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Abstract 

Every year, more than 19 million cancer cases are diagnosed, and this number continues to increase annually. Since 
standard treatment options have varying success rates for different types of cancer, understanding the biology 
of an individual’s tumour becomes crucial, especially for cases that are difficult to treat. Personalised high‑throughput 
profiling, using next‑generation sequencing, allows for a comprehensive examination of biopsy specimens. Fur‑
thermore, the widespread use of this technology has generated a wealth of information on cancer‑specific gene 
alterations. However, there exists a significant gap between identified alterations and their proven impact on protein 
function. Here, we present a bioinformatics pipeline that enables fast analysis of a missense mutation’s effect on stabil‑
ity and function in known oncogenic proteins. This pipeline is coupled with a predictor that summarises the outputs 
of different tools used throughout the pipeline, providing a single probability score, achieving a balanced accuracy 
above 86%. The pipeline incorporates a virtual screening method to suggest potential FDA/EMA‑approved drugs 
to be considered for treatment. We showcase three case studies to demonstrate the timely utility of this pipeline. 
To facilitate access and analysis of cancer‑related mutations, we have packaged the pipeline as a web server, which 
is freely available at https:// losch midt. chemi. muni. cz/ predi ctonco/.

Scientific contribution
This work presents a novel bioinformatics pipeline that integrates multiple computational tools to predict the effects 
of missense mutations on proteins of oncological interest. The pipeline uniquely combines fast protein modelling, 
stability prediction, and evolutionary analysis with virtual drug screening, while offering actionable insights for pre‑
cision oncology. This comprehensive approach surpasses existing tools by automating the interpretation of muta‑
tions and suggesting potential treatments, thereby striving to bridge the gap between sequencing data and clinical 
application.
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Introduction
More than 19 million cancer cases were diagnosed in 
2020 [10] with a projected load of 28.4 million cases in 
2040 [44]. The three traditionally used approaches to 
treat cancer, namely chemotherapy, surgery, and radio-
therapy, generally result in higher mortality rates com-
pared to the less adopted precision medicine-based 
techniques [27]. Next-generation sequencing technolo-
gies form the basis of precision oncology and can help 
generate a large amount of transcriptomic and genomic 
data. On the other hand, these technologies often do not 
provide clinically actionable data. This leads to a divide 
between generation of the said data and their utility, as 
mutants with unknown effects are often found during 
clinical testing [9].

There are not many tools that can help bridge the 
gap between data generation and creation of actionable 
insights. Swiss-PO, an online tool, allows for mapping 
experimentally determined mutations on a curated list 
of 50 genes and their various associated 3D structures. It 
also allows users to visualise multiple molecular interac-
tions; however, it leaves it to the user to intuitively assess 
the structural implications of mutations that have not 
been experimentally determined [25] and it can also not 
predict patient survival outcomes. PSnpBind, a database, 
catalogues changes to binding affinities of ligands due to 
binding site single-nucleotide polymorphisms (SNPs), 
however this database is limited to 26 human proteins 
and is limited to interactions between ligands and bind-
ing site residues [2]. We sought to overcome some of 
these limitations by creating a robust pipeline that can 
predict the effects of missense mutations, even for ones 
which are not experimentally determined, on cancer-
related proteins.

The pipeline relies on advances in fast protein model-
ling, such as AlphaFold [23], prediction of the effect of 
missense mutations on a protein structure [4], and pro-
tein stability prediction [5, 24]. This allows harvesting 
much more information from mutations identified by 
exome sequencing, which can then be used for actionable 
decision making. Additionally, coupling fast ligand dock-
ing in proteins [48] with the availability of multiple drug 
libraries online, such as ZINC [20], it is possible to screen 
novel potential inhibitors for the mutated proteins.

As the interpretation of large-scale genomic and tran-
scriptomic data is limited due to the need to utilise multi-
ple computational tools, performing the aforementioned 
analysis on exome sequences can take time if done manu-
ally. After a cancer diagnosis, treatment is generally a 
race against time, and with the variable success rates of 
conventional “one size fits all” therapies, fast and accu-
rate interpretation of molecular findings and assessment 
of their actionability are of vital importance, especially in 

difficult-to-treat cases. This is where an automated pre-
cision oncology approach will be most useful as it can 
optimise treatment strategies, improve outcomes, and 
increase the quality of life for many patients [30].

