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Abstract 

Conformal prediction has seen many applications in pharmaceutical science, being able to calibrate outputs 
of machine learning models and producing valid prediction intervals. We here present the open source software 
CPSign that is a complete implementation of conformal prediction for cheminformatics modeling. CPSign imple-
ments inductive and transductive conformal prediction for classification and regression, and probabilistic prediction 
with the Venn-ABERS methodology. The main chemical representation is signatures but other types of descriptors 
are also supported. The main modeling methodology is support vector machines (SVMs), but additional modeling 
methods are supported via an extension mechanism, e.g. DeepLearning4J models. We also describe features for visu-
alizing results from conformal models including calibration and efficiency plots, as well as features to publish predic-
tive models as REST services. We compare CPSign against other common cheminformatics modeling approaches 
including random forest, and a directed message-passing neural network. The results show that CPSign produces 
robust predictive performance with comparative predictive efficiency, with superior runtime and lower hardware 
requirements compared to neural network based models. CPSign has been used in several studies and is in produc-
tion-use in multiple organizations. The ability to work directly with chemical input files, perform descriptor calculation 
and modeling with SVM in the conformal prediction framework, with a single software package having a low foot-
print and fast execution time makes CPSign a convenient and yet flexible package for training, deploying, and predict-
ing on chemical data. CPSign can be downloaded from GitHub at https:// github. com/ arosb io/ cpsign.

Scientific contribution
 CPSign provides a single software that allows users to perform data preprocessing, modeling and make predictions 
directly on chemical structures, using conformal and probabilistic prediction. Building and evaluating new models 
can be achieved at a high abstraction level, without sacrificing flexibility and predictive performance—showcased 
with a method evaluation against contemporary modeling approaches, where CPSign performs on par with a state-
of-the-art deep learning based model.
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Introduction
Ligand-based modeling and quantitative structure-
activity relationships (QSAR) are computational methods 
used in drug discovery to predict properties of small 
molecules, such as binding affinity or activity towards 
a protein target, and toxicity [1–3]. The approach relies 
on the structure and properties of known chemical 
structures, and commonly takes advantage of machine 
learning to construct predictive models. Over the 
years the available data in public repositories related to 
cheminformatics have increased, and the applications 
and accuracy of predictive models have expanded and 
improved. This has lead to an increased utilization of 
ligand-based modeling in drug discovery projects [4].

The predictive performance of machine learning 
models is commonly measured on an external test 
set or using cross-validation, with accuracy, AUC, F1 
scores (classification), and RMSE and R2 (regression) as 
commonly used metrics. However this does not relay 
the level of confidence for individual objects predicted. 
When predicting two different objects, it would seem 
natural that the object that is most dissimilar compared 
to the training data would result in a larger prediction 
interval to reflect greater uncertainty, and vice versa. 
In drug discovery, where predicted objects in many 
cases are novel chemical structures, this is particularly 
important, and concepts and approaches to determine a 
model’s applicability domain have been proposed to this 
end [5]. However in most cases these are ad hoc methods 
without a proven theoretical underpinning.

Conformal prediction is a framework that provides a 
way to generate valid prediction intervals for a wide range 
of machine learning algorithms [6]. Unlike traditional 
prediction intervals, which applies the same certainty 
regardless on the predicted object, conformal prediction 
constructs prediction intervals that are both guaranteed 
to be valid and based on the estimated difficulty of the 
predicted objects. This makes conformal prediction a 
powerful tool for machine learning in settings where 
the underlying distribution of data is unknown, and a 
way to address the applicability domain assessment for 
compounds [7, 8].

Conformal prediction has been extensively used 
in drug discovery [9] with applications including 
screening [10], toxicology prediction [11, 12], property 
prediction [13], target prediction [14], and prediction 
of pharmacokinetics [15, 16]. More recently, conformal 
prediction has also been used with Deep Neural 
Networks in drug discovery applications [17–19] and in 
medical applications [20].

Existing software for conformal prediction include 
the Nonconformist software [21] which is a Python 
implementation of the conformal prediction framework 

that has been used in many drug discovery projects [22–
24]. PUNCC [25] is a Python library that implements 
conformal prediction algorithms and associated 
techniques. Crepes [26] is a more recent Python package 
for generating conformal regressors and predictive 
systems. None of the aforementioned tools however 
is able to work with chemical structures as input but 
all operate on numerical data. Hence we think there is 
room for a conformal predicting tool specifically tailored 
for chemical structures. For a more extensive list of 
resources, papers, and software related to conformal 
prediction, we refer to the Aweso me Confo rmal Predi 
ction  GitHu b repos itory [27].

In this manuscript we present CPSign, a standalone 
software tool that implements conformal prediction for 
cheminformatics modeling. We start by introducing 
conformal prediction and Venn-ABERS prediction as 
well as the default CPSign methods; Signatures [28, 
29] for molecular representation, and support vector 
machines (SVMs) for machine learning modeling. We 
continue to discuss the implementations in CPSign and 
associated tools, and also present a comparison between 
CPSign and several other methods for a set of regression 
and classification datasets.

Methods
Conformal prediction
Conformal prediction is a mathematical framework 
built up by a collection of algorithms used for 
producing confidence guarantees for standard machine 
learning algorithms [6]. There are many resources 
that has introduced it in different settings, e.g., in 
the drug discovery domain [9, 30]. Here we make a 
brief introduction to the subject, focusing mainly on 
the inductive versions of the algorithms, in which an 
underlying scoring algorithm is trained once and then 
later reused for all future predictions (until enough new 
training data has been accumulated to warrant a full 
retraining to include new knowledge in the model). The 
inductive setting contrasts to transductive modeling 
where an underlying scoring algorithm is re-trained for 
every prediction.

At the heart of conformal prediction lies the notion 
of nonconformity, which intuitively is a measure of how 
“strange” an object is compared to other objects. The 
term object here refers to the features x of a training 
observation (x, y), where y is the label of the observation. 
The nonconformity of an object i is often referred to as 
αi and computed using a nonconformity function; h(xi) . 
This function, h, is based on the output of an underlying 
scoring algorithm—which could be any machine learning 
algorithm that produces a prediction score. In the 
inductive setting, where the underlying algorithm is 

https://github.com/valeman/awesome-conformal-prediction
https://github.com/valeman/awesome-conformal-prediction
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trained only once, the available training data is split 
up into two disjoint sets; the proper training and the 
calibration sets. The proper training set is used for 
training the underlying algorithm, while the calibration 
set is used for calibrating the predictions—based on the 
nonconformity function.

