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Abstract 
While drug combination therapies are of great importance, particularly in cancer treatment, identifying novel syn-
ergistic drug combinations has been a challenging venture. Computational methods have emerged in this context 
as a promising tool for prioritizing drug combinations for further evaluation, though they have presented limited per-
formance, utility, and interpretability. Here, we propose a novel predictive tool, piscesCSM, that leverages graph-based 
representations to model small molecule chemical structures to accurately predict drug combinations with favour-
able anticancer synergistic effects against one or multiple cancer cell lines. Leveraging these insights, we developed 
a general supervised machine learning model to guide the prediction of anticancer synergistic drug combinations 
in over 30 cell lines. It achieved an area under the receiver operating characteristic curve (AUROC) of up to 0.89 
on independent non-redundant blind tests, outperforming state-of-the-art approaches on both large-scale oncol-
ogy screening data and an independent test set generated by AstraZeneca (with more than a 16% improvement 
in predictive accuracy). Moreover, by exploring the interpretability of our approach, we found that simple physico-
chemical properties and graph-based signatures are predictive of chemotherapy synergism. To provide a simple 
and integrated platform to rapidly screen potential candidate pairs with favourable synergistic anticancer effects, we 
made piscesCSM freely available online at https://​biosig.​lab.​uq.​edu.​au/​pisce​scsm/ as a web server and API. We believe 
that our predictive tool will provide a valuable resource for optimizing and augmenting combinatorial screening 
libraries to identify effective and safe synergistic anticancer drug combinations.

Scientific contribution 
This work proposes piscesCSM, a machine-learning-based framework that relies on well-established graph-based 
representations of small molecules  to identify and provide better predictive accuracy of syngenetic drug combina-
tions. Our model, piscesCSM, shows that combining physiochemical properties with graph-based signatures can 
outperform current architectures on classification prediction tasks. Furthermore, implementing our tool as a web 
server offers a user-friendly platform for researchers to screen for potential synergistic drug combinations with favora-
ble anticancer effects against one or multiple cancer cell lines.

Keywords  Drug combination, Machine learning, Graph-based signatures, Synergistic effects, Anticancer drugs

*Correspondence:
David B. Ascher
d.ascher@uq.edu.au
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00859-4&domain=pdf
https://biosig.lab.uq.edu.au/piscescsm/


Page 2 of 13AlJarf et al. Journal of Cheminformatics           (2024) 16:81 

Introduction
Cancer, a heterogeneous group of disorders, remains 
one of the leading causes of death globally, accounting 
for the deaths of almost 10 million people in 2020 [1]. 
According to recent data, the number of cancer deaths 
in the United States will reach 609,820 in 2023, equiv-
alent to about 1670 deaths per day [2]. Consequently, 
intense research measures are continued to design new 
effective anticancer treatments.

Therapy resistance and consequent tumour relapse 
are significant contributors to this disease’s global bur-
den. Cancer drug resistance is a multifactorial problem 
caused by genetic variability and nongenetic and epige-
netic mechanisms, contributing to tumour heterogene-
ity [3].

While standard monotherapies have made notable 
advancements in cancer treatment, their effectiveness 
is greatly restrained by the acquired drug resistance of 
tumour cells. In light of this challenge, exploring syn-
ergistic combinations of FDA-approved cancer drugs 
has emerged as a promising strategy [4]. Administering 
combination therapies with a synergistic effect (i.e., when 
the cumulative therapeutic effect of both drugs exceeds 
the additive impact of monotherapy) instead of single-
drug treatments offers great benefits in overcoming drug 
resistance, enhancing efficacy, and lowering adverse side 
effects and toxicity in cancer therapy. Furthermore, the 
utility of combination therapies extends beyond cancer 
treatment, being frequently employed to tackle a variety 
of complex diseases such as, infectious diseases [5], can-
cer [6, 7] and hypertension [8].

While synergistic drug cocktails generally provide sig-
nificant treatment benefits, especially in cancer where 
multiple molecular pathways can be altered, identifica-
tion of synergistic combinations has progressed slower, 
with significant scientific, economic, legal, and regula-
tory barriers [9]. Consequently, there is a pressing need 
to identify potential synergistic drug combinations for 
particular cancer types that could enhance synergis-
tic benefits and reduce the adverse effects of anticancer 
treatments.

The discovery of traditional drug combinations is pri-
marily based on clinical trials and experience [10]. With 
the expansion of high-throughput screening strategies, 
researchers can identify synergistic combinations by car-
rying out in vitro experiments at significant expense. In 
silico methods, such as machine learning approaches, 
present the possibility of effectively prioritizing drug 
combinations for further experimental and clinical vali-
dation. By leveraging large datasets and advanced algo-
rithms, machine learning offers a promising approach to 
discovering novel treatment strategies that can overcome 
drug resistance and enhance therapeutic efficacy [11].