Here we introduce a bioinformatics pipeline for the 
analysis of the effect of mutations on stability and func-
tion in cancer-related proteins. The pipeline applies in 
silico methods of molecular modelling, structural bioin-
formatics, and machine learning, and outputs actionable 
data which can be used for decision making. The cou-
pled predictor produces a decision on the oncogenicity 
of the protein mutation by utilising the outputs derived 
at various stages of the pipeline. Moreover, we show the 
application of the pipeline on three use case studies and 
highlight the importance of advanced bioinformatics in 
precision oncology.

Methodology
Manual curation, structure repairs and geometry 
optimization
A list of 44 cancer-related proteins (including one iso-
form of a selected protein) were chosen as targets for the 
manual curation. The selection was based on the impor-
tance of the respective proteins for cancer diagnostics 
and, notably, in cancer treatment. The vast majority of 
curated proteins are either direct targets of therapeutic 
agents or, despite not being targets themselves, represent 
established predictive biomarkers for administering tar-
geted treatments aimed at downstream members of the 
same pathway. Additionally, we included proteins that are 
frequently altered across various cancer types and are rel-
evant to both diagnostics and cancer research (e.g., p53). 
The proteins with their various annotations are listed in 
the Supplementary material SI 1.

The 44 protein sequences and their annotations were 
fetched from the UniProt database [47]. In the case 
of KRAS, two isoforms are provided, including the 
canonical isoform and an isoform that is commonly uti-
lized accross clinical databases of genetic variants. The 
essential residues were re-confirmed in the literature 
as well as in the Mechanism and Catalytic Site Atlas 
(M-CSA) [38] and the SWISS-PROT [6] databases. For 
the purposes of this study, in the case of multi-domain 
proteins, only the catalytic cytoplasmic domains of the 
proteins were considered. The best available structure 
from the wwPDB database [51], the ideal biological 
assembly, as well as the relevant chain (in multimeric 
structures) were selected based on resolution and miss-
ing parts. Canonical co-factors for structures were 
established using the UniProt database; these were 
retained in the structure, and all other ligands, ions, and 
water molecules were removed from the structure (SI 
1). The residue indexes were mapped using the SIFTS 
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database [13]. After a  visual inspection of each target 
protein, the  following four key problematic regions/
positions were identified: (i) missing regions, i.e., low 
resolution regions in the crystal structure,(ii) long, 
missing, and/or intrinsically disordered regions not 
influencing the catalytic site of the protein; (iii) missing 
atoms in the side chain; (iv) amino acids requiring iden-
tity correction, i.e., the sequence in the 3D structure 
did not correspond to that recorded in UniProt.

Each protein structure that required any of these struc-
tural improvements (for the aforementioned problem-
atic regions/positions i, iii, or iv) was modelled using 
MODELLER version 9.24, 2020/04/06, r11614 [16]. The 
modelling was guided by the UniProt-PDB alignment 
provided by SIFTS. Regions identified as intrinsically 
disordered (repair ii) were omitted from the modelling. 
Custom extensions of three MODELLER Python classes 
(Environment, Model, and AutoModel) were developed 
to ensure the following: (i)  the produced models  incor-
porated any relevant co-factor from the template, (ii) 
the produced models were not optimised on the regions 
that did not require repairs, and (iii) structures contain-
ing multiple chains could be modelled and minimised 
at once. If no experimental structure was available, the 
AlphaFold database [23] was searched. The mutant struc-
ture was generated by introducing the desired mutation 
in the target wild type structure by MODELLER, and it 
was guided by a trivial alignment between the wild type 
and the mutant sequences.

For each protein structure, inconsistent torsion angles, 
total energy, or Van der Waals clashes were reduced using 
RepairPDB feature of FoldX 4.0 [5]. Then minimization 
of structures was performed in Rosetta 3.11-static [24] 
with constraints using the Talaris2014 force field [33]. 
The wild type and mutant structures were then aligned 
using DeepAlign 1.135-2-foss-2018b [22] to ensure that 
their coordinates match for further analysis.

Protein stability prediction
The impact of the missense mutation on the stability of 
the protein structure was calculated using Rosetta and 
FoldX. For FoldX the PssmStability command was used, 
water molecules were only taken from the ‘crystal’, pH 
was set to 7, and the number of runs was set to 5. Rosetta 
calculations were made on the minimised structures 
using the ddg_monomer command, following protocol 
3 [24], for which the extent of sidechain repacking was 
set to within 8 Å while using the soft-rep energy function 
and the Talaris2014 force field.