The classification and regression algorithms differ 
slightly and we refer readers to e.g. Vovk et  al. [6] for 
a detailed explanation of them. But in essence the 
classification algorithm computes the nonconformity, αi , 
for all n instances in the calibration set during training, 
resulting in a list α1, ...,αn . When predicting a new test-
object, xn+1 , the nonconformity, αn+1 , is calculated and 
then ranked against the list α1, ...,αn+1 (i.e., including 
the n+ 1 test instance) according to Eq.  1, resulting in 
a p-value for the object. This ranking is in most cases 
performed separately (referred to as mondrian) for each 
possible class label y (i.e., with a separate list of α values 
for each class). The resulting prediction of a test-object is 
a set of p-values, one for each possible class label. These 
p-values can then be subjected to a statistical test in order 
to obtain a set-prediction, i.e. if we wish to have 90  % 
confidence in the prediction we specify a significance 
level, ε , of 0.1 and have to include all labels with a p-value 
equal to or higher than 0.1 in the prediction set. The 
resulting prediction sets can thus be empty (no classes 
predicted), single-label (informative) or multi-label (less 
informative).

In the regression algorithm it is common to use a non-
conformity function that also attempts to scale the 

(1)pn+1 =
| j = 1, ..., n+ 1 : αj ≥ αn+1|

n+ 1

prediction intervals based on the predicted difficulty 
of the test-object, commonly performed by training an 
additional error model that is trained on e.g. the residuals 
produced when predicting the training set. The regres-
sion algorithm, in contrast to classification, also require 
the user to specify a desired significance level ( ε ) at pre-
diction time and the output is a prediction interval for 
the given ε . This prediction interval should enclose the 
true label, y, with a probability of 1−ε or greater (i.e. the 
expected error is at most ε ). Naturally, as the desired sig-
nificance level is decreased the predictor has to increase 
the prediction interval in order to comply with the low-
ered level of accepted errors (see Fig. 1 for an illustrative 
example).

Under the relatively week assumption of 
exchangeability of calibration and test-data, these 
inductive versions of conformal predictors are proven 
to produce valid (well-calibrated) predictions, i.e., that 
the error rate is equal to or smaller than the specified 
significance level [6]. Furthermore, in the case of 
classification, given that a mondrian (class conditional) 
calibration is used, the guarantee holds individually for 
each class and has been shown to handle imbalanced 
datasets very well without the need to apply balancing 
techniques [18, 31, 32]. However, this guarantee may 
in practice be difficult to achieve sometimes due to 
assay drifts [12] or in case data splitting is performed 
in a non-random way (such as scaffold-splitting). The 
validity is thus commonly assessed by calculating the 
error rate for a set of significance levels, or by plotting 
a calibration curve of error rate vs significance level 
across a range of significance levels (see e.g. Fig. 3A).

Fig. 1 Predictions made with the Lipophilicity model from the evaluation using different significance levels. Selecting a lower significance, to be 
more certain that the true prediction is included in the predicted interval, leads to a larger interval
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Once calibration has been assessed, the goal is to 
produce as informative predictions as possible, referred 
to as predictive efficiency. A conformal predictor could 
always place all possible class labels in the prediction 
set or predict the interval ( −∞;∞ ), and thus always 
be correct—but those predictions are not informative. 
The predictive efficiency thus relates to how specific 
the predictions are (small prediction sets or tight 
prediction intervals). Many metrics has been proposed 
for evaluating predictive efficiency, most which are 
summarized in Vovk et  al. [33]. Some of the most 
commonly used metrics for classification are: observed 
fuzziness, the average number of predicted classes 
(average C), and the ratio of single-label prediction sets; 
where the two latter ones requires a fixed significance 
level. For regression the most commonly used metrics 
are the median or mean prediction interval width at fixed 
significance levels.

Evaluating a conformal model requires more effort and 
thought than standard point predictions, as we also need 
to apply domain knowledge into how each dataset should 
be evaluated. More specifically, we need to choose a sen-
sible level of confidence in the evaluation – something 
that require insight in what level of confidence is needed 
for a prediction to be useful, or contrary, how specific 
must the predictions be to be useful (e.g. tight prediction 
intervals). An example of this is choosing to use the pro-
portion of single label predictions produced by a classi-
fication model at a fixed significance level, which seems 
sensible as the most useful prediction is when it is of a 
single label, but a priori it may be hard to decide on what 
confidence level to use. See Fig. 2B, where the green area 
shows the proportion of single-label predictions at any 
given significance level. If we in advance chose to use 
e.g. 0.35 as significance level the predictions will include 
empty prediction sets—the predictive efficiency is actu-
ally better at a lower significance level (0.29 being the 
best), which you may miss in case focusing on a fixed sig-
nificance level.

Venn‑ABERS prediction
Apart from the conformal predictors introduced in the 
previous section, CPSign also supports probabilistic 
modeling using the Venn-ABERS predictor (VAP) 
[34, 35]. This algorithm, contrary to the conformal 
predictors, output probability estimates rather than 
p-values, which is preferred by some users. The VAP 
is a special type of Venn predictor which relies on a 
machine learning model to produce so-called Venn 
taxonomies. VAP is a multi-probability predictor 
for binary classification tasks, giving two probability 
estimates ( p0 and p1 ) for each test-object. One of these 
estimates is the true probability of the test-object, 

but we do not know which one. This simplest version 
of VAP relies on splitting the full training set into a 
proper training and calibration set (called Inductive 
Venn-ABERS Predictor, or IVAP), in the same manner 
as the inductive conformal predictors discussed in the 
previous section. The proper training set is similarly 
used for training the underlying scoring algorithm 
and the calibration set is here used for producing the 
predictions using an isotonic regression where the test-
object is included. The calibration step is performed 
two times, once for each of the possible class labels, 
where the test-object is augmented with one of the 
class labels as a tentative label.

