring approach excelled in the prioritization 
of compounds with higher  PIC50 values. This distinction 
is particularly evident when scrutinizing Fig.  8, which 
highlights the top four active compounds with  PIC50 val-
ues ranging from 6.60 to 8.05 for consensus scoring, as 
opposed to a narrower range of 6.33 to 7.48 for the dock-
ing screening. Furthermore, it is noteworthy that com-
pounds possessing the highest  PIC50 values within the 
CDK2 dataset received more favorable rankings within 
the consensus scoring methodology compared to the 
docking screening. For instance, the compound with the 
highest  PIC50 value, namely CHEMBL360520, attaining 
9.52, was positioned at the 18th rank in the consensus 
scoring, while the docking method placed it considerably 
lower at the 3415th position. Similarly, the second top-
ranked compound in terms of  PIC50 (CHEMBL261720) 
within the dataset achieved a ranking of 28th in consen-
sus scoring, while the docking method assigned it a lower 
ranking of 44th.

In an alternative context, the performance of consensus 
scoring for TDP1 demonstrated diminished robustness 

when compared to its efficacy in assessing other macro-
molecules. Notably, pharmacophore screening exhibited 
markedly superior performance across all evaluation 
metrics in contrast to the consensus screening approach. 
This distinctive behavior observed for the TDP1 tar-
get can be ascribed to the limited activity range present 
within the datasets. Intriguingly, the consensus scor-
ing for TDP1, conducted using commercially available 
software as described by Moshawih, Goh [22], yielded a 
remarkably high AUC ROC value of ~ 0.98. This excep-
tional outcome can be attributed to meticulous process 
optimization, including the selection of an optimal model 
and a well-suited set of features. Additionally, in this 
study, the decoy pool consisted of 2700 compounds for 
the same dataset, introducing an added layer of complex-
ity to the analysis. In a different context, it is noteworthy 
that the p53 dataset is relatively small, consisting of only 
20 active compounds (and 5 external validation datasets) 
primarily comprising anthraquinones and chalcones. 
Nevertheless, the consensus methodology demonstrated 
exemplary performance across all enrichment metrics, 
mirroring the trends observed with the pharmacophore 
approach. Moreover, the consensus scoring for p53 was 
also performed using commercial software in a separate 
study (data not published), and the resulting AUC ROC 
and other pertinent metrics closely paralleled the find-
ings reported herein, with a value of 0.90. This observa-
tion suggests that consensus scoring has the capacity to 
effectively identify optimal characteristics from diverse 
screening methodologies across a wide range of scenarios 
and combine them to obtain the best enrichment in vir-
tual screening.

Conclusion
In this investigation, we undertook a comprehensive anal-
ysis involving eight diverse protein targets across various 
functional categories. Our primary objective was to eval-
uate the efficacy of a consensus holistic virtual screening 
approach across heterogeneous datasets. Significantly, 
while the  PIC50 values for some protein targets displayed 
a constrained distribution, emphasizing the limited range 
of activities, the shape similarity scores followed by other 
screenings exhibited consistent and widespread patterns 
across all targets. Particularly, when combined with all of 
the screening methods through a consensus approach, it 
is expected to emerge as a potent strategy, demonstrating 
that consensus scoring selects the most favorable aspects 
from multiple screening metrics.

This investigation integrated a novel methodol-
ogy for analyzing active and decoy distribution biases 
in datasets, which significantly impacted model per-
formance and highlighted the importance of dataset 
validation in virtual screening. Our quest for a robust 
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consensus scoring methodology for a holistic virtual 
screening led us to employ a variety of machine learn-
ing models devised with a novel formula that amalgam-
ates five performance metrics into a unified measure 
called w_new. The greater weight assigned (w_new) 
signifies a robust model performance, characterized 
by higher  R2-training and -validation scores, reduced 
MAE, RMSE, and MSE values, and minimized disparity 
between  R2-train and -validation and vice versa. This 
comprehensive study unveiled a spectrum of perfor-
mance metrics among different models employed.

In our endeavor to elucidate the factors influenc-
ing w_new values and assess the impact of model 
complexity on performance metrics, we conducted an 
exhaustive analysis. Our investigation revealed that 
 R2-validation and RMSE are pivotal factors influencing 
w_new, exhibiting positive and negative correlations, 
respectively. These findings underscore models used 
in this study consistently prioritize simplicity, leading 
to improved computational efficiency, data efficiency, 
and practical applicability. Furthermore, our study shed 
light on the nuanced relationships between w_new and 
various model-specific parameters, providing insights 
into the interplay between model complexity and per-
formance metrics.

Overall, weighted machine learning models find util-
ity across diverse domains and are not restricted to 
virtual screening, where the primary objective is the 
identification of optimal, high-performing, and resilient 
models. Besides, this comprehensive analysis under-
scores the importance of considering not only quan-
titative metrics but also the prioritization of active 
compounds, which can vary significantly across dif-
ferent methods when choosing screening and scoring 
methodologies. This analysis emphasizes the effective-
ness of consensus scoring as a crucial virtual screen-
ing technique, often yielding superior performance in 
terms of AUC, early detection of actives, prioritizing 
compounds with the highest biological activities, or a 
combination of these factors. These findings contribute 
significantly to advancing our understanding of screen-
ing techniques’ performance in diverse protein target 
contexts, ultimately enhancing the effectiveness of vir-
tual screening approaches.
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