Protein function prediction, phylogenetic analysis, 
and consensus classification
Additionally, PropKa 3.4.0 [40] was used to predict 
the impact of the mutation on the pKA values of the 
proteins, using the propka3 command. Homologous 
sequences with sufficient identity (more than 50%) and 
coverage (± 20% of the query sequence), i.e., UniRef50 
sequences, were downloaded from the UniRef database 
[45], and multiple sequence alignment were generated 
using Clustal-Omega [42] tool from the EMBL-EBI web 
server [32]. This was used for conservation analysis using 
Jensen-Shannon Divergence algorithm [11] and trans-
formed to mutability grades by using HotSpot Wizard 
[43] thresholding. The mutations were also submitted to 
the HOPE [49] web server to collect information from a 
multitude of information sources,  including calculations 
on the 3D coordinates of the protein, sequence annota-
tions from the UniProt database, and predictions by DAS 
(Distributed Annotation System services [37]. Further-
more, PredictSNP [4] was used to predict the effect of the 
amino acid substitution on the target protein function 
through consensus classification.

Pocket analysis and virtual screening
Potential binding pockets within the structures of the 
analysed proteins were calculated using the prank predict 
command in P2Rank 2.3 [26], the resulting pockets were 
visually analysed and manually optimised to cover the 
entire binding sites. Selected pockets were listed in SI 2 
according to their colour codes.

Virtual screening was performed on both the wild type 
and the mutant protein structure. A set of 4380 small 
molecules that were approved by the Food and Drug 
Administration and European Medicines Agency was 
taken from the ZINC database [20]. AutoDock Vina 1.1.2 
[48] was run using the standard vina command, within a 
parameterized grid within each protein. The grid coor-
dinates (SI 1) were created by visually placing the grid 
on the protein structure in PyMOL using the ADPlugin 
[41] and ensuring that the binding pockets with essential 
residues were completely within the grid. The values for 
the binding energy of each small molecule to a wild type 
structure as well as its mutant structure were used to cal-
culate the impact of the mutation on the binding energy.

Machine learning predictor development
The predictive part of the pipeline is a machine-learning 
based tool that was trained on 1073 single-point mutants 
whose effect was classified as Oncogenic or Benign. The 
variants for the Benign class were selected from the gno-
mAD and ClinVar [29] databases. Variants with > 1% 
population frequency in gnomAD, variants annotated as 
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“benign” or “likely benign” in the ClinVar database, and 
variants without ClinVar annotation, for which the clas-
sification as “benign” or “likely benign” is at the same 
time supported by applicable ACMG criteria [39], were 
utilised. The variants for the Oncogenic class were col-
lected in expert-curated precision oncology knowledge 
bases, mainly, but not limited to,  precision oncology 
knowledge base OncoKB by Memorial Sloan Kettering 
Cancer Center [12], as well as The JAX Clinical Knowl-
edgebase by The Jackson Laboratory [35], Personalized 
Cancer Therapy Knowledge Base by MD Anderson Can-
cer Center [28], cBioPortal [18], and the DoCM database 
[1]. Variants with conflicting interpretations across mul-
tiple sources were not included in the list. Both subsets 
were manually filtered for any possible overlaps with the 
datasets used in the PredictSNP consensus predictor and 
its constituents.

The entire dataset (SEQ: 509 oncogenic and 564 benign 
data points) was further annotated by the pipeline of Pre-
dictONCO. The following six features were calculated 
regardless of the structural information available: essen-
tiality of the mutated residue (yes-1/no-0), the conser-
vation of the position (the conservation grade and MSA 
score), the domain where the mutation is located (“cyto-
plasmic”, “extracellular”, “transmembrane”, “other”-one-
hot encoded), the PredictSNP score, and the number 
of essential residues in the protein. For approximately 
half of the data (STR: 377 oncogenic and 76 benign data 
points), the structural information was available, and six 
more features were calculated: FoldX and Rosetta ddg_
monomer scores, whether the residue is in the ligand-
binding pocket obtained from P2Rank (yes-1/no-0), and 
the pKa changes of essential residues obtained from 
PROPKA3. The dataset is available at https:// zenodo. org/ 
recor ds/ 10013 764.

For the training protocol, 20% of the data in each of 
the two sets was kept aside for testing, chosen randomly 
but grouped by positions to ensure that no specific posi-
tion in a protein from the test set appears in the train-
ing set. The following types of predictors were tested: 
the support vector machine (SVM), decision tree (DT), 
and XGBoost classifier (XGB), taken as they are imple-
mented in the scikit-learn 1.2.0 and xgboost 1.7.3 librar-
ies for Python 3.8.15. We also used the PredictSNP 
score alone as a baseline. For each method, we tested a 
set of hyperparameters based on 5-fold cross-validation 
implemented on the training data and receiver operating 
characteristic (ROC) area under the curve (AUC) as the 
metric (Table S1 in SI 3).