Several computational approaches have been devel-
oped to identify anticancer synergistic drug combina-
tions, using chemical information describing the drugs 
and molecular details of the cancer cell lines. Both 
machine learning [12, 13] and deep learning [14–16] 
algorithms have been developed and trained on up to 
60 cancer-specific cell lines to facilitate this process.

Furthermore, advances have been made in disease 
classification through language model analysis [17], 
epilepsy seizure recognition [18], and classification 
of monkeypox skin lesions using convolutional neu-
ral networks [19]. Additionally, researchers have har-
nessed the power of natural language processing to 
improve disease classification, enabling better diag-
nosis and treatment [20]. This highlights the broader 
impact of machine learning in healthcare beyond can-
cer treatment.

In most cases, a single reference model, the Loewe 
additivity model, which presumes that drugs act on the 
same pathway similarly [21], was used as the founda-
tion for drug synergy prediction models developed in 
the surveyed studies. Nowadays, there is a broad spec-
trum of well-studied known reference models that are 
based on distinct chemical and biological assumptions, 
such as the highest single agent (HSA) [22], Bliss inde-
pendence [23], zero interaction potency (ZIP) [24], and 
Loewe additivity [25]. Despite this, none of these mod-
els is applicable in all cases of drug combinations. This 
has resulted in model selection becoming a personal 
choice [3, 21].

While the state-of-the-art approaches mentioned 
above have shown great promise in predicting syner-
gistic drug combinations, there are some limitations to 
these methods, such as the need for transcriptomic data 
of cell lines, including gene expression and copy num-
ber, in addition to the requirement of specific pathways 
or cell lines. In contrast, our approach only requires the 
chemical structures of both drugs. Another limitation 
is that most models lack interpretability, which limits 
their potential for use in clinical settings, an inher-
ent limitation of deep learning techniques that do not 
readily define and correlate the feature importance of 
molecular descriptors, such as toxicophores, physico-
chemical properties, and fingerprints, to drug action in 
cells.

Prior studies have demonstrated that using the graph-
based signature approach efficiently models small mol-
ecule properties, ranging from pharmacokinetics and 
toxicity [26–30] to bioactivity [31–36]. Exploiting this 
concept, we propose a new machine learning tool, 
piscesCSM (Fig.  1), which can accurately predict syner-
gistic drug combinations against one or multiple cancer 
types over different cell lines.
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Problem statement
Cancer remains a leading cause of mortality world-
wide, with therapy resistance and tumor relapse posing 
significant challenges in treatment. Current standard 
monotherapies have limitations due to acquired drug 
resistance, highlighting the need for novel anticancer 
treatment strategies. Machine learning algorithms pre-
sent a promising avenue for addressing this challenge by 
providing a more accurate and efficient way of predicting 
synergistic drug combinations.

Research gap
While combination therapies are a promising strategy 
to overcome drug resistance and enhance treatment 
efficacy, identifying synergistic drug combinations, par-
ticularly for specific cancer types, can be challenging. 
Current methods for predicting synergistic drug combi-
nations may lack accuracy, interpretability, or applicabil-
ity across different types of cancer.

The primary contributions of this paper are outlined 
below:

•	 We proposed piscesCSM, an ML-based model that 
can accurately predict drug pairs with possible syner-
gistic effects against one or multiple cancer cell lines.

•	 We utilized the comprehensive O’Neil synergis-
tic drug pairs dataset, ensuring the robustness of 

our findings across different types of cancer and the 
model’s applicability across various contexts.

•	 We developed tissue-specific predictive models and 
demonstrated piscesCSM’s performance across dif-
ferent tissue types.

•	 We explored the interpretability of piscesCSM and 
demonstrated crucial chemical aspects of drug com-
binations. This led to improved understanding and 
trust in the model’s predictions.

•	 We have made piscesCSM freely available as a web 
server and API for researchers to use and integrate 
with cheminformatics pipelines to screen potential 
synergistic drug combinations.

Materials and methods
piscesCSM Architecture: modeling synergistic drug 
combinations
Combination therapies offer significant potential for can-
cer treatment. We have developed a machine-learning 
framework for identifying synergistic drug pairs from 
various combinations. Figure S1 illustrates the overall 
structure of our proposed model for drug combinations. 
The architecture of piscesCSM can be summarized as 
follows:

•	 Input data:
•	 Datasets containing drug pairs are loaded and pro-

cessed to create a comprehensive dataset compris-

Fig. 1  piscesCSM workflow. Our proposed method is divided into four main phases. 1 data curation, the drug-drug synergy (DDS) data 
was acquired from O’Neil et al. for six different tissue types (39 cancer cell lines); 2 feature engineering, which involved calculating two classes 
of features: (i) graph-based signatures, that encode small molecules geometry and physicochemical properties, and (ii) general molecular properties 
and pharmacophores; 3 these were then utilized for training and testing models via supervised learning, with feature selection conducted 
for model optimization; 4 best-performing models were implemented through an easy-to-use web interface
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ing drug combinations and their corresponding 
labeling, i.e. antagonistic or synergistic.

