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Abstract The performance of molecular docking can be improved by comparing the shape similarity of the flex‑
ibly sampled poses against the target proteins’ inverted binding cavities. The effectiveness of these pseudo‑ligands 
or negative image‑based models in docking rescoring is boosted further by performing enrichment‑driven opti‑
mization. Here, we introduce a novel shape‑focused pharmacophore modeling algorithm O‑LAP that generates 
a new class of cavity‑filling models by clumping together overlapping atomic content via pairwise distance graph 
clustering. Top‑ranked poses of flexibly docked active ligands were used as the modeling input and multiple alter‑
native clustering settings were benchmark‑tested thoroughly with five demanding drug targets using random 
training/test divisions. In docking rescoring, the O‑LAP modeling typically improved massively on the default 
docking enrichment; furthermore, the results indicate that the clustered models work well in rigid docking. The 
C+ +/Qt5‑based algorithm O‑LAP is released under the GNU General Public License v3.0 via GitHub (https:// 
github. com/ jvleh tonen/ overl ap‑ toolk it).

Scientific contribution This study introduces O‑LAP, a C++/Qt5‑based graph clustering software for generating new 
type of shape‑focused pharmacophore models. In the O‑LAP modeling, the target protein cavity is filled with flexibly 
docked active ligands, the overlapping ligand atoms are clustered, and the shape/electrostatic potential of the result‑
ing model is compared against the flexibly sampled molecular docking poses. The O‑LAP modeling is shown 
to ensure high enrichment in both docking rescoring and rigid docking based on comprehensive benchmark‑testing.

Keywords Distance‑based graph clustering, Shape‑focused pharmacophore modeling, Flexible‑ligand molecular 
docking, Docking rescoring, Shape similarity, Virtual screening, Drug discovery, Benchmarking

Introduction
Molecular docking is a structure-based drug discovery 
method applied routinely in massive virtual screening 
campaigns [1–3]. The main issue of docking is that while 
the flexible ligand sampling works acceptably [3–6], the 
docking scoring rarely works equally well or at all [5, 7–9]. 
This can render docking ineffective in practical drug dis-
covery because active ligands are not enriched at the top 
of the ranking lists in large-scale virtual screening cam-
paigns [10, 11]. Thus, costly physics-based post-process-
ing [12–15], consensus docking [16–21], and alternative 
docking scoring or rescoring [22–24], such as machine 
learning-based scoring [25, 26], have been devised to 
improve the docking hit rates. The docking poses can also 
be filtered using ligand- and/or protein structure-based 
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pharmacophore (PHA) models [27–29] or by applying 
specific protein-ligand interaction filters [30–33].

Ligand-based screening can rely on shape matching 
between the 3D template ligand and the screened com-
pounds, and despite the simplicity of this approach, it 
often works better than docking in recognizing active 
ligands [34, 35]. For example, ROCS (Rapid Overlay of 
Chemical Structures; Open Eye Scientific Software) [36] 
or Shape-based Screening tool in Schrödinger’s MAES-
TRO [37] are widely used shape similarity comparison 
algorithms. ROCS-color estimates, in addition to the 
shape match, the chemical similarity of the superposed 
ligand groups using the Color Force Field [36]. ShaEP 
[38] is a non-commercial software option that can also 
be used to perform shape/electrostatic potential (ESP) 
similarity comparisons [38]. The only requirement for the 
shape-based screening is that an established active ligand 
and, preferably, its biologically relevant 3D conformer are 
known.

Although the shape match has traditionally been con-
sidered only between ligands, the ligand-protein cav-
ity shape match is an inseparable and integral part of 
the molecular recognition process. Even in regular PHA 
modeling (e.g., LigandScout [39]), the shape matching 
between the screened ligand atoms and the PHA fea-
ture spheres can be applied together with indirect shape 
matching with the protein cavity via excluded protein 
volume. In the docking scoring, steric interactions with 
the protein are evaluated, but the overall shape match is 
not fully covered or emphasized by the point interaction-
centered approach [36, 40]. While not directly applying 
the ligand-cavity shape match to virtual screening, several 
methods exist that evaluate the druggability of the protein 
cavities. This includes geometry-based (e.g., POVME [41–
43], POCKET [44], PocketPicker [45], GHECOM [46]), 
energy-based (e.g., SiteMap [47], AutoLigand [48], Q-Site-
Finder [49]), or data-driven (e.g., SCREEN [50], P2Rank 
[51], DeepPocket [52]) pocket detection methods.

A more direct drug discovery application of the ligand-
cavity shape match is to use it in rigid docking, i.e., cav-
ity-based negative images (e.g., SHAPE4 [53], SLIM [54], 
VOIDOO/FLOOD [55, 56], PANTHER [57]) are used as 
pseudo-ligand templates for shape similarity-based align-
ment and comparison [53, 54, 57–63]. In addition, it has 
been demonstrated that the shape/ESP features of PAN-
THER-generated NIB (negative image-based) models 
can be used effectively in docking rescoring [61, 64–68]. 
The NIB models are composed of neutral filler atoms and 
positively/negatively charged atoms that represent the 
protein cavity’s reciprocal H-bond donors and acceptors. 
The NIB models are directly compared against the flex-
ibly sampled docking poses in a process known as nega-
tive image-based rescoring (R-NiB) [64, 67] using ShaEP 

[38]. The NIB model composition can be improved by 
incorporating atomic content from the protein structure-
bound ligands [60] and, notably, by performing greedy 
search optimization known as brute force negative 
image-based optimization (BR-NiB) [65, 66].