An extension to the one-split VAP is to train a Cross-
Venn-ABERS (CVAP) [35] model, in which the training 
set is split several times in a folded fashion similar to 
k-fold cross-validation, where an IVAP is trained for 
each such split. The benefit of this strategy is that the 
k multi-probabilities can be aggregated into a single 
probability with conditional guarantees [35]. A benefit 
of VAP is that it has guarantees for producing well-
calibrated probabilities, without introducing further 
assumptions on the data being modeled, something 
that is not guaranteed by most probabilistic models 
[36]. In many cases a probabilistic predictor is favorable 
over a conformal classifier, mostly as probabilities 
are easier to interpret than p-values, and having the 
possibility to measure and compare its performance 
using standard evaluation metrics. However, there are 
cases where the conformal algorithms are preferable, 
such as for imbalanced datasets where the mondrian 
calibration handles the imbalance without requiring 
balancing techniques—whereas VAP generally needs 
data balancing or other techniques to perform well. 
Conformal classification also handle the case of 
multi-class data, whereas the VAP is only defined 
for binary classes. For the scenario of dealing with 
small datasets the transductive conformal predictor 
may be a more favorable alternative as no valuable 
training observations must be set aside for the model 
calibration, whereas the VAP algorithms require a 
separate calibration set.

In life science research, VAP has been applied in drug 
screening [37], to predict metabolic transformations [38], 
and to assess cardio-vascular risk based on in vitro assay 
data [39].

CPSign
This section will briefly go through the implementation 
choices made when developing CPSign and some of 
the key features, a summary of these can be seen in 
Supplemental Table 1, Additional file 1.
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Molecular representation—descriptors
Representing chemical structures as numerical 
features is generally referred to as molecular or 
chemical descriptors [40], but sometimes also 
chemical fingerprints although this is mostly used for 
structural comparisons and similarity searching. Many 
descriptor implementations have been proposed, 
with varying performance. The simplest ones include 
physicochemical descriptors such as molecular 
weight, number of rotatable bonds, lipophilicity etc. 
Over the years, a type of topological (2D) fingerprints 
describing the local environment around each atom, 
referred to as circular fingerprints [41], have emerged 

as robust descriptors that sustain efficient modeling 
with machine learning methods. Several different 
approaches and implementations exist, with Morgan 
fingerprints [42], extended-connectivity fingerprints 
(ECFP) [43], and Signatures [29] being the most widely 
used. These descriptors can be rapidly calculated and 
since they stem from chemical substructures, they 
allow for chemically relevant feature interpretations.

CPSign implements Signatures as the main descriptor 
type, but also CDK molecular descriptors [44] including 
ECFPs. The user can also generate descriptors by other 
tools and load them as properties from CSV or SDF 
files together with the chemical structures. Additional 
descriptors can be calculated by extending an interface 
as explained in section Adding custom extensions.

Fig. 2 Figure showing features from conformal classifiers. A displays the calibration curve from the difficult NR-AR-LBD dataset used 
in the evaluation, having only 3.5 % active instances and proved problematic for all tested methods in predicting the minority class. For a well 
calibrated model, both classes’ error rates should be less than or equal to the significance level and thus follow the gray dashed diagonal line 
in the chart. The error rate of the inactive class follows the diagonal well, likewise the black (mostly covered behind the blue line) of the overall 
error rate. This shows one of the benefits of conformal prediction, the possibility to inspect calibration independently for each class. B shows 
the distribution of prediction sets across all significance levels, which can be used for finding the best significance level to use for a specific 
data set and to analyze the predictive efficiency of the model. C displays a plot of the two p-values against each other for 100 randomly picked 
predictions for the SR-MMP dataset, showing the possibility to easily find potential outliers such as the two inactive (blue circles) with high p-values 
for the active class and low p-values for the inactive class. This plot can also be used to find test objects that are predicted with low p-values 
for both classes (lower left area), constituting a region with predictions of lower confidence. D and E shows the conformal version of a confusion 
matrix and normalized heatmap for a fixed significance level of 0.2, where predictions can also be empty sets as well as multi-label predictions. All 
figures were created using our Conformal-eval Python library described later
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Underlying scoring algorithms
CPSign includes the Java versions of the popular 
LIBLINEAR [45] and LIBSVM [46] packages, both 
implementing support vector machines (SVMs) 
allowing for sparse input data. The need for sparse data 
representation is essentially required when using the 
Signatures descriptor as the number of features can be in 
the order of hundreds of thousands for larger datasets—
which would require vast amounts of RAM for dense 
representations. For smaller datasets the RBF-kernel 
SVM from LIBSVM is preferable (other kernels are also 
possible to use), but the training time scales poorly for 
larger datasets [47]. For larger datasets the linear kernel 
SVM from LIBLINEAR is often preferred, as it also 
includes heuristics in order to speed up training time 
[45]. Earlier work has been aimed at finding good sweet 
spot hyper-parameters for the combination of using the 
Signatures descriptor with SVMs [48], leading to robust 
results using the default settings in CPSign.

LIBLINEAR also has a sparse implementation of the 
logistic regression algorithm that can be used within 
CPSign, albeit less tested and may require more tuning 
to achieve good results. Similarly as for the chemical 
descriptors, users can implement and expose their own 
machine learning methods to be used as underlying 
scoring algorithms. We have also made such an extension 
by wrapping the DeepLearing4J library [49], that can be 
found in the CPSign-DL4J GitHub repository (https:// 
github. com/ arosb io/ cpsign- dl4j). Note however that this 
extension requires the user to build it and adjust it to 
work for a particular platform and hardware as it requires 
to run native code.

Predictor types
CPSign implements the transductive conformal predictor 
(only for classification), a variety of inductive conformal 
predictors (both for regression and classification) and 
the Cross Venn-ABERS predictor (binary probabilistic 
classifier). For the conformal models there are three base 
types; TCPClassifier, ACPClassifier and ACPRegressor. 
The ACPClassifier and ACPRegressor predictors can be 
changed between running one-split ICP, several splits 
(ACP [50]) or folded splits (CCP [51]), depending on 
the data sampling strategy. There is also the option of 
using a pre-defined split from the user or adding custom 
splitting strategies such as in Arvidsson McShane et  al. 
[52]. For the TCPClassifier there is no splitting of data 
into proper training and calibration sets, instead the 
underlying scoring model is trained once for every 
possible label for every test example. The TCP model 
can thus use all available data both for training the 
underlying model and for calibration, but at the cost of 

being highly computationally demanding, and is thus 
only recommended for smaller datasets.

For the conformal predictors the notion of 
nonconformity measure (NCM) is central, and CPSign 
comes with four NCMs for classification and four 
for regression (see Supplemental Table  1, Additional 
file  1). Depending on what the function requires, they 
can be combined with different types of underlying 
scoring models, e.g., the InverseProbability requires 
probability scores from the underlying model and thus 
restricts the number of available scoring models, and the 
NegativeDistanceToHyperplane requires the use of SVM 
as scoring model. For the regression algorithm the NCM 
also dictates whether an additional error model should 
be trained in order to predict the difficulty of a test 
example in order to normalize the prediction intervals. 
By default the error models will use the same algorithm 
and hyper-parameter settings as the main scoring model, 
but it is possible to, e.g., use a more complex (RBF kernel 
SVM) for predicting the midpoint and then use the 
computationally cheaper linear kernel based SVM to 
normalize the prediction intervals with.