•	 Feature Engineering Module:
•	 Graph-based signatures:

o	 Computes graph-based signatures capturing 
geometric and physicochemical properties of 
each drug individually.

•	 Complementary physicochemical properties:

o	 Utilizes RDKit cheminformatics library to com-
pute additional physicochemical properties.

•	 Concatenation of features:

o	 Drug combination feature vectors are obtained 
by combining graph-based signatures with 
complementary physicochemical properties for 
each drug pair.

•	 Machine Learning Module:

•	Multiple algorithms for classification:

o	 Random Forest
o	 Extremely Randomized Trees
o	 Gradient Boosting
o	 k-Nearest Neighbors
o	 Extreme Gradient Boosting
o	 Explainable Boosting Machine (EBM)
o	 Generalized Additive 2 Model (GA2M)
o	 Each algorithm is trained on the concatenated 

feature vectors to predict the synergy of drug 
combinations.

•	Hyperparameters optimization:
•	Grid search approach to tune hyperparameters.
•	Assessing performance improvement with strati-

fied cross-validation.

•	 Greedy Feature Selection Module:
•	 Bottom-up greedy feature selection technique:

o	 Starts with an empty set of features.
o	 Iteratively adds one feature at a time based on 

performance improvement evaluated using 
cross-validation.

o	 Continues until reaching a predefined num-
ber of features or maximum performance.

•	 Model Evaluation Module:

•	Evaluation metrics include:

o	 Accuracy

o	 Matthew’s Correlation Coefficient (MCC)
o	 Precision
o	 Area under the ROC curve (AUC)
o	 Balanced accuracy
o	 Recall
o	 F1 Score

•	SHapley Additive exPlanations (SHAP) analysis:

o	 Assess feature importance and provide 
post-hoc justification of model decisions.

•	 Web Server Development Module:

•	Front end:

o	 Developed using Materialize framework 
for user interface design.

•	Back end:

o	 Implemented in Python with the Flask frame-
work to handle requests and responses.

o	 Integrating software tools for molecule visu-
alization and format conversion (e.g., Kekule.
js, SmilesDrawer, Open Babel, RDKit).

•	Deployment:

o	 Hosted on a Linux server running Nginx 
for accessibility and usability.

Our proposed model architecture incorporates feature 
engineering, machine learning, feature selection, evalua-
tion, and web server development to predict synergistic 
drug combinations for cancer treatment. Figure S2 pre-
sents a flow chart (pseudocode) encapsulating the key 
steps of piscesCSM.

Data curation of anticancer synergistic drug combination
A number of large-scale sets of synergistic drug pairs 
have been published, two of which have been used in 
this study. These include O’Neil et  al. [37], which con-
tains more than 20,000 pairwise drug synergy scores 
across 38 approved and experimental drugs. In this way, 
the performed oncology combination screening covered 
83% of the possible two-drug combinations. AstraZen-
eca [38] have released data from their drug pair experi-
ments, including 11,576 investigations of 910 drug pairs 
tested on 85 cancer cell lines with molecular-related 
data. The data mentioned earlier offers the potential to 
assess computational approaches to predict novel drug 
combinations.

Here we have trained and validated piscesCSM on an 
anticancer synergistic drug combination dataset obtained 
from [37, 38]. Most drug combinations in O’Neil et  al.’s 
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data had Loewe additivity values that ranged from − 60 
to 60. According to the Loewe additivity model, any syn-
ergy score above 0 is considered synergistic. We applied a 
synergy score of 10 as a threshold to binarize the synergy 
scores, resulting in a dataset incorporating 12,415 drug-
drug combinations (6,300 antagonistic and 6,115 syner-
gistic drug pairs), involving 36 anticancer drugs screened 
against 31 cell lines originating from 6 different tissue 
types (See Supplementary Data Set 1 and 2).

For evaluating the generalization and predictive perfor-
mance of piscesCSM classification models, the datasets 
were split into non-redundant training (80%) and blind 
test (20%) sets. The drug similarity of each pair of drugs 
was determined by clustering the drug pairs based on 
Morgan/Circular fingerprints with the Tanimoto coef-
ficient (at a 0.6 similarity level) using the Butina algo-
rithm applied via the RDKit library [39]. This was done to 
ensure that similar drug pairs were present in the training 
or testing sets. All datasets employed in the current study 
are available at https://​biosig.​lab.​uq.​edu.​au/​pisce​scsm/​
data.

Feature engineering
We adopted our well-established graph-based signa-
tures approach to model chemical entities by describ-
ing their geometry and physicochemical properties. Our 
method proposes an intuitive graph representation of a 
compound that can be obtained by representing atoms 
as nodes (labelled based on their pharmacophoric prop-
erties) and their covalent bonds as edges. By altering a 
distance cut-off, cumulative distributions of distances 
are generated, forming a concise and efficient represen-
tation of the chemical entities. This information is then 
employed to train and test predictive models applying 
supervised learning. We have previously introduced the 
concept of graph-based signatures to describe protein 
structure geometry and the molecular interactions with 
their binding partners as graphs [40–54]. These were suc-
cessfully employed and adapted to train and test various 
machine learning models, including the prediction and 
optimization of pharmacokinetics and toxicity properties 
[26, 27, 30], in addition to the identification of bioactive 
compounds with anticancer properties [31].