In this study, it is shown that NIB-like cavity-filling or 
shape-focused PHA models (Fig. 1) can be generated rely-
ing solely on the protein-bound docked ligands. Firstly, 
the protein cavity is filled with flexibly docked active 
ligands. Secondly, the non-polar hydrogen atoms are 
trimmed, and covalent bonding information is deleted. 
Thirdly, the overlapping atoms with matching atom types 
are clumped together to form representative centroids 
by pairwise distance-based graph clustering (Fig. 1A, B). 
During clustering, atom-type-specific radii are applied in 
the distance measurements prior to the centroid genera-
tion. Fourthly, if a training set containing validated active 
ligands and inactive/decoy compounds is available, greedy 
search optimization can be performed to improve the 
model performance (Fig. 1C). In the end, the models can 
still contain a few overlapping atoms of different types, 
providing these clusters with a higher weight on the shape 
scoring than solitary atoms, but all in all, the process 
reduces the amount of redundant atomic input massively.

A new C++/Qt5-based algorithm, O-LAP, is presented 
for performing shape-focused PHA modeling. O-LAP is 
freely available for academic and commercial usage under 
GNU General Public License v3.0. Thorough testing was 
done with five benchmarking sets from the DUDE-Z data-
base [70], which is an optimized version of DUD-E (A 
Database of Useful (Docking) Decoys–Enhanced) [71]. 
The results indicate that the O-LAP modeling (Fig.  1D) 
can improve the effectiveness of regular flexible molecu-
lar docking markedly, and it can even be used effectively 
in rigid docking. The shape-focused PHA models not 
only improve the performance of the docking algorithm 
PLANTS1.2 [72], but they often generate higher yields 
than the PANTHER-generated NIB models in rescor-
ing usage. Several factors, such as the atomic input and 
clustering settings, affect the ultimate effectiveness of the 
method on a case-by-case basis.

In short, a new graph clustering software O-LAP is 
presented for generating shape-focused PHA models to 
facilitate effective docking-based virtual screening.

Implementation
Ligand and protein preparation
The modeling work was done using five DUDE-Z sets 
[70] (https:// dudez. docki ng. org/; accessed in Novem-
ber 2021; Table  S1), including neuraminidase (NEU) 
[73],  A2A adenosine receptor (AA2AR) [74], heat shock 
protein 90 (HSP90) [75], androgen receptor (AR) [76], 
and acetylcholinesterase (AChE) [77]. These sets with 
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property-matched decoy compounds were selected 
because they have been found to be demanding not only 
for the docking scoring but also for the cavity shape-based 
rescoring [66] (Table S1). Although the ligand preparation 
was already done in a prior study [66], the general work-
flow is described below.

A pseudo-random number generator from the 
C++  standard library Mersenne Twister 19, 937 [72, 
78] was used to generate the random 70/30 training/test 
set divisions (Table  S1). LIGPREP in MAESTRO2017-1 
(Schrödinger, LLC, New York, NY, USA, 2017) was used 
to generate 3D conformers from SMILES to MAE format 
and to add all tautomeric states and OPLS3 (Optimized 

Potentials for Liquid Simulations) partial charges. For 
the rigid docking, the alternative ligand 3D conformers 
were generated with CONFGENX in MAESTRO2022-3 
(Schrödinger, LLC, New York, NY, USA, 2022). Before 
docking, the ligands were converted from MAE to MOL2 
format using MOL2CONVERT in MAESTRO.

Protein preparation and flexible molecular docking
The flexible-ligand docking was done in a prior study 
using PLANTS1.2 (http:// www. tcd. uni- konst anz. de/ 
plants_ downl oad/; Academic free license) [72] for all 
of the DUDE-Z sets except AChE [66]. The protein 3D 
structures, which were protonated using REDUCE3.24 

Fig. 1 O‑LAP graph clustering principle and workflow. A Before the graph clustering with O‑LAP, all the pairwise distances (black lines) are 
measured between all atoms of the same atom type (N = 4; a‑d; magenta discs). On the left, the pairwise distance matrix shows all the measured 
distances between the atoms. B After the graph clustering with O‑LAP, three of the atoms within the search radii (a‑c) are merged and, thus, 
given a new representative centroid atom (A; green disc). The resulting merged pairwise matrix is shrunk to contain only two atoms (A, d) and their 
distance. C In the workflow, the O‑LAP modeling input originates from docking, and it is selected based on the original docking scoring. The 
O‑LAP models are used to enrich docking‑based virtual screening via shape similarity comparison before the in vitro testing, which in turn can 
result in the discovery of new hit compounds for generating more effective model versions. D An example of a typical PHA model, generated 
with PHASE [69] in MAESTRO2022‑3, is shown for the acetylcholinesterase‑bound inhibitor alkylene‑linked tacrine dimer CHEMBL76173 (stick model 
with magenta backbone). The PHASE model contains PHA features such as H‑bond donors/acceptors (blue outward arrow/red inward arrow), 
aromatic rings (orange ring), and hydrophobic groups (green spheres). The O‑LAP model, which is composed of actual atoms filling the target’s 
cavity, focuses on shape matching instead of the specific PHA feature spheres (here all possible features shown) present in the equivalent PHASE 
model

http://www.tcd.uni-konstanz.de/plants_download/
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(https:// github. com/ rlabd uke/ reduce/ tree/ master) [79], 
were acquired from the Protein Data Bank (PDB; https:// 
www. rcsb. org/). The AChE docking was performed using 
a different PDB-entry (PDB: 2CKM) than in a previous 
study [77] to facilitate the binding of alkylene-linked 
tacrine dimers. The centroid of each co-crystallized 
ligand was used as a docking center with a box radius 
of 10  Å. Otherwise, the default settings of PLANTS, 
generating 10 binding predictions for each ligand, were 
applied.