Another feature of CPSign is the possibility to use 
different ways of calculating and handling the p-values, 
apart from the standard calculation (Eq. 1), also allowing 
to calculate “smoothed p-values” [6], and both linear and 
splines interpolation [53, 54]. The interpolation options 
can be useful especially when having small datasets, 
where only a few examples can be set aside to be used 
in the calibration set, see Fig.  3A, B for a comparison 
between the standard p-value calculation and linear 
interpolation when only having five calibration instances. 
This example is exaggerated and we do not recommend 
using only five examples for calibration, but shows the 
usefulness of including interpolation.

Hyper‑parameter tuning
CPSign has robust predictive performance using the 
default parameters (see the method evaluation section for 
a comparison against tuning of hyper-parameters, as well 
as other popular modeling methods). To further improve 
the model performance it is possible to fine-tune the 
hyper-parameters using a standard grid search algorithm. 
For some parameters, e.g., the SVM cost parameter, there 
are default values to try out—for other hyper-parameters 
the user has to decide which values to evaluate in the 
grid. There is flexibility in how this should be done, e.g.; 
choice of performance metric and the evaluation strategy 
to use (see section Validation strategies). Furthermore, 
it is possible to choose whether to tune the parameters 
based on the underlying scoring model by itself, or if the 
evaluation should be performed based on a conformal 
or Venn-ABERS predictor. This latter concept can be 

https://github.com/arosbio/cpsign-dl4j
https://github.com/arosbio/cpsign-dl4j
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especially useful if aggregating several ICPs, or if the final 
model will be a TCP (requiring re-training the underlying 
scorer model multiple times for each test-prediction), 
where considerable computational time can be saved.

Validation strategies
Three validation strategies and several settings thereof 
are available; k-fold cross-validation, single test-train 
split, and leave-one-out cross-validation. The two former 
has several configurable parameters such as performing 
the splits stratified (for classification), the fraction of 
test-instances, the k in k-fold, and number of repetitions. 
Validation strategy is another feature that is extendable 
with CPSign.

Interpretation of predictions
CPSign can render images of molecules with an interpre-
tation of the prediction based on the algorithm outlined 
in Ahlberg et al. [55] (Fig. 4 and Supplemental Table 3). 

This interpretation is based on feature importance’s that 
can be mapped back to atoms in the molecule, and can 
either be in terms of which molecular signature had the 
highest impact on the prediction (Fig. 4A) or as a com-
plete molecule gradient where all features individual 
contributions are aggregated and mapped back to their 
originating atoms (Fig.  4B). This feature has been espe-
cially appreciated by chemists utilizing the predictive 
models, as it allows for editing chemical structures in a 
drawing graphical user interface and immediately visual-
ize how the predictions change.

Implementation details
CPSign is written in Java and is thus platform-
independent, only requiring a Java runtime of version 
11 or later. Build and dependency management is 
handled by Maven, and published artifacts are available 
from the Maven central repository for easy inclusion 
in other JVM-based projects. The code base is split up 

Fig. 3 Figures showing features from conformal regression predictors. A and B displays the performance of a conformal regression predictor 
with only five instances used in the calibration set, without (orange) and with (green) interpolation used in the calculation. Without interpolation 
(standard calculation) the prediction intervals can only change at five significance levels and give rise to sharp steps, whereas the linear 
interpolation can reduce the influence of having a small calibration set and give smoother changes in the prediction intervals. Further note 
that in panel B the curves start at 0.17 as the prediction intervals are (−∞;∞) before that. C displays a calibration plot of the result of a 10-fold 
cross-validation on the train set of CHEMBL205_pKi, where the shaded area is ± the standard deviation from the 10 folds. D displays 50 randomly 
picked predictions made by the CPSign model trained on the ESOL dataset from the evaluation, showing the possibility to easily analyze individual 
predictions and e.g. find patterns in erroneous predictions. All figures were created using our Conformal-eval Python library described later
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into several child-modules, outlined in Fig. 5B, to allow 
users to only depend on the parts needed for their 
particular requirements. For instance, users modeling 
non-chemical data can do so by depending on the 

ConfAI module and reduce the dependency graph, and 
the REST servers depend on the CPSign-API module as 
no CLI functionality is required.

Fig. 4 Using the Signatures descriptor allows to map feature importance back to the atoms they originate from, allowing visual interpretations 
of the predictions, as described in Ahlberg et al. [55]. This can both be visualized as depicting the signature having the largest contribution [the 
magenta “significant signature”, (A)], or by aggregating the contribution of all signatures to see each atoms’ individual contribution (B). The color 
gradient used in panel B is blue-red, where a blue color indicates atoms contributing towards decreasing the predicted value, and atoms in red 
contribute towards increasing the predicted value. These figures are generated using the CPSign method trained on the Lipophilicity data set 
from the evaluation section and the signature that had the highest contribution was ”[C](p[C]p[C])”, which maps to several atoms and thus 
appears at several locations in the molecule. More examples of predicted atom contributions based on six regression models can be found 
in Supplemental Table 3

Fig. 5 A shows the general workflow of working with CPSign. Datasets are first precomputed then it is possible to do cross-validation or tune 
hyper-parameters, either by just looking at the scorer or at the entire probability framework, e.g., conformal prediction. After that a final model can 
be trained and validated or used for predictions, or a model can be trained immediately using the default values for hyper-parameters. The final 
model can be published as a separate REST server and plots can be made using the separate Conformal-eval Python package. B depicts an UML 
diagram over the individual modules of CPSign, where arrows depict dependence towards another module
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Adding custom extensions
There are several ways that users can add their own 
custom extensions to CPSign, e.g., by providing pull 
requests on GitHub, cloning the repository or simply 
by extending the desired interface and exposing it 
as a Java Service Provider. CPSign loads extendable 
interfaces using the ServiceLoader class which 
makes it possible with minor effort to add custom 
code that can be used even through the CLI. For an 
example of how this can be achieved, see our CPSign-
DL4J extension at GitHub (https:// github. com/ arosb io/ 
cpsign- dl4j) which makes it possible to use deep learning 
models as underlying scoring models by wrapping the 
DeepLearning4J [49] package. This DL4J extension was 
evaluated and developed as part of a thesis work [56], 
resulting in predictive models performing on par with 
the SVM based models.