Here, we adapted this concept to model drug com-
binations. We calculated these signatures for each drug 
individually; in this way, each drug was represented by a 
vector of 264 components, and then the features of each 
drug combination were concatenated into a vector of 526 
input features.

Complementary physicochemical properties were also 
calculated using the RDKit cheminformatics library [39]. 
A list of the features explored in our study, as well as the 

characteristics and composition of the dataset used, are 
detailed in Tables S1 and S2, respectively.

Machine learning approaches and model evaluation
We trained and evaluated several learning algorithms 
to obtain classification models for predicting synergis-
tic drug combinations. These included Random For-
est, Extremely Randomized Trees, Gradient Boosting, 
k-Nearest Neighbors, and Extreme Gradient Boosting, 
using the implementation available on the Scikit-learn 
library [55]. Furthermore, using the open-source Python 
module InterpretML [56], a glass-box model known as 
Explainable Boosting Machine (EBM), an inherently 
interpretable strategy, a class of Generalized Additive 2 
Model (GA2M), was evaluated. In interpretable machine 
learning models, the goal is to provide reasoning behind 
prediction in which biological insight can be gained and 
help identify highly predictive variables (features), biases, 
and errors.

The hyperparameters employed to train the piscesCSM 
model, along with the model’s predictive performance 
both before and after hyperparameter optimization, 
are presented in Tables S3 and S4, respectively. A grid 
search technique available via the Scikit-Learn library 
[55] was adopted for Hyperparameters optimization; a 
notable performance improvement was observed. The 
hyperparameters were tuned using stratified fivefold 
cross-validations.

In addition to hyperparameters tuning, a bottom-up 
greedy feature selection procedure [57] was utilized to 
reduce the redundancy, noise, and model complexity. In 
this approach, the feature set begins without any features 
and is built up one by one through iteration. This method 
uses a tenfold cross-validation procedure on a machine 
learning algorithm to evaluate all features (besides those 
already selected) to include one in the feature set. Each 
feature is assessed based on Matthew’s correlation coef-
ficient in the classification task. The best-performing 
feature is then incorporated with the current set at this 
point. Finally, Matthew’s correlation coefficient was also 
used to determine the models with the best performance 
based on greedy feature selection. Notably, Matthew’s 
correlation coefficient was favored as it enables choosing 
models that would be resilient to class imbalances.

After greedy feature selection, the Extremely Rand-
omized Trees presented the best predictive performance 
on fivefold cross-validation. Predictive performance was 
evaluated using accuracy, Matthew’s Correlation Coeffi-
cient (MCC), precision, the Area under the ROC curve 
(AUC), balanced accuracy, F1 score and recall. The sum-
mary plot method of SHapley Additive exPlanations 
(SHAP) [58] was utilized to evaluate the final models’ 

https://biosig.lab.uq.edu.au/piscescsm/data
https://biosig.lab.uq.edu.au/piscescsm/data
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features’ importance and provide a post-hoc justification 
of our models’ decision.

Web server development
The web server front end was developed via Material-
ize framework version 1.0.0. The back end was built in 
Python 2.7 using the Flask framework (version 0.12.3) 
and the Scikit-Learn (0.20.3) library [55]. It is hosted on 
a Linux server running Nginx. The piscesCSM web server 
integrates many software tools with permissible licenses. 
The Kekule.js editor [59] is used for drawing molecules 
and SMILES strings. While molecule depictions can be 
visualized using SmilesDrawer (version 1.0.10) [60]. The 
molecular format conversion process uses Open Babel 
(version 2.4.1) [61] and RDKit cheminformatics library 
(2017.09.03) [39]. In addition, our developed tool pkCSM 
[26] is employed to calculate the input molecules’ phar-
macokinetic properties (users’ molecules of interest).

Results
Exploring the embedding space of drug synergism 
for different tissue types
Across our dataset, we curated screening information 
from six different tissues, including colon, breast, mela-
noma, ovarian, prostate, and lung (in total 12,415 com-
bination pairs). This raised the question of whether 
differences in synergistic behavior might vary between 
tissue types. We, therefore, explored how different tissues 
clustered based on shared molecular features between 
combinations. To reflect the relationships among various 
tissues of origin, we, therefore, conducted a t-Distributed 
Stochastic Neighbor Embedding (t-SNE) analysis to visu-
alize tissues’ high-dimensional representation embedding 
vectors in a 2D space (Fig. 2). This revealed that most tis-
sue types were clustered together in the 2-D space. This 
supported the idea for a general analysis and predictive 
model, with the larger data size providing increased sta-
tistical power.