O‑LAP model input preparation
50 top-ranked docked active ligands from the training 
set were extracted based on the ranking provided by the 
default PLANTS docking scoring function ChemPLP. The 
best-ranked pose (conf_01) for each ligand was selected 
into the input for the O-LAP modeling. Before the clus-
tering, the non-polar hydrogen atoms of the docked 
ligands were removed, the separate MOL2 entries were 
merged and the covalent bonding data was removed. The 
O-LAP model dimensions could be limited by a 2.0  Å 
radius from the X-ray co-crystal ligand either before or 
after the O-LAP modeling in BODIL [80] (http:// users. 
abo. fi/ bodil/ about. php).

O‑LAP: graph clustering principle
O-LAP, short for OVERLAP, is a C++/Qt5-based algo-
rithm that is released under the GNU General Public 
License v3.0 via GitHub (https:// github. com/ jvleh tonen/ 
overl ap- toolk it). O-LAP builds the cavity-filling or shape-
focused PHA models using any overlapping atomic con-
tent, such as protein-bound docked small-molecule 
ligands, for performing the shape/ESP-based docking res-
coring or rigid docking using ShaEP (or similar methods). 
The input, given in the MOL2 format, contains the atom 
coordinates subjected to the clustering. O-LAP decreases 
the number of atoms by clustering the overlapping atoms 
of the same type and replacing them with representative 
centroid atoms. A cluster of overlapping atoms at the 
binding cavity gets replaced by a less cluttered cavity-fill-
ing model.

O-LAP performs distance-based graph clustering, in 
which atoms are seen as nodes that are subject to group-
ing based on relative pairwise distance measurements 
(Fig.  1A-B). O-LAP solves the nearest neighbor prob-
lem by systematically applying the atom type-specific 
search radii for each input atom. The radii are taken from 
the atom-specific bond lengths provided in the GAFF 
(General Amber Force Field) [81] and then reduced by 
5%. However, the fixed value of 1.38  Å was applied to 
all aromatic atom types. During the clustering, pairwise 
distances are computed for all atoms belonging to the 
same type. If two or more identical atoms are within the 

same atom type-specific search radius, they are clumped 
together, and a new centroid atom is generated to rep-
resent them (Fig.  1A-B). The shortest distance pairs are 
considered before repeating the nearest neighbor dis-
tance check again for the other nearby atom pairs. The 
partial charge of the atom with the biggest charge differ-
ence against zero in a cluster is given for the new model 
atom.

In addition to the default clustering, MCL (Markov 
Clustering Algorithm; http:// micans. org/ mcl/; GNU 
General Public License v3.0) [78, 82–85] can also be used 
with the --mcl option provided that the external software 
is installed to the path and it is executable. MCL14.137 
was used in the testing. The pairwise similarities of atoms 
of the same type are passed in the ABC format to MCL, 
which in turn performs the clustering unsupervised and 
automatically. The similarity for each atom pair is calcu-
lated with the Eq. 1

where MAXdistance is the cutoff distance for the atom type.

O‑LAP: basic usage and the user‑adjustable settings
The simplest usage case for O-LAP requires just typing 
in the executable and the input file containing the atomic 
input in the MOL2 format. For example, an O-LAP 
default model would be generated with the following 
command: “o-lap input.mol2 > output.mol2”. It is, how-
ever, strongly recommended that the user experiments on 
at least a few alternative settings, to acquire more effective 
models.

The MCL clustering can be adjusted using the  --mclI 
option (default 2), where the larger inflation values 
increase inequality by rescaling the distribution of tran-
sition probabilities in a way that preferred neighbors are 
further favored and less popular neighbors are demoted 
[86]. The MCL processing is fast, but the speed is reduced 
significantly if the inflation values below 2.0 are used (data 
not shown). The --mclte option can be used to perform the 
MCL clustering marginally faster with multiple threads. 
Regardless of the chosen clustering method, O-LAP oper-
ates very rapidly (Time = 0.03-30.5 ms; Table S2) with rea-
sonably sized input (N = 916-1858; Table  S2). However, 
the specific settings affect the time as well, for example, a 
higher --clustermin value can increase the processing time 
(Table S2).

The  --clustermin option determines the minimum 
number of atoms for a cluster to be included in the out-
put O-LAP model. For example, if a cluster contains two 
atoms of the same atom type and the minimum limit is 
set to three, the two-atom  cluster would be discarded 

(1)Similarity = MAX2

distance
− distance2

https://github.com/rlabduke/reduce/tree/master
https://www.rcsb.org/
https://www.rcsb.org/
http://users.abo.fi/bodil/about.php
http://users.abo.fi/bodil/about.php
https://github.com/jvlehtonen/overlap-toolkit
https://github.com/jvlehtonen/overlap-toolkit
http://micans.org/mcl/
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completely. By using this option, the model can be made 
to focus on those shape/ESP features that are shared 
between multiple closely aligned active ligands and, like-
wise, remove those outliers, where the docked ligand or 
some parts of it are outside the binding hotspot area. If 
the input contains atoms of a specific atom type that is 
deemed unnecessary (e.g., dummy atoms), they can be 
removed entirely using the  --deletetypes < str > option, 
where they simply are given as a comma-separated list.