Interfaces
There are multiple ways of running CPSign, each 
explained in more detail in the following subsections. 
User documentation is found on https:// cpsign. readt 
hedocs. io. An overview of how CPSign can be used 
and the typical workflows are outlined in Fig.  5A, and 
are here described briefly. CPSign works with tabular 
type data, in either CSV format containing chemistry in 
SMILES format, or SDF files. The first step is always to 
convert the chemical input file(s) into numerical data, 
which is performed using one or several descriptors 
and termed precompute. The precompute step results 
in a precomputed dataset, containing both numerical 
data and all meta data from that step, so e.g. the same 
descriptors and data transformations are applied to any 
future test molecules. From precomputed data, the user 
can either run crossvalidate to evaluate the given 
data with a predictor-setting (i.e. conformal or Venn-
ABERS model, including specific settings for scoring 
model, nonconformity function and any additional 
hyper-parameters that can be set), to quickly assess the 
expected performance for a new dataset and settings.

From a precomputed dataset a predictor model can 
be trained, with an optional intermediate step of hyper-
parameter tuning using either tune (hyper-parameter 
tuning including all tuneable predictor-parameters) or 
tune-scorer (hyper-parameter tuning of the underly-
ing scorer model only). The train step can thus be run 
either using default parameters (or manually set param-
eters) or using tuned parameters from the optional tun-
ing step. The trained model can then be validated with 
an external validation-set or used to predict new com-
pounds. For the final trained models, there is also the 
option to deploy them as micro services which can be 
deployed locally or publicly, allowing users to run query 

predictions using REST, this option is further described 
in the section REST API.

Command line interface
The Command Line Interface (CLI) is the main way 
that CPSign is intended to be used, in a high abstraction 
level which facilitate rapid evaluation of new datasets 
and models. Apart from the user documentation online, 
the CLI tool has a rich user manual available directly 
in the terminal environment, as well as a help program 
(explain) that both provide detailed explanations 
about key arguments and lists available settings. The 
listing functionality is useful as CPSign can be extended 
with custom implementations and the documentation 
is generated dynamically depending on what is 
currently available, including listing of sub-parameters 
dynamically.

Working with the CLI follows the outline in Fig.  5A, 
having a separate “program” for each rectangle in the 
figure. The goal has been to make the CLI as feature 
complete as possible, while balancing the level of 
complexity of the interface. In this spirit most parameters 
have been set to good default parameters, favoring less 
computational complexity (such as using a linear kernel 
SVM as default), but always making it possible to change 
settings for more elaborate alternatives. Most users thus 
prefer working with the CLI, e.g. for publications [12, 57–
59] as well as other unpublished work.

Java API
For greater control of all available tweaks and handles, 
and for incorporating CPSign in other programs the Java 
API can be used. Here the user can also chose to depend 
on another sub-module of CPSign (Fig.  5B) depending 
on their specific requirements. Coding examples can be 
found in the CPSign-example GitHub repository (https:// 
github. com/ arosb io/ cpsign- examp les), to make it easier 
for new users to start coding against the API.

REST API
To make it easy for users to make their developed models 
publicly available, the final models can be deployed as 
micro services and users can interact with them using 
REST. Each service is automatically documented using 
the OpenAPI 3.0 specification [60], and can optionally 
include a graphical user interface in which the user 
can draw or paste chemical structures and get the 
predictions back as well as atom contributions drawn 
using the method described in the section Interpretation 
of predictions. The web service implementation is 
freely available in the CPSign_predict_services GitHub 
repository (https:// github. com/ arosb io/ cpsign_ predi 
ct_ servi ces), and can thus be altered according to any 

https://github.com/arosbio/cpsign-dl4j
https://github.com/arosbio/cpsign-dl4j
https://cpsign.readthedocs.io
https://cpsign.readthedocs.io
https://github.com/arosbio/cpsign-examples
https://github.com/arosbio/cpsign-examples
https://github.com/arosbio/cpsign_predict_services
https://github.com/arosbio/cpsign_predict_services
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further requirements, e.g., by adding user identification. 
Pre-built Docker images for each model type are available 
from GitHub container repository, making it possible to 
spin up a web server with a CPSign model using a single 
Docker command. Examples of these services running 
in production are the models serving the web page 
accessible at https:// predg ui. serve. scili felab. se.

Conformal eval
When implementing CPSign a decision was made to 
not include any plotting functionality into the program 
itself but instead let the user create figures with their 
own favorite tool for this task. Creating figures through 
a CLI would both restrict the level of flexibility as well 
as clutter the API with too many parameters. However, 
to make it easy to quickly generate figures to analyze 
results we developed a Python library building on top of 
the popular matplotlib [61], as well as added functions to 
load results from CPSign. This library can be found in the 
conformal-eval GitHub repository (https:// github. com/ 
pharm bio/ confo rmal- eval) and was used for generating 
e.g. Figs. 2 and 3. An example of how to generate Fig. 3D 
can be found in Algorithm  1. Note that the regression 
case is more difficult compared to classification, as the 
confidence/significance level must be given at prediction 
time and the lower/upper bounds of each prediction 
interval must be saved and loaded. For classification the 
loading only requires picking the columns containing 
p-values from a CSV file, and significance levels can be 
applied when generating the figures.

Algorithm 1 Loading predictions from a conformal regression model 
and plotting the predicted intervals at a given significance level 
(generating Fig. 3D). Note that the predictions output is a 3D ndarray 
where a slice of the two first dimensions give the predictions at a single 
significance level

Evaluation
In this section we make a comparison of CPSign versus 
other common modeling approaches used for QSAR 
modeling, both the traditional method of handcrafted 
Morgan fingerprints combined with Random Forest, as 
well as the contemporary graph neural network based 
Chemprop [62]. The objective here is not to make a 
comprehensive comparison across all combinations of 
descriptors and modeling methods that are currently 
available, but rather using representative methods and 
data sets.

Datasets
For the evaluation we use a subset of the benchmarking 
datasets from the popular MoleculeNet [63]. The 
classification datasets were picked from both of the 
categories Biophysics and Physiology in order to obtain a 
broader range of tasks. The selected datasets are outlined 
in Table 1. For regression the number of available datasets 
in MoleculeNet were limited, so all tasks that were not 
part of the category Quantum mechanics were selected, 
see Table  2. The reason for excluding the Quantum 
mechanics datasets was that they are based on crystal 
structures of protein-ligand complexes, for which CPSign 
lack descriptors for modeling. To expand the evaluation, 
the 13 largest curated datasets published in Škuta et  al. 
[64] (Additional file 1) were included, as well as the two 
largest datasets from Papyrus [65]. This resulted in 16 
datasets for classification and 18 for regression.