Interestingly, some cell lines originating from the breast 
tissue were isolated and tended to form isolated clusters, 
indicating that they may have unique molecular charac-
teristics. This is consistent with earlier work [16], which 
reported that two breast cancer cell lines are outliers 
when analyzing drug combination screens. This requires 
further investigation but has potentially important rami-
fications, both clinically and within research.

Exploring properties of synergistic anticancer drug 
combinations
Using a large-scale oncology screen dataset incorporat-
ing the synergy of anticancer compounds for 12,415 drug 
combinations, we conducted a two-sample Kolmogorov–
Smirnov to explore which molecular features correlate 

with a synergistic anticancer effect. We observed that 
synergistic combinations tended to involve molecules 
with more rings, a higher number of rotatable bonds, a 
slightly greater Logp, and larger Kppa2 values (which is 
used to estimate the inter-rater reliability of the com-
pounds). Interestingly, drug combination pairs also had 
a higher frequency of methoxy groups, consistent with 
previous observations that showed drug combinations 
containing methoxy groups exhibited synergistic anti-
tumor activity in  vitro [62]. Antagonistic drug pairs, in 
contrast, tended to have a higher frequency of piramide. 
Figure S3 illustrates the leading discriminative features 
of the synergistic drug pairs compared to antagonistic 
combinations.

Predicting anticancer synergistic drug combinations
Combinatorial therapy is a favourable strategy to alleviate 
drug resistance compared to anticancer monotherapy; 
therefore, we collected an extensive screening oncology 
dataset of 12,415 unique drug pairs with experimentally 
described synergistic effects against multiple cancer 
types. The acquired data was divided into non-redundant 
training (80%) and blind test (20%) sets.

Then, we trained classification (5040 antagonistic pairs 
/4893 synergistic pairs) models using different supervised 
machine learning algorithms that leveraged graph-based 
signatures and general physicochemical properties to 
accurately predict favourable synergistic combinations 
across multiple cancer lines.

Under stratified fivefold cross-validation, our best-per-
forming extremely randomized trees obtained an overall 
balanced accuracy of 0.82, AUC of 0.89, MCC of 0.61, a 

Fig. 2  Visualization of distinct tissue types using t-SNE analysis 
to investigate the embedding space. High-dimensional vector 
representations are mapped into 2-D space with two t-SNE elements. 
Different colors denote various tissues
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precision of 0.82, F1 score of 0.81 and recall of 0.82 (Fig-
ure S4 and Table  1). This was consistent with perfor-
mance on tenfold and 20-fold cross-validation (Table S5). 
When we evaluated the predictive performance of our 
model against a blind test set, it achieved comparable 
performance (0.81, 0.87, 0.59, 0.82, 0.81 and 0.81 for 
balanced accuracy, AUC, MCC, precision, F1 score and 
recall, respectively). This provided confidence that our 
proposed method generalizes well and can be employed 
to predict novel synergistic combinations against multi-
ple cancer cell lines. Figure S5 visually presents the con-
fusion matrices, depicting the counts of correctly and 
falsely predicted samples by piscesCSM, evaluating its 
classification performance on both cross-validation and 
blind test sets.

The performance of piscesCSM was evaluated and 
compared with alternative approaches using the dataset 
developed by O’Neil et  al. [37], which has been used in 
many previous approaches, including DeepSynergy [15] 
and DeepDDS [63] (Table 1). piscesCSM obtained higher 
recall than all other approaches and outperformed Deep-
Synergy across all performance measures. Compared to 
DeepDDS-GAT, piscesCSM obtained stronger results 
across MCC and recall without significant deterioration 
of balanced accuracy and precision, while DeepDDS-
GAT achieved higher AUC. In addition, when comparing 

our model performance with the alternative methods 
on the blind test set, piscesCSM outperformed both 
approaches, as shown in Table S6.

Exploring piscesCSM tissue‑specific predictive 
performance
Since cancer is more than a single disease and drug-
combination treatment has tissue-specific responses, we, 
therefore, used the graph-based signatures approach to 
predict synergistic anticancer effects across six distinct 
tissue types: colon, breast, melanoma, ovarian, prostate, 
and lung. Please refer to Table S7 for the detailed break-
down of training and testing samples corresponding to 
each tissue type.

We trained and developed six tissue-specific clas-
sification models using supervised learning (categori-
cal outcomes were present in all data sets: synergistic vs 
antagonistic). The final models obtained AUCs of up to 
0.82, and an F1 score of up to 0.80, with MCC and bal-
anced accuracy of up to 0.58 and 0.80, respectively, under 
tenfold cross-validation; overall, the predictive perfor-
mance did not differ considerably across distinctive tis-
sues, except for the prostate (Fig. 3-1). Prostate tissue had 
the lowest performance among all tissues studied. The 
limited predictive performance could be primarily due to 
the small number of training samples.