The  --nib option can be used to make the O-LAP 
model more PANTHER/NIB model-like, i.e., all the clus-
tered atoms are converted into positive N.3, negative O.3, 
or neutral C.3 or C.ar atom types based on their partial 
charges rather than the original atom type. The group-
ing into these four classes is done using the --nibthresh-
old < num > option, where the inputted value (default 0.2) 
can be set for making the partial charge-based classifica-
tion. In this default scheme, the selected threshold val-
ues are given to the model atoms instead of the original 
partial charges (e.g., N.3 = 0.2, N.3 = -0.2, or C.3/C.ar = 0). 
The conversion of the atoms into the three NIB-like 
classes can also happen without changing the original 
partial charges of the input atoms using the --nibcharged 
option.

The  --clusterminchr option sets the minimum size 
of the cluster for the charged atoms. Atom is regarded 
as charged if its partial charge exceeds the  --nibthresh-
old value (default 0.2). This makes it possible to process 
charged atoms differently than the "neutral" atoms.

The --cutoff < num > option can be used to adjust the 
cutoff distance of all atoms not included in the default (or 
user-supplied) cutoff list. A user-specified set of cutoffs 
can be applied by inputting an alternative JSON file with 
the --cutoffs < file/json > option. The cutoff distances used 
in the clustering can be displayed in the terminal with 
the --showcutoffs option. The --similar option makes it 
possible to consider specific atom types as the same dur-
ing the clustering, which can reduce the atom count of 
the output model. This approach can effectively remove 
overlapping atoms of different atom types provided that 
they are specifically listed as similar. An alternative list of 
similar atoms can be given in the JSON format using the 
--similarjson < file > option. The effective similar list can 
be displayed with --showsimilar option.

Docking rescoring and rigid docking via shape similarity 
comparison
The shape/ESP-based similarity comparison was per-
formed using a similarity comparison algorithm 
ShaEP1.3.1 (http:// users. abo. fi/ mivai nio/ shaep/) [38]. 
The docking rescoring was done using the -noOpt option, 
which prevents the algorithm from optimizing alignment 
or superposing the docked poses against the 3D template 

or O-LAP model. In contrast, during the rigid dock-
ing the -noOpt option was not applied and, thus, ShaEP 
was allowed to perform the coordinate transformations 
needed for acquiring the optimized alignment against 
the template. In the rigid docking, the ab  initio-gener-
ated ligand 3D conformers were used in the similarity 
comparison instead of the flexibly docked poses. In the 
ShaEP scoring, the match between the template and the 
screened ligand ranges from 1 (perfect match) to 0 (no 
match at all) and, moreover, the default 50/50 shape/ESP 
weight ratio or shape alone (100/0) was used. Notably, 
ShaEP works with the Sybyl MOL2 atom typing which is 
also shared by PLANTS and O-LAP.

O‑LAP: clustering settings adjustment for assuring high 
enrichment
Several O-LAP settings were explored systematically for 
the five DUDE-Z targets using their respective train-
ing sets (Table  S1) before the final testing (Table  S3 vs. 
Table 1). Top-performing O-LAP settings for any target 
depend on multiple factors (Table S2) such as the under-
lying target protein 3D structure and the flexibly sam-
pled docking poses or docking settings, the input atom 
composition, and the benchmark set composition. Thus, 
while the study does not provide default settings that 
would be guaranteed to work in every case, below are 
explained those O-LAP options or their combinations 
that one at least should consider.

The  --clustermin option (Fig. S1A) is worth exploring 
systematically alone or in combination with other options 
such as --clusterminchr (Fig. S1D) or --mclI. When used, 
it reduces the model’s atom count significantly as it 
removes non-common or outlier atom placements that 
are not shared by the other active ligands. In theory, it 
can exclude “bad”, rare, or inconsistent ligand poses or 
functional group placements from the cavity-filling input. 
For example, with NEU, the --clustermin values from 7 to 
10 provided the highest enrichment factor improvement 
over docking (Fig. S1A). The usefulness of this option 
wanes when using too large values or when there are less 
ligand atoms to perform the clustering with.

The top-performing O-LAP models in this study 
were typically generated using MCL [86] instead of the 
default clustering method of O-LAP (Fig.  1A-B). How-
ever, the use of MCL alone was not enough to boost the 
enrichment to the highest levels, but the  --mclI option 
had to be adjusted as well (Fig. S1D). The effective infla-
tion values ranged from 5 to 20 for the five targets. The 
high --mclI values worked the best when combined with 
similarly high  --clustermin values (Table  S2). Moreover, 
the use of  --clusterminchr (Fig. S1C) option resulted in 
satisfactory outcomes when it was used together with 
the  --clustermin and the  --mclI options. The operation 

http://users.abo.fi/mivainio/shaep/
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of  --clusterminchr option is shown at the atomic level 
for the Sybyl O.co2 atoms of NEU model in Fig. S2. Sim-
ply, by increasing the value from 2 to 8, reciprocally, the 
number of O.co2 atoms are gradually lowered from 13 to 
2 (Fig. S2).

The --similar option, utilizing the default similar atom 
list, did not improve the model’s rescoring prowess, 
and its use is not recommended at least without care-
ful adjustment. Likewise, the --nib option alone was not 
particularly useful, however when the option was paired 
with alternative values for --nibthreshold, --clustermin, or 

--mclI, it could sometimes excel. Due to the use of mul-
tiple altered settings at the same time, it is difficult to 
discern why the --nib option could sometimes improve 
the model composition, but it might be linked to altered 
vdW radii assisting in acquiring a more optimal shape 
match by chance. For getting the most NIB-like models 
for docking rescoring usage, one should revert to using 
PANTHER [57] instead of O-LAP.