The final evaluation consisted of constructing the ROC 
and Precision-Recall curves. Furthermore, a round of 
100 random-state re-initialisations with different ran-
dom seeds was performed to evaluate the robustness of 

the final models. For the area under the ROC curve and 
the average precision values, we also  reported the aver-
age and standard deviation obtained  by bootstrapping 
(N=1000). Since any change to the predictor or data split 
results in a different set of x-axis coordinates in the ROC 
and Precision-Recall curves, we used a fixed grid of 30 
points and applied 1D linear interpolation to obtain the 
y-axis value for each iteration. These values were then 
plotted as 10% and 90% quantiles.

All the training scripts, the model files, and the scripts 
for reproducing the model evaluations are available at 
https:// github. com/ losch midt/ predi ctonco- predi ctor/. 
The versions of the software tools and Python packages 
that were used are provided in SI 4.

Results
Development of a fully automated computational 
workflow
We created a bioinformatics pipeline for structure and 
sequence based analysis of the effects of missense muta-
tions on cancer-related proteins (Figure S1). Since the 
pipeline requires curated protein structures, a method 
for curation was developed and applied to a list of 44 
proteins (SI 1), which were then tested to ensure they 
can be handled in the pipeline. The pipeline was assem-
bled using multiple bioinformatics tools, databases, and 
techniques. Figure  1 represents a schematic outline of 
the pipeline, the output of which ultimately feeds into the 
machine learning predictor. The predictor gives a binary 
decision on the effect of mutation with confidence score 
which is helpful in the summation and comprehension 
of results. Three cases of oncological interest were then 
studied using the developed method.

Training of sequence‑based and structure‑based machine 
learning predictors
Initially, we trained three different types of predictors, 
covering different trade-offs between explainability 
and flexibility, and compared their performance with 
the baseline model using the PredictSNP score alone. 
After optimising the hyperparameters (Table  S1 in SI 
3), we evaluated the performance on the held-out 20% 
of the dataset split by position in a protein. The sup-
port vector machines and XGBoost classifiers showed 
superior yet similar performance based on the area 
under the ROC curve and the average precision from 
the Precision-Recall curve (Fig. 2), also confirmed sta-
tistically (Figure S2 in SI 3). We selected the XGBoost 
predictor for the final model due to the interpretabil-
ity of its scores: the SVM model evaluation is based 
on the signed distance to the separating hyperplane, 
without intuitive interpretation. On the other hand, the 
XGBoost classifier directly returns the probability that 

https://zenodo.org/records/10013764
https://zenodo.org/records/10013764
https://github.com/loschmidt/predictonco-predictor/
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a particular mutation is oncogenic. The final XGBoost 
predictor is made up of 15 and 9 decision trees of the 
depth of 1 for structure and sequence data sets, respec-
tively. The feature importance scores revealed that the 
PredictSNP score and conservation had the highest 
information gains (Figure S3 in SI 3). We also tested if 
using the train/test split by proteins would compromise 
the performance and saw only a marginal decrease (Fig-
ure S4 in SI 3), indicating the significant potential of the 
pipeline for other protein targets. The balanced accu-
racy for the sequence-based XGBoost predictor is 87%, 
and for the structure-based XGBoost predictor is 90%.

We also compared the performance of our predictor 
on the test set against several other models (Table  1). 
We evaluated the following individual scores as base-
lines: conservation, PredictSNP, FoldX, and Rosetta. 
In addition, we evaluated the performance of the 
ESM variants model, a recently published workflow 
based on the 650-million-parameter protein language 
ESM1b, which was used to score all possible missense 
variant effects in the human genome [8]. In both set-
tings (SEQ and STR), PredictONCO showed superior 
performance.

Fig. 1 A schematic representation of the bioinformatic pipeline used to predict the effect of a missense mutation on the oncogenicity 
of the protein
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Case studies with selected cancer‑associated proteins
The following case studies demonstrate scenarios in 
which the tool has helped to facilitate further clinical 
decision-making. The respective variants featured in 

the case studies were identified across research pro-
jects utilizing high-throughput DNA sequencing tech-
niques, which were conducted by the co-authors of 
this manuscript.