Table 1  Comparative performance of piscesCSM and other competitive methods

Method Five fold Cross-validation

ROC AUC​ MCC Balanced Accuracy Precision Recall F1 score

piecesCSM 0.89 0.61 0.82 0.82 0.81 0.81

DeepDDS-GAT [63] 0.90 0.60 0.82 0.82 0.80 0.81

DeepSynergy [15] 0.88 0.57 0.80 0.81 0.75 0.78

Fig. 3  piscesCSM tissue-specific performance depicted as ROC curves. Our predictors accurately classified synergistic drug combinations. 1 
Predictive performance of piscesCSM tissue-specific models on cross-validation. 2 Tissue-specific comparative performance on blind test sets
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Our tissue-specific models achieved comparable per-
formance across the non-redundant blind test sets, 
achieving AUCs, MCC, F1 scores and accuracy of up to 
0.74(Fig. 3-2), 0.48,0.73 and 0.71, respectively, providing 
confidence in the generalizability of our approach in all 
tissue types. The ROC curves for the six tissue-specific 
predictive models are illustrated in Fig.  3, demonstrat-
ing their performance on cross-validation and blind test 
sets. Additionally, Figures S6 and S7 depict the confusion 
matrices for these models, showcasing their performance 
evaluation on cross-validation and blind test sets.

Performance analysis and comparison on low‑redundancy 
settings
We further evaluated our model’s performance under 
low-redundancy settings by employing three differ-
ent leave-one-group-out cross-validations schemes, 
in addition to comparing its performance with the 

state-of-the-art methods DeepDDS [63] and DeepSyn-
ergy [15] (Table 2).

The first scheme was leave-one-drug-combination-out, 
where each drug combination was iteratively used as a 
test set. piscesCSM performed as well as or better than 
all alternative approaches (p-value: < 0.05), achieving an 
AUC of 0.90 and balanced accuracy of 0.81.

A leave-one-drug-out evaluation was also conducted 
to assess the model’s ability to generalize for unseen 
drugs, also significantly outperforming alternative meth-
ods (p-value: < 0.05), achieving up to 0.18 higher bal-
anced accuracy. A leave-one-tissue-out cross-validation 
strategy was also adopted by using individual tissues 
iteratively as test sets. No significant performance deteri-
oration was observed for piscesCSM, which consistently 
outperformed other methods (Table 2).

Further, Fig.  4 depicts the ROC AUC values of our 
model, DeepDDS-GAT, and DeepSynergy on six tis-
sue types: breast, colon, lung, melanoma, ovarian and 

Table 2  Comparative performance of piscesCSM on low-redundancy settings, including leave-one-drug-combination-out, leave-one-
drug-out and leave-one-tissue-out cross-validations

Method Leave-drug combination-out Leave-drug-out Leave-tissue-out

ROC AUC​ Balanced 
Accuracy

MCC F1 score ROC AUC​ Balanced 
Accuracy

MCC F1 score ROC AUC​ Balanced 
Accuracy

MCC F1 score

piscesCSM 0.89 0.81 0.63 0.81 0.79 0.79 0.56 0.79 0.88 0.81 0.60 0.81

DeepDDS-GAT [63] 0.90 0.81 0.62 0.81 0.73 0.66 0.48 0.66 0.83 0.74 0.56 0.74

Deep
Synergy [15]

0.83 0.77 0.57 0.77 0.71 0.61 0.45 0.61 0.80 0.71 0.52 0.71

Fig. 4  Performance comparison of piscesCSM, DeepDDS-GAT and DeepSynergy on leave-one-tissue-out cross-validation experiments using AUC 
as the evaluation metric on six distinct tissue types: breast, colon, lung, melanoma, ovarian and prostate
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prostate. It is noted that piscesCSM outperformed other 
competitive approaches on leave-one tissue-out cross-
validation (using a Wilcoxon signed rank-sum test, 
p-value: < 0.05) with ROC AUC values of 0.89, 0.88, 0.90, 
0.89, 0.89 and 0.81, respectively.

Evaluation using the AstraZeneca independent data
To further evaluate the generalizability of our approach, 
we utilized an independent test set initially published 
by AstraZeneca [38]. The data incorporates 668 distinc-
tive drug pair–cell line combinations, including 57 drug 
pairs (see Supplementary Data Set 3) and 24 cell lines 
(Table S5). Interestingly, when we explored the chemical 
diversity of drug pairs between and within our training 
and the AstraZeneca independent blind test sets using 
Tanimoto similarity, we found that these datasets had 
Tanimoto similarity indices of 0.117 and 0.154, respec-
tively, implying a high level of chemical diversity in the 
applied dataset (Figure S8). piscesCSM correctly iden-
tified 429 of the drug combination pairs, followed by 
DeepsDDS-GAT [63], correctly predicted 406, compared 
to only 317 by the state-of-the-art approach DeepSynergy 
[15] (p-value: < 0.05) (Table 3 and Figure S9). Figure S10 
illustrates the confusion matrices for the three meth-
ods, providing a detailed breakdown of the correctly and 
falsely predicted samples.