Even the input models, containing just the merged 
ligands without the covalent bonds, can sometimes sur-
pass the default docking enrichment in rescoring usage at 

Table 1 O‑LAP modeling results for docking rescoring and rigid docking with the test sets.

The best results, improving or as good as the molecular docking, are shown in bold and italics. Here the EFd 0.1% and 0.5% were calculated for the first time for the 
original docking results (except for AChE) that were also published previously [66].

Flexible‑ligand molecular docking*

 Metrics NEU AA2AR HSP90 AR AChE

AUC 0.89 ± 0.04 0.72 ± 0.03 0.51 ± 0.06 0.60 ± 0.03 0.82 ± 0.02

EFd 0.1% 12 5.5 0 0 12

EFd 0.5% 24 14.1 0 0 31.6

EFd 1.0% 32 18.8 0 1.2 33.3

EFd 5.0% 56 35.2 4.8 12.5 47.9

BR20 0.54 0.34 0.06 0.12 0.54

N atoms N/A N/A N/A N/A N/A

O‑LAP models in docking rescoring

AUC 0.98 ± 0.02 0.78 ± 0.02 0.57 ± 0.07 0.80 ± 0.03 0.86 ± 0.02
EFd 0.1% 44 10.9 0 10 31.6
EFd 0.5% 64 17.2 0 15 37.6
EFd 1.0% 72 20.3 0 17.5 44.4
EFd 5.0% 88 34.4 33.3 32.5 59.8
BR20 0.83 0.35 0.27 0.36 0.64
N atoms 54 54 67 57 72

O‑LAP models optimized for docking rescoring

AUC 0.99 ± 0.01 0.79 ± 0.02 0.64 ± 0.07 0.83 ± 0.03 0.86 ± 0.02
EFd 0.1% 48 18.8 19 8.8 30.8
EFd 0.5% 64.0 32 23.8 20 40.2
EFd 1.0% 76 37.5 38.1 22.5 41
EFd 5.0% 100 48.4 42.9 40.0 60.7
BR20 0.91 0.49 0.45 0.40 0.66
N atoms 47 28 34 49 51

N generations 8 26 33 8 21

Rigid docking for O‑LAP models in docking rescoring

AUC 0.98 ± 0.02 0.74 ± 0.03 0.48 ± 0.06 0.81 ± 0.03 0.87 ± 0.02
EFd 0.1% 12 0.8 0 7.5 20.5
EFd 0.5% 52 13.3 0 12.5 36.8
EFd 1.0% 72 17.2 0 20 44.4
EFd 5.0% 92 27.3 14.3 42.5 65
BR20 0.84 0.28 0.11 0.39 0.67
N atoms 54 60 61 57 63
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least marginally (Table S4). However, because the result-
ing ShaEP scores are extremely low (Table S5), we do not 
recommend this elementary approach for any serious 
docking rescoring work. The sorting power of the unpro-
cessed input is likely related to the cumulative weight of 
overlapping atoms at certain sections of the cavity rather 
than the shape scoring. Moreover, the O-LAP modeling 
was clearly needed for acquiring the highest enrich-
ment values, especially for the very early enrichment. 
For example, the merged AChE model, containing ~2,000 
atoms, beat docking with the training set in the rescoring 
with ShaEP (AUC: 0.81 ± 0.02 vs. 0.85 ± 0.01; Table  S4), 
but the top-performing O-LAP model, containing only 
72 atoms, did clearly better (AUC: 0.87 ± 0.01; Table S3). 
Lastly,  after certain limit, the size of the model and/or 
ligand set starts to affect ShaEP computing efficiency 
negatively (data not shown).

Optimization of O‑LAP models via enrichment‑driven 
greedy search
The atom compositions of O-LAP models were optimized 
using a greedy search method introduced in a prior study 
[66]. BR-NiB (brute force negative image-based optimiza-
tion) was originally devised to improve the composition 
of PANTHER-generated NIB models; however, it applies 
to any kind of atomic data filling the target’s binding cav-
ity. During the BR-NiB operation, the effect of each cavity 
atom on the model’s fitness or rescoring ability is tested 
systematically. Each atom is removed one by one from 
the model and the effects of these successive removals on 
the enrichment are evaluated by rescoring with the train-
ing set. The rescoring is done using ShaEP and the target 
enrichment metric or Boltzmann-enhanced discrimina-
tion of the receiver operating characteristic or BEDROC 
[87] with alpha value 20 (BR20) is calculated using 
ROCKER (https:// www. medch em. fi/ rocker/; MIT license) 
[88]. The new (-1 atom) model improving the rescoring 
performance the most is used as a template for next atom 
removals, rescoring, and enrichment evaluation until the 
yield improvement ends. The iterative sampling process, 
which is repetitive and not suitable for large models, does 
not represent an actual brute force approach as it only 
considers atom removals that improve the enrichment the 
most at each step. The Brutenib code is available online 
under the MIT license via GitHub (https:// github. com/ 
jvleh tonen/ brute nib; MIT License).

Figure preparation and analysis
The figures were generated using MAESTRO2022-3 and 
BODIL Modeling Environment [80]. The enrichment 
metrics and ROC (Receiver Operating Characteristics) 
curves were generated using ROCKER0.1.4 [88]. The 
overall enrichment was evaluated using the area under 

the curve (AUC) values and the Wilcoxon statistic [89, 
90] was applied for the error estimation. The enrichment 
factors (or EFds) were calculated as a true positive rate in 
which 0.1%, 0.5%, 1.0%, and 5.0% of the decoy compounds 
were found. The BR20 values were also calculated to esti-
mate early and overall enrichment. Tanimoto fingerprint 
similarity comparison was performed using CANVAS in 
MAESTRO2022-3 with the cutoff of 0.0 for compounds 
included at the top 1.0% of the rescored test set. This was 
done to determine if the O-LAP modeling was focusing 
the selection towards structurally similar ligands to the 
ones used as the clustering input.