Each dataset was split into three subsets; train, cal-
ibrate and test, in ether 80%–10%–10% splits, or 
60%–20%–20% splits for the classification datasets with 

fewer than 500 observations for the minority class (see 
Tables  1 and 2). The datasets from MoleculeNet were 

https://predgui.serve.scilifelab.se
https://github.com/pharmbio/conformal-eval
https://github.com/pharmbio/conformal-eval


Page 11 of 17Arvidsson McShane et al. Journal of Cheminformatics           (2024) 16:75  

downloaded and split using the deepchem software [66], 
the splitting was performed randomly for regression and 
random stratified for classification datasets. The datasets 

from Škuta et al. and Papyrus were split randomly using 
numpy [67].

Modeling methods
In this comparison the Inductive Conformal Predictor 
(ICP) was used by all methods, with predefined splits 
of proper training and calibration sets according to the 
train and calibrate splits described in the previous 
paragraph – so all methods had exactly the same training, 
calibration and testing data. The discerning factors 
between the methods was the descriptors, the underlying 
scoring models, nonconformity function and any 
additional parameters that can be tweaked within each 
software, such as employing interpolation of the p-values 
to smooth out the predictions. The following modeling 
methods were used in the comparison:

• CPSign: CPSign using the CLI with the default 
descriptor, i.e. the Signatures descriptor [28, 
29], with an RBF-kernel SVM except for the 
largest classification dataset (PCBA-686978) for 
which a linear kernel SVM was used instead. 
The default nonconformity function was used 
for both classification (negative distance to SVM 
hyperplane) and regression (LogNormalized). The 
LogNormalized function uses an additional error 
model to estimate the difficulty of each example, 
which is used to scale the prediction interval. 
Additionally, linear interpolation was employed for 
the p-value calculation. All other settings were the 
default ones.

Table 1 The 16 classification data sets used in the evaluation, taken from the MoleculeNet benchmark datasets

All splits into train, calibrate and test were performed stratified

Dataset Sub‑task Train Calibrate Test Class ratio (inactive:active)

Tox21 NR-AR 4359 1453 1453 6956 309

NR-AR-LBD 4054 1352 1352 6521 237

NR-AhR 5258 648 643 5781 768

NR-Aromatase 3492 1164 1165 5521 300

NR-ER 4949 618 626 5400 793

NR-ER-LBD 4173 1391 1391 6605 350

NR-PPAR-gamma 3870 1290 1290 6264 186

SR-ARE 4671 584 577 4890 942

SR-ATAD5 4243 1414 1415 6808 264

SR-HSE 3880 1293 1294 6095 372

SR-MMP 4661 568 581 4892 918

SR-p53 4064 1355 1355 6351 423

HIV − 32,901 4113 4113 39,684 1443

PCBA PCBA-686978 241,714 30,316 30,145 239,375 62,800

PCBA-884 8037 1005 1005 6719 3328

PCBA-914 4537 1513 1513 7346 217

Table 2 The 18 regression data sets used in the evaluation, were 
the three first datasets comes from the MoleculeNet benchmark 
datasets, the 13 in the middle from Škuta et al. and the remaining 
two from Papyrus

Splitting into train, calibrate and test sets were made randomly

Dataset Sub‑task Train Calibrate Test

ESOL − 891 113 113

FreeSolv − 513 64 65

Lipophilicity − 3360 420 420

CHEMBL203 pIC50 1306 163 164

CHEMBL205 pKi 1533 192 192

CHEMBL218 pKi 1516 190 190

CHEMBL233 pKi 1427 178 179

CHEMBL234 pKi 1420 177 178

CHEMBL235 pEC50 1389 174 174

CHEMBL237 pKi 1339 167 168

CHEMBL251 pKi 2348 293 294

CHEMBL253 pKi 1816 227 227

CHEMBL256 pKi 1816 227 228

CHEMBL261 pKi 1467 178 179

CHEMBL279 pIC50 1682 210 211

CHEMBL4078 pIC50 1473 184 185

P42336_WT – 8056 1007 1008

Q16539_WT – 6340 793 793
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• CPSign tuned: This strategy used the same 
parameters as described for CPSign above, but 
extended with a hyper-parameter tuning step of 
the SVM hyper-parameters cost (C) and gamma 
( γ ) using grid search. The grid consisted of 
ten values for C ( 2−6, 2−4, ..., 212 ) and six for γ 
( 2−14, 2−12, ..., 2−4 ) for a total of 60 combinations, 
apart from the largest classification dataset which 
used the linear kernel SVM where only the ten C 
values were evaluated. Hyper-parameter tuning 
was exclusively performed on the train partition 
of the data, running a 10-fold cross-validation of 
the SVM only (i.e. without adding the conformal 
calibration) and optimizing with respect to macro 
F1 score for classification and RMSE for regression.

• FP+RF tuned: Random Forest (RF) using Morgan 
Fingerprints (FP) as descriptor and nonconformist 
[21] for CP implementation. The Morgan 
Fingerprints were calculated using RDKit [68], 
using bit length of 2048 and radius 2. The RF 
hyper-parameters were tuned using the train 
split, without including conformal calibration, 
optimizing for balanced accuracy for the 
classification datasets and RMSE for the regression 
datasets. The grid of tested hyper-parameters had 
32 combinations for the classification models and 
64 for the regression models. For the conformal 
classification model the MarginErrFunc was 
used as nonconformity function and for regression 
the AbsErrFunc was used in conjunction with a 
normalizer model, using an additional RF model 
using the same hyper-parameters as the scoring 
model.

• Chemprop: The Chemprop software [62, 69] 
was used to develop Directed Message Passing 
Neural Network (D-MPNN) models. Default 
parameter settings and network architecture 
was used. A separate validation set (10  %) was 
randomly split off from the train dataset 
for monitoring model training (using random 
stratified splitting for classification). For the 
classification models 1-probability for the class 
was used as nonconformity measure, and using 
the smoothed calculation of p-values (i.e. special 
treatment of equal nonconformity scores). The 
procedure described in Norinder et  al. [30] was 
used for regression, i.e., using one model to 
predict the midpoint and a second (error  model) 
for predicting the error made by the first model 
in order to normalize the prediction intervals 
based on the predicted difficulty of the object. The 
nonconformity function was extended by adding a 
small smoothing factor, β , of 0.01 as CPSign does 

for the normalized nonconformity measures (which 
increases stability as well as removes the potential 
of division by 0 in the calculation).