Understanding chemotherapeutic synergism 
through interpreting feature importance in piscesCSM 
model
Interpreting a prediction model’s output correctly is 
essential, as it provides a better understanding of the 
process being modelled as well as how a model could 
be refined, consequently supporting clinical decision-
making. Therefore, to interpret the decisions behind 
piscesCSM tissue-specific predictions, better understand 
the predictive models and hopefully shed light onto what 
makes an effective synergistic drug combination against 
different cancer tissue types. We explored the interpret-
ability of our piscesCSM tissue-specific models in two 
different scenarios at a global interpretability level and a 
post hoc prediction level.

To begin with, a highly interpretable glass box model- 
the Explainable Boosting Machine (EBM)- [56] was 
employed to understand overall feature importance 

and provide a global explanation (what the final models 
have learnt broadly) of the features utilised by the tis-
sue-specific models. The ROC curves of the best EBM 
tissue-specific models are illustrated in Figures S11 and 
S12. By calculating the average absolute contribution of 
features in predicting training data for each tissue-spe-
cific classifier, the overall importance ranking (global 
explanation) was determined.

Figures  S13-S15 show the global explanations of the 
tissue-specific EBM models. The global interpretability 
analysis showed that the most important variables for 
breast and colon-specific models were distance patterns 
that involve pairs of hydrophobic and acceptor atoms 
within four bonds (i.e., Hydrophobe: Hydrophbe-4.00_
drug_B, and Acceptors: Hydrophbe-4.00_drug_B). In 
comparison, the most important variables for Mela-
noma, prostate and Lung-specific models included 
general molecular descriptors, such as MOE-like 
descriptors of molecular surface area (such as PEOE_
VSA_1, PEOE_VSA9_drugA, and SMR_VSA5). Simi-
larly, topological descriptors, incorporating Chi1n and 
Chi0n, were the first two most predictive variables in 
the Ovarian-specific model.

We have further investigated the features’ inter-
pretability of the top most predictive variables in the 
tissue-specific models as a part of the global expla-
nation analysis. The plots of the features’ interpret-
ability for the tissue_ specific models are depicted in 
Figures S16–S18.

Interpretability plots can be interpreted as two-
dimensional risk profiles, where the horizontal axis is 
the actual value of each feature, and the vertical axis 
represents the risk score (upper graphs in Figures S16-
S18). The values distribution of the feature is also 
reported in the bottom graphs in Figures  S16-S18. An 
increase in a feature risk score above zero indicates 
that the feature contributes to the classification in the 
positive direction (synergistic). In contrast, a feature 
risk score below zero suggests a contribution in the 
negative direction (antagonistic). For example, the plot 
of interpretability for the most important variable in 
the colon-specific model, which depicts distance pat-
terns incorporating hydrophobic atoms pairs within 
four bonds in drug B (Figure S16), shows this feature 
as having values higher than 2.5, denoting a synergistic 

Table 3  Performance comparison of piscesCSM with DeepSynergy and DeepDDS-GAT on the AstraZeneca independent blind test

Method ROC AUC​ MCC Balanced accuracy Precision Recall F1 score

piscesCSM 0.66 0.47 0.64 0.82 0.63 0.71

DeepDDS-GAT [63] 0.65 0.42 0.59 0.78 0.63 0.70

DeepSynergy [15] 0.56 0.37 0.53 0.76 0.40 0.51
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combination. In contrast, actual values between 0 and 
2.3 contribute to predicting the antagonistic combina-
tion (effect).

Likewise, the interpretability plot (Figure S17) for the 
molecular surface descriptor for drug B (SMR_VSA5), 
the most important variable in the lung-specific model, 
demonstrates that actual values between 13 and 21 con-
tribute to the classification of anticancer synergistic com-
bination. Conversely, values between 0 and 12 contribute 
to the prediction of an antagonistic combination.

Furthermore, a post-hoc analysis was conducted 
employing the Shapley Additive exPlanations (SHAP) 
[58] method to understand individual feature contribu-
tions to the model outcomes.

SHAP feature importance values were calculated for 
each tissue-specific predictive model (Figures S19–S24). 
The values calculated by the SHAP plot indicate the 
distribution of the impact of respective features on the 
model’s result. Generally, the top features on each plot 
contribute more to the model prediction than those at 
the bottom.