Results and discussion
O‑LAP: shape‑focused pharmacophore modeling
In the PHA modeling (see, e.g., Fig. 1D), specific feature 
spheres are generated for matching functional groups 
that are found to overlap between multiple aligned or 
superposed compounds (e.g., docked ligands) [91–93]. In 
practice, a PHA model is a collection of these 3D features 
representing H-bond donors/acceptors, aromatic rings, 
hydrophobic or charged groups, etc. The validity of PHA 
models can improve when matches with active ligands 
are favored and, vice versa matches with inactive decoys 
are shunned. Although the O-LAP models are mainly 
used in docking rescoring in this study, the methodol-
ogy can be perceived of as shape-focused PHA modeling, 
in which the flexible docking simply provides the ligand 
alignment.

In the O-LAP modeling, overlapping atoms filling the 
protein cavity are clumped together using atom type-spe-
cific and distance-based graph clustering. The attention 
stays firmly at the atomic level (Fig.  1A, B), where only 
the types, partial charges, and relative distances between 
atoms guide the automated graph clustering (Fig.  1D). 
This atomistic approach retains the all-encompassing 
shape component of the flexibly docked or otherwise 
protein-bound ligands [94] that is largely ignored in the 
traditional PHA modeling (Fig.  1D). Although unortho-
dox at first glance, the O-LAP modeling fits at least in part 
the PHA definition by the IUPAC (International Union 
of Pure and Applied Chemistry) [95] which defines it as 
"the set of steric and electronic characteristics necessary to 
ensure optimal supramolecular interactions with a specific 
biological target structure and to trigger (or block) its bio-
logical response".

Because the O-LAP modeling is based on molecu-
lar docking sampling, this assures direct involvement of 
the protein 3D structure in the ligand alignment. It also 
means that no geometry matches or alignment between 
the ligands were optimized for the input. As a result, 
the O-LAP modeling relies heavily on shape match-
ing or steric interactions, although, in theory, ESP could 

https://www.medchem.fi/rocker/
https://github.com/jvlehtonen/brutenib
https://github.com/jvlehtonen/brutenib
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play a bigger role depending on the specific ligand input. 
Regardless of the shape focus, even after clustering and 
optimization, the final O-LAP model can contain at least 
some overlapping atoms of different atom types, which, 
in turn, has the potential to enhance the weight of certain 
model sections in the ShaEP scoring.

In addition, the success of O-LAP modeling similarly 
relies on the quality of the input or training data as is 
the case with other PHA modeling methods. Experi-
mentally established active ligands are needed as input 
for the model building (Fig.  1C; Table  S1) and prefer-
ably inactive decoy compounds are also available for 
the enrichment-based settings adjustment or optimiza-
tion. While not explored in this study, applying different 
docking algorithms (e.g., GLIDE, DOCK, AUTODOCK 
VINA, GOLD) [96–100] or alternative scoring functions 
(e.g., X-SCORE, ID-Score) [101, 102] as well as different 
benchmark-test sets (e.g., DUD, MUV, ULS/UDS) [71, 
103, 104] or carefully selecting the protein 3D structure 

[33], both docking and O-LAP modeling could perform 
even better than reported here. In theory, even the initial 
ligand/pose alignment or selection does not have to rely 
on flexible-ligand docking as is the case with other PHA 
modeling methods.

Docking scoring‑based O‑LAP models improve docking 
enrichment substantially
In the training, the top-performing O-LAP model could 
always improve on the default docking scoring function 
of PLANTS [72], when it was generated using the dock-
ing scoring-based input (Table  S3). This indicates that 
PLANTS could find reasonable or at least consistently 
similar poses of the active ligands for the O-LAP mode-
ling and shape/ESP-based rescoring (Fig. 2). Importantly, 
this enrichment improvement was also seen with the ran-
domly selected test sets for all targets (Table 1).

The default docking did well with the NEU if consid-
ering either the AUC, BR20, or early enrichment values, 