• Chemprop tuned: This method used the same 
settings as the method above, but with the added 
step of hyper-parameter tuning of the Chemprop 
model using the chemprop_hyperopt function. 
Chemprop performs a bayesian hyper-parameter 
optimization using the hyperopt package [70], 
here evaluated using the default 20 different hyper-
parameter settings. To minimize information 
leakage, this optimization step was only applied on 
the 90  % split from the train dataset, and thus 
chemprop internally split that set further into a 
validation set for monitoring the model training, 
a test-set to compare the model performance 
of different hyper-parameters and data used for 
training the model. For the regression experiments 
the error model used the same optimized hyper-
parameters as the scoring model that predicted the 
midpoint.

Comparison
While comparing the methods we restricted the analyzed 
significance levels to 0.01–0.3 for classification and 
0.05–0.3 for regression, corresponding to 70–99 and 
70–95  % confidence. The methods were first assessed 
with respect to calibration using calibration plots, shown 
in Supplemental Figures  2 and 3, Additional file  1. To 
simplify and quantify the calibration of the different 
methods we computed the maximum (signed) difference 
between the error rate and specified significance level, 
the RMSE of error rate against significance level as well 
as the “capped” RMSE, Supplemental Fig.  1 (Additional 
file  1). The capped RMSE was calculated by setting 
the error rate equal to the significance level if it was 
lower than the significance level (for every evaluated 
significance level), so that over-conservative predictions 
(i.e. lower error rate than required) do not contribute to 
a higher RMSE. The guarantees made by the conformal 
framework is that the error rate should be at most equal 
to the significance level, the capped RMSE is more 
representative of level of calibration.

All methods produce similar results with respect to 
calibration, where the only concern is the calibration 
of the minority class for some of the classification 
datasets. This is most likely due to the smaller number 
of observations of the minority class in both the 
calibration and test splits, which leads to higher variance. 
The methods perform similar enough so they can be 
compared fairly with respect of predictive efficiency.
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Classification
Aggregating the predictive efficiency across the data-
sets resulted in similar predictive efficiency for all 
evaluated methods (Fig.  6A, B). Differences between 
methods can be seen when analyzing the datasets indi-
vidually in terms of Observed Fuzziness (Supplemen-
tal Fig. 4, Additional file 1) and fraction of single-label 
predictions (Supplemental Fig.  5, Additional file  1), 
where the most notable trend were that the two Chem-
prop methods preformed best on the two largest data-
sets (HIV and PCBA-686978). The results were further 
ranked (Supplemental Table 2, Additional file 1) to find 
the top-performer as well as their overall rank, where 
the CPSign method (i.e., without tuning) was the over-
all best method.

Regression
Aggregating the results across all evaluated datasets 
(Fig.  6C) shows that the CPSign tuned method 
generated the most efficient predictions overall, 
although the methods again performs largely similarly. 
Calculating the Wilcoxon signed-rank test between 
each combination of method, separately for each 
significance level, gave no significant difference 
between any method. All results presented separately 
for each dataset can be found in Supplemental Fig.  6 
(Additional file 1), and the rankings across all datasets 
in Supplemental Table  2 (Additional file  1). From 
the ranking it is clear that the CPSign tuned method 
performed best overall, but that each method was the 

top-performing method for at least one dataset and 
significance level.

Runtime comparison
Comparison was further performed in respect to runtime 
for each experiment to complete. Both CPSign meth-
ods and the FP+RF tuned method were run on a laptop 
whereas the Chemprop experiments were run on com-
puter cluster with a Nvidia 1080 Ti GPU. A summary 
of the runtimes can be found in Table 3, with individual 
datasets in Supplemental Figures  7 and 8, Additional 
file 1. Note that no replicate runs were performed, so the 

Fig. 6 Boxplots for aggregating the results from all tested datasets from the evaluation, A, B are from the classification experiments, panel C 
for the regression experiments. A the Observed Fuzziness (lower values are preferable), this metric is independent of significance level. B average 
number of predicted classes (Average C), lower values are preferable. C Prediction Interval (PI) width for the regression experiments, lower values 
are preferable. Model performance is very similar across all tested methods, where there is only a discernible difference in (C) where the CPSign 
tuned box is visually lower than the rest—but without statistical significance using a non-parametric Wilcoxon signed-rank test. Notably 
the whiskers for the Chemprop tuned method in (C) show that its prediction intervals varies more compared to the other methods (both positively 
and negatively)

Table 3 Runtime comparison summarized across all datasets, 
were each runtime is calculated to be relative to the CPSign 
method as a baseline and the reported values are the median 
over all datasets

The median value was chosen as the experimental setups varied, e.g., as CPSign 
was run with different kernels, both directly affecting training time for the 
SVM, and the size of the parameter search grid, leading to large fluctuations 
depending on which dataset is considered. The value 59 × for CPSign tuned e.g. 
specify that it took 59 times as long for CPSign tuned to complete compared to 
CPSign to complete

Model strategy Runtime relative baseline

Classification Regression

CPSign 1 1

CPSign tuned 59 × 32 ×

FP+RF tuned 6.0 × 43 ×

Chemprop 28 × 38 ×

Chemprop tuned 510 × 350 ×
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results should be interpreted as an indication of how the 
methods compare.

Discussion
When making predictions on novel chemical structures 
and where it is certain that it has not been used in model 
training, scientists face the inevitable questions of how 
much to trust the prediction, and if trusted then how 
to interpret the result. While most traditional methods 
provide a single level of model confidence from the 
training procedure, e.g. a metric from cross-validatation, 
CPSign via the conformal prediction methodology 
outputs a prediction interval that is specific for each 
predicted object. If the object to predict is more different 
to what has been seen before, the prediction interval 
becomes larger, and the user can be sure to trust the 
size of these intervals as they are based on proven 
mathematical theory [6]. This also offers a compelling 
alternative to the concept of Applicability Domain [5]. It 
is important to notice that the size of prediction intervals 
are related to the choice of nonconformity function; a 
poor nonconformity function will still be valid but result 
in larger prediction intervals [71, 72]. Since conformal 
prediction outputs a prediction interval given a user-
specified level of confidence, it can be difficult to choose 
this level of confidence; if requiring a higher confidence 
then the prediction intervals will naturally be larger. In 
the end this comes down to the user having to make a 
decision on what is acceptable for the specific problem 
given the interval sizes produced by the model. In the 
author’s experience this can lead to a more realistic view 
on model expectations.