Noticeably, for most models, the strongest contribut-
ing features for predicting synergistic anticancer effects 
were the general physicochemical properties of the 
compounds, including the number of Heavy atoms and 
descriptors of molecular surface area (PEOE_VSA and 
SlogP_VSA), as well as the topological descriptors of the 
compounds (e.g., Chi4v). In addition, the graph-based 
signature representations of the molecules were demon-
strated to play a vital decision role, particularly highlight-
ing the presence of aromatic groups, such as the number 
of pyridine rings, in line with a previous study that dem-
onstrated compounds incorporating pyridine-derivatives 
exhibited synergistic antitumor effects in vitro [64]—fur-
thermore, distance-based patterns involving donor atoms 
(e.g., Donor: Hydrophobe-2.00_drug_B). Interestingly, 
the colon-specific model differentiated from the other 
models, incorporating fragment-matching descriptors 
such as fr_ester, fr_aniline, and fr_piperzine.

piscesCSM web server
To help guide researchers to screen for novel anticancer 
synergistic combinations more efficiently, we have imple-
mented piscesCSM through an easy-to-use web server 
and API and made it freely available at https://​biosig.​lab.​
uq.​edu.​au/​pisce​scsm/. To predict synergistic anticancer 
drug combinations, users can submit their molecules of 
interest to the server either as a single smile string or as 
a batch file by submitting molecules as SMILES strings. 
Additionally, users can calculate the pharmacokinetic 
properties of their molecules of interest by employing the 
pkCSM tool [26] (Figure S25).

Discussion
In this study, we introduced piscesCSM, a machine-
learning-based method that combines graph-based sig-
natures and physicochemical properties to provide better 
predictive accuracy and interpretability for predicting 
synergistic drug combinations.

Our study demonstrates the prospect of machine learn-
ing to transform cancer treatment strategies. Our pro-
posed model, piscesCSM, leverages large-scale datasets 
of synergistic drug combinations to predict such com-
binations accurately and reliably across multiple can-
cer types and cell lines. This can potentially guide the 
development of more effective and personalized cancer 
therapies.

Furthermore, we have developed a user-friendly web 
server to facilitate easy access to our predictive model. 
Thereby enabling researchers and healthcare profession-
als to screen for potential synergistic drug combinations 
efficiently, accelerating the translation of computational 
findings into clinical practice.

Limitations
Despite our study’s promising results, some limitations 
should be acknowledged. Firstly, our predictive model 
relies on a limited dataset of anticancer drug combina-
tions, which may not encompass the full spectrum of 
potential interactions or account for all relevant fac-
tors influencing drug synergy. Incorporating additional 
datasets and refining our model with real-world clini-
cal data can enhance its predictive performance and 
generalizability.

Furthermore, factors such as data availability, the het-
erogeneity of cancer types, and variability in patient 
responses to treatment may limit the applicability of our 
model. Fostering interdisciplinary collaborative efforts 
and ongoing refinement of our model through user feed-
back is essential to addressing these limitations and opti-
mizing cancer therapy.

Conclusion
Computational approaches have been developed and 
employed over the years to assist prediction and prioriti-
zation of possible synergistic drug combinations, though 
presented limited performance and interpretability. Here 
we proposed a novel approach to predict synergistic drug 
combinations against one or multiple cancer types over 
different cell lines, piscesCSM, leveraging the concept 
of graph-based signatures. We demonstrated our model 
not only outperformed alternative approaches on multi-
ple independent blind test sets but presented consistent 
performance, even on low-redundancy settings. This pro-
vides confidence in the model’s generalization capabili-
ties for novel drug combinations, drugs, and tissues.

https://biosig.lab.uq.edu.au/piscescsm/
https://biosig.lab.uq.edu.au/piscescsm/
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In contrast with alternative black-box approaches, we 
have assessed the rationale behind model predictions, 
interpreting feature importance. This showed that sim-
ple physicochemical properties (mostly surface area) 
and graph-based signatures could accurately predict 
chemotherapy synergism.

As larger publicly available synergy datasets become 
available, piscesCSM could be further enhanced and 
used in other fields where drug combinations play a 
vital role, including antifungal [65], antiviral [66], and 
multidrug synergy prediction [67]. We leveraged graph-
based signatures for modelling small molecule physico-
chemistry of an extensive screening oncology dataset 
data set of drug pairs with experimentally described 
synergistic effects and illustrated their efficacy. We 
anticipate piscesCSM will be an invaluable in silico tool 
for identifying potential synergistic drug combinations 
and guiding in  vitro and in  vivo rational experimental 
validation of future combination therapies.

In terms of future work, several potential avenues 
could help shape therapeutic strategies and predict the 
most effective drug combinations. One of these avenues 
involves integrating and leveraging diverse omics data 
types, such as genetics, gene expression, proteins, and 
metabolites. Analyzing these data types can provide a 
comprehensive understanding of cancer biology and 
drug response mechanisms, as well as how drugs inter-
act at the molecular level, helping identify the best drug 
combinations.

Artificial intelligence, particularly deep learning algo-
rithms, is another critical factor in predicting drug 
combinations. These advanced algorithms can identify 
complex patterns in data, which is ideal for capturing 
the nonlinear relationships within our bodies. By lev-
eraging these algorithms, more accurate predictions 
about drug interactions and the identification of novel 
synergistic drug pairs can be achieved.

Moreover, precision medicine approaches tailored to 
individual patient profiles are promising for optimizing 
treatment outcomes and minimizing adverse effects, 
ultimately leading to a new era in oncology treatment.
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