Fig. 2 Docking scoring‑based O‑LAP modeling with neuraminidase. The ligands in the training set were flexibly docked into an X‑ray crystal 
structure of NEU solved in complex with inhibitor BANA206 [73] (PDB: 1B9V; A chain; orange surface model). 50 active ligands ranked at the top 
by PLANTS (only best‑ranked or conf_01 poses) were selected for the O‑LAP modeling (stick models with blue carbons). Next, the non‑polar 
hydrogen atoms (white stick models) were trimmed, covalent bonding information was removed, and the separate ligand entries were merged 
into a single MOL2 file (atoms shown as spheres; blue surface). The graph clustering with O‑LAP generated a coherent model, where most 
of the overlapping and redundant atoms were clustered (red surface). The top‑performing O‑LAP model based on the training results worked 
similarly well in the benchmark‑testing – the massive enrichment boost (Tables S3 and 1) in docking rescoring (red line) over the default docking 
(blue line) or random selection (dotted line) is visible in the semilogarithmic ROC curves. The greedy search optimization of the model (green 
surface) improved the rescoring enrichment marginally (green line). Multiple O‑LAP options were explored but only the top‑performing model 
settings are shown in Table S2
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such as the EFd 1.0% (Fig.  2; Table  1). Regardless, the 
O-LAP modeling improved the docking enrichment on 
all these metrics  –  the boost was even statistically sig-
nificant for the AUC value that jumped from 0.89 ± 0.04 
to 0.98 ± 0.02 (Table  1). Impressively, the EFd 1.0% of 
docking was improved from 32 to 72 –the massive boost 
is visible in the semilogarithmic ROC curves as well 
(Fig. 2). Although the enrichment boost for the AA2AR 
was modest, it could be seen with most of the calculated 
metrics, moreover, it was again statistically significant for 
the AUC value. With the HSP90 and AChE, the O-LAP 
modeling made notable or at least modest improvements 
compared to the default docking. For example, the AUC 
value of HSP90 increased from 0.51 ± 0.06 to 0.57 ± 0.07 
and, likewise, with the  AChE the same metric jumped 
from 0.82 ± 0.02 to 0.86 ± 0.02. Finally, with the AR, the 
O-LAP modeling was especially effective on the early 
enrichment as indicated by the EFd 1.0% value which 
improved from 1.2 to 17.5 (Table 1).

These positive results (Fig.  2; Table  1) indicate that 
the docking scoring-based input works well in the 
O-LAP modeling. The approach is dependent on using 
active ligands as input, as the clustering of docked inac-
tive ligands did not generate effective models (data not 
shown) and, furthermore, it is crucial that the correct-
ness of the input poses is carefully estimated before per-
forming the clustering.

Greedy search optimization boosts O‑LAP modeling 
enrichment massively
The greedy optimization with the BR-NiB approach has 
been shown to work excellently with the PANTHER-
generated NIB models and the co-crystal-NIB hybrid 
models in the past [65, 66, 68]. The BR-NiB method has 
already been used successfully in the docking-based vir-
tual screening for retinoic acid-related orphan receptor 
γt modulators [68]. However, applying the optimization 
directly to massive input or models containing hundreds 
or even thousands of overlapping atoms is too time-
consuming or computationally costly. By performing the 
O-LAP modeling before running the parallelized process-
ing, the optimization of enormous input becomes sud-
denly feasible (Fig.  2); for example, an optimization of 
an HSP90 input of 665 atoms (Table S4), that would take 
approximately one month to process using 18 CPUs, is 
performed in ~30  min when paired up with the O-LAP 
modeling (Tables 1 and S3; from 54 to 33 atoms).

When optimized, the O-LAP models improve on the 
enrichment of flexible-ligand docking massively. Notably, 
with the docking scoring-based O-LAP models, the opti-
mization of the NEU model acquired an impressive AUC 
value of 0.99 ± 0.01 and almost as impressive BR20 value 
of 0.91 (Table  1; Fig.  2). For the HSP90, the optimized 

O-LAP model improved the enrichment on every metric 
compared to the non-optimized model; for example, EFd 
1.0% value jumped from 0 to 38.1 (Table 1). If compared 
to the cavity-based BR-NiB results from our prior study 
[66], the optimized O-LAP models typically did better in 
the docking rescoring than the optimized NIB models.

Rigid docking with the O‑LAP models outperforms 
the default flexible docking
The cavity-based NIB models were initially intended for 
rigid docking known as NIB screening [57, 58, 62]. Like-
wise, the O-LAP models can also be used in rigid docking 
(Fig.  3). In fact, the O-LAP-based rigid docking gener-
ated higher enrichment than the default docking scor-
ing of PLANTS with all targets in the testing, apart from 
the AA2AR and HSP90 (Table  1; Fig.  3). If comparing 
the ranking positions of active ligands from the O-LAP-
based rigid docking against the PLANTS flexible dock-
ing (Table  S6), the best ranking improvements in favor 
of rigid docking are highlighted in the ROC curves (right 
panel in Fig. 3A-E). Notably, with the AChE, HSP90, and 
NEU, even the ligand-based screening done with the co-
crystal ligands as templates (Table  S1) did better than 
the flexible docking alone (Table 1 vs. Table S7), indicat-
ing the challenging nature of the DUDE-Z sets for the 
standard docking method [70].

Regardless, the O-LAP models did far worse in the 
rigid docking than when they were applied to rescor-
ing flexibly sampled docking poses (Table 1). The lower 
rigid docking performance was expected as the meth-
odology is coarser regarding the sampling than the 
flexible-ligand docking. Moreover, only a decent shape 
match is needed for effective rescoring (Table S8), but, 
vice versa, the ESP matching plays a bigger role in the 
rigid docking as it affects the H-bonding and, ultimately, 
the ligand placement directly. Moreover, the O-LAP set-
tings adjustment using training sets for rigid docking 
takes far more time than what is the case for rescoring. 
If this computing cannot be done, the O-LAP models 
that performed well in docking rescoring did also rea-
sonably well in the rigid docking (data not shown).