Recently, Deep Neural Networks (DNNs) have emerged 
as a popular method for supervised learning, and shown 
higher accuracy for many traditional machine learning 
tasks. A prominent example is computer vision when 
the objects are images and where convolutional neural 
networks (CNNs) have yielded dramatic improvements 
[73]. For tabular data the improvements are not as 
profound. DNNs generally require larger training sets 
compared to traditional machine learning methods, 
although techniques such as transfer learning and 
augmentation can somewhat reduce this burden [74]. 
Further, DNNs necessitate hyper-parameter tuning on 
a much larger scale than traditional machine learning 
methods, making them costly in terms of time and 
computational resources.

For supervised learning where the data objects are 
chemical structures, several studies have been presented 
to compare different deep learning approaches with 
more traditional machine learning methods, such as 
[75, 76]. One problem with comparisons lies in the 
choice of metric, for example using accuracy or AUC 

(AUROC) is not suitable when working with unbalanced 
data that is very common in the field. Another and 
more serious problem is that studies rarely assess the 
level of calibration of models. Deep Learning models 
have been shown in many cases to be poorly calibrated 
[77], rendering comparisons on the produced output 
probabilities biased. Conformal prediction is one method 
to calibrate models to obtain valid (well-calibrated) 
probability estimates, and in our evaluation we use it 
to  compare CPSign with DNNs as implemented in the 
Chemprop package both in terms of calibration and 
efficiency. As conformal prediction produces prediction 
intervals, traditional metrics such as AUC and F1 cannot 
be used, and we instead use the well-established metrics 
of Observed Fuzziness, Average C and fraction of single-
label prediction intervals. Using mondrian conformal 
prediction [6] also improves the modeling and calibration 
for imbalanced datasets, which has been shown in several 
ligand-based studies [18, 31, 32].

Comparing CPSign against other popular modeling 
methods showed that overall all methods performed 
similarly in terms of predictive efficiency for the 
classification datasets. For the regression datasets 
CPSign with tuned hyper-parameters was overall the 
top-performing method (Fig.  6). Looking at individual 
datasets each modeling method was the top-performing 
method at least once, showing that the optimal modeling 
approach can vary depending on the data being modeled. 
We note for instance that the DNN-based Chemprop 
performed better on the largest datasets, supporting 
the hypothesis that DNN requires large training sets. 
Our overall conclusion is that CPSign performs on 
par with DNNs (Chemprop), when calibrating models 
using conformal prediction and hence take advantage 
of theoretically proven model validity, which also was 
assessed empirically.

The lack of interpretability of DNNs is widely 
acknowledged [78]. CPSign utilizes the Signatures 
descriptors to represent chemistry, which allows 
for feature importance to be visualized as chemical 
substructures. Due to the fast predictions, CPSign 
allows for immediate feedback and visualization of atom 
contributions (Fig.  4) to the prediction (“calculate-as-
you-draw”). This has been a much appreciated feature by 
users of the software, such as medicinal chemists.

Setting up and maintaining computational 
environments for machine learning can be demanding, 
and this is especially evident for deep neural 
networks having many and specific dependencies. 
Further, with changing versions of frameworks 
and dependencies, it can be time-consuming to 
maintain models and predictions over time, such as in 
production environments [79]. The requirements on 
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IT infrastructure also varies a lot between modeling 
methods, with DNNs generally requiring access to 
GPUs to accelerate the learning. Even so, the amount 
of hyper-parameters that needs to be optimized 
commonly lead to several days of model training. In 
contrast, CPSign has a single dependency (Java) that 
makes it straightforward to download, use, integrate 
into other systems, and with a modeling that is fast 
to complete. Examples of tools and systems based on 
CPSign are ANDROMEDA by Prosilico (https:// prosi 
lico. com/ andro meda) and PredGUI in SciLifeLab Serve 
(https:// predg ui. serve. scili felab. se).

CPSign is an advanced tool with many options, and 
hence it requires a bit of learning to understand the 
parameters of the software. Effort has been made to 
reduce the number of required parameters, and to 
provide good default values. For example, the default 
option of CPSign is Inductive Conformal Prediction 
(ICP) requiring a number of data points to be set 
aside into a calibration set. This is the price to pay for 
obtaining valid (well-calibrated) models. When having 
few data points in the training set, there is always the 
option to use Transductive Conformal Prediction 
(TCP) that does not use a calibration set, but with the 
downside that each prediction requires a re-training 
of the model. However when data sizes are so low that 
TCP is mandated, this is usually an acceptable trade-
off. Another challenge lies in communicating model 
evaluation, as model efficiency for prediction intervals 
is not directly comparable with commonly used point 
estimate validation metrics such as F1 score or AUC.

For SVM, it generally leads to more efficient models 
when using a non-linear kernel such as RBF. However, 
this is computationally expensive when datasets are 
large, although it has been shown that for larger models 
the difference between linear and non-linear kernels 
is small [47]. The default setting for CPSign is to use 
a linear kernel (LIBLINEAR) to produce fast results 
when prototyping, and it is recommended to switch 
to RBF kernel if datasets are of small or moderate size, 
also depending on the computational infrastructure 
available. As the comparison shows (Fig.  6, and 
supplemental figures, Additional File 1), the default 
values for parameters C and γ as previously devised 
[48] are generally well performing, but in some cases 
the efficiency can be improved using hyper-parameter 
tuning.

Although being a worthy tool for many typical 
cheminformatics modeling tasks, it is worth 
mentioning that there are tasks that CPSign is not 
suitable for, such as for non-tabular data (e.g. images or 
graph-based data) or when multi-task learning could be 
employed.

Conclusion
CPSign is a robust and complete implementation of 
conformal prediction for cheminformatics applications. 
The combination of signatures and SVM has been shown 
to produce robust and accurate models, and conformal 
prediction adds the ability to produce valid prediction 
intervals. The implementation as a single software 
package with no dependencies apart from a Java runtime, 
a well-developed API, and a low footprint makes it 
suitable both for rapid prototyping and integration in 
production system. The evaluation of modeling methods 
highlights that CPSign performs overall on par or 
outperforms other state-of-the-art cheminformatics 
approaches.
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