O‑LAP focuses on high‑quality binding predictions 
of docking
The ranking boost of the O-LAP modeling compared to 
docking was excellent for the individual active ligands 
ranked at the top (Table  S9). The active ligands with 
the largest ranking boosts were examined in detail for 
the NEU  (1079th →  9th; Fig.  4A), AA2AR  (2939th →  18th; 
Fig.  4B), HSP90  (357th →  29th; Fig.  4C), AR  (226th →  2nd; 
Fig.  4D), and AChE  (19th →  1st; Fig.  4E). The poses that 
O-LAP modeling promoted for these particular ligands 
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had clearly matching functional group placements inside 
the cavity with the co-crystallized ligands. Note, that 
despite the similarity, the compared compounds were 
chemically different. The ligand-model shape match is 
excellent, and, moreover, there exist several well-coordi-
nated ligand-protein interactions, such as π-π stacking 
or H-bonding, justifying their high-ranking positions. If 
simply ordering the top 20 compounds based on the origi-
nal docking positioning, one would have missed these 
particular compounds and their likely correct or biologi-
cally relevant poses altogether. This is a well-documented 
shortcoming of the default docking scoring [72, 105, 106], 
although, in this regard, PLANTS is a top-notch option 

among its peers [26, 107, 108]. In addition, based on Tani-
moto fingerprint similarity comparison, the O-LAP mod-
els did not overly focus the compound selection towards 
chemically similar ligands to the input (Table S10).

Shape matching provides the ranking boost
The partial charges of the input ligand atoms are varied 
and, importantly, this charge component is also retained 
in the generated O-LAP models. The ESP can be used 
along the shape similarity when screening is performed 
with ShaEP. However, the results indicate that the ESP 
scoring is low compared to the shape scoring, and the 
combined 50/50 shape/ESP scoring is about half of the 

Fig. 3 Examples of O‑LAP models promoting the discovery of active ligands in rigid docking. The active CHEMBL ligand conformation with the best 
rigid docking result (green surface) and the worst conformation (red surface) are shown with the actual ShaEP scores. A NEU with CHEMBL294169 
 (129th →  2nd); B AA2AR with CHEMBL1088236  (35th →  5th); C HSP90 with CHEMBL377958  (494th →  25th); D AR with CHEMBL75050  (143th →  3rd); 
and E AChE with CHEMBL75305  (37th →  1st). In the rigid docking, the O‑LAP model (red line) boosts the default docking enrichment (blue line) 
for all targets (apart from AA2AR and HSP90) based on the semi‑logarithmic ROC curves. For further information see Fig. 2
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shape score (Table  S8). This indicates that the O-LAP 
models, prepared using the docking scoring-based input, 
do not possess optimal charge distribution either for 
docking rescoring or rigid docking.

Given these results for the ESP similarity, the O-LAP 
modeling results were also reweighted using only 
the shape score of ShaEP. In the rescoring usage, the 
shape-only approach for the O-LAP modeling always 
provided better results than the default docking scor-
ing both in training (Table  S3 vs. Table  S11) and test-
ing (Table 1 vs. Table 2). With the HSP90 and AA2AR, 

the shape only approach did marginally better than the 
default 50/50 approach (Tables 2 and S11), but, gener-
ally, the removal of ESP did not really affect the results 
significantly. In the rigid docking, the shape only 
approach generated better or as good results as the 
flexible docking; the only exception being the AA2AR 
(Table  2 and S11). Due of this almost singular focus 
on shape, the O-LAP modeling method is referred to 
as shape-focused PHA modeling, but this focus could 
change with different input.

Fig. 4 Examples of O‑LAP models promoting the discovery of active ligands in docking rescoring. The O‑LAP rescoring (red line) boosts the default 
docking (blue line) enrichment for all targets (marginal improvement for AA2AR) based on the semi‑logarithmic ROC curves. The boost was most 
notable for the following active CHEMBL ligands (green stick models): A CHEMBL311059 with NEU  (1079th →  9th); B CHEMBL1087820 with AA2AR 
 (2939th →  18th); C CHEMBL386399 with HSP90  (357th →  29th); D CHEMBL312500 with AR  (226th →  2nd); and E CHEMBL76173 with AChE  (19th →  1st). 
The shape match between the top poses and the O‑LAP models (pink transparent surface) is evident when inspecting the ligand‑model overlays. 
The docking poses for the active ligands are also comparable to the co‑crystallized ligands (blue stick models; Table S1) included in the protein 
structures applied in the flexible docking. Although these active ligands differ in their chemical composition, there exist clear similarities in the key 
functional group placements. For further information see Fig. 2



Page 12 of 15Moyano‑Gómez et al. Journal of Cheminformatics           (2024) 16:97 

Conclusions
This study presents a new shape-focused pharmacophore 
(PHA) modeling method and algorithm O-LAP (short for 
OVERLAP). The software can be used to generate cavity-
filling or shape-focused PHA models using flexibly docked 
ligands. Massive amounts of atomic data with repeti-
tive and overlapping content are untangled and clumped 
together using ultra-fast pairwise distance-based graph 
clustering. A seemingly “messy” cluster of atoms at the 
binding site is streamlined into a coherent cavity-filling or 
shape-focused PHA model matching roughly the shape or 
steric contours of the protein’s binding cavity. The shape/
ESP comparison of the O-LAP models against the flexibly 
docked ligands in the docking rescoring or even in rigid 
docking can be performed using existing similarity com-
parison algorithms such as ShaEP. Thorough benchmark-
testing indicates that O-LAP models are highly suitable 
for rescoring flexibly sampled docking poses – the default 
docking enrichment is massively improved with five tar-
gets using random training/test set divisions. O-LAP is 
available free for both academic and commercial usage 
under the GNU General Public License v3.0 via GitHub 
(https:// github. com/ jvleh tonen/ overl ap- toolk it).

Availability and requirements
Project name: OVERLAP (O-LAP). Project home page: 
https:// github. com/ jvleh tonen/ overl ap- toolk it. Oper-
ating system: Platform independent (tested on Linux). 

Programming language(s): C++/Qt5. Other require-
ments: None. License: GNU GLPv3. Any restrictions 
to use by non-academic: None.
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