Fig. 2 The Receiver Operating Characteristic and Precision‑Recall curves based on held‑out test sets. Top: classifiers trained on the dataset 
with the structural features available (STR). Bottom: classifiers trained on the dataset with the sequence‑only features (SEQ). Both the support vector 
machine (SVM) and XGBoost (XGB) showed comparable performance superior to the baseline model and decision tree (DT). The reported errors are 
standard deviations obtained by bootstrapping (N = 1000). The PredictSNP score was used as the baseline
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Case study 1‑platelet derived growth factor receptor beta 
PDGFRB N666T
In a patient with myofibroma, sequencing analysis 
revealed an N666T variant of the PDGFRB protein 
(UniProt ID: P09619). Even though some mutations 
of the N666 residue, including N666K [21], N666H 
[36], or N666S [34], have already been documented in 
myofibroma patients, N666T, in particular, lacks pub-
lished functional evidence and was reported in a total 
of one patient in combination with another mutation. 
Therefore, a comprehensive assessment of its effect 
would provide further confirmatory evidence on the 
variant’s pathogenicity, which is substantial, given the 
therapeutic implications of receptor tyrosine kinase 
inhibition. Conservation status showed high evolu-
tionary conservation of mutated position. For amino 
acid 826, one of the essential catalytic residues, a large 
increase in dissociation constant was predicted, sug-
gesting a significant functional impact. Both stability 
predictors suggested a deleterious effect, which is also 
in agreement with the deleterious effect on protein 
function predicted by PredictSNP. Given all this data, 
the oncogenic effect was predicted by the XGBoost 
classifier with 100% confidence. Furthermore, in vir-
tual screening, Sunitinib showed a slightly better 
increase in binding affinity compared to Imatinib, 
which was used as a drug of choice in different myofi-
broma preclinical studies, making Sunitinib a suitable 
alternative option for therapeutic planning. The full 
report can be accessed at  https:// losch midt. chemi. 
muni. cz/ predi ctonco/ job/ pdgfrb_ N666T

Case study 2‑angiopoietin‑1 receptor TIE2 G1036D
In a patient with a vascular tumour, sequencing analy-
sis revealed a G1036D variant in the TIE2 (UniProt 
ID: Q02763) gene. The G1036D variant represents a 
previously undescribed alteration, which has not been 
documented in the literature, clinical, or population 
databases of genetic variants. Given the rapidly evolv-
ing field of vascular tumour genetics and the possibil-
ity of targeted therapeutics administration, identifying 
novel potentially activating alterations is vastly impor-
tant. Although the residue is non-essential, moderately 
evolutionarily conserved, and only moderate changes 
were predicted for the catalytic residues, the over-
all impact was evaluated by the XGBoost classifier as 
oncogenic with a 99% confidence score and was based 
on a deleterious prediction by both the PredictSNP 
algorithm and stability predictors FoldX and Rosetta. 
This could be approached as a basis to facilitate further 
functional tests to measure mutant receptor phospho-
rylation and, if proven as activating, introduce a con-
siderable therapeutic opportunity (by potentially using 
one of the suggested inhibitive compounds such as Ect-
einascidin, Ponatinib, etc., or other inhibitors of down-
stream signalling cascade) as well as an addition to the 
knowledge on disease pathogenesis. The full report can 
be accessed at  https:// losch midt. chemi. muni. cz/ predi 
ctonco/ job/ tie2_ G1036D

Case study 3‑tumour protein p53 K101Q
In next-generation sequencing screening for cancer 
predispositions, the K101Q variant of p53 (UniProt 
ID: P04637) was identified in an individual with a nega-
tive family history of cancer. p53 represents the most 
commonly altered gene in all cancers, and p53 variants 
predispose to cancer development when of germline ori-
gin. Therefore, a careful assessment must be performed 
for further genetic counselling. The respective variant 
has not been documented in the literature or function-
ally characterised. With lacking evidence from literature 
and databases of genetic variants, typically only predic-
tion algorithms that employ sequence-based information 
without structural data are available. Therefore, combin-
ing both structural and sequence-related perspectives 
might yield a more accurate prediction. The XGBoost 
classifier predicted the mutation as neutral with an 81% 
confidence score, supported by both the PredictSNP pre-
diction and the stability predictors. Information on evo-
lutionary conservation showed that the wild-type residue 
is not conserved at this position, which may suggest that 
the variant is not damaging to the protein. Based on these 
results and no family history of cancer, the variant should 
not influence subsequent clinical management. Given 

Table 1 Comparison of PredictONCO with other models on the 
test set

PredictONCO values are in bold

The models selected for comparison were individual features and the ESM 
variants predictor. The reported errors are standard deviations obtained by 
bootstrapping (N = 1000).

Predictor ROC AUC↑ Avg. Precision↑

SEQ PredictONCO 0.932 ± 0.018 0.934 ± 0.018
conservation 0.872 ± 0.026 0.802 ± 0.042

predictSNP 0.845 ± 0.027 0.808 ± 0.041

ESM variants 0.923 ± 0.018 0.911 ± 0.023

STR PredictONCO 0.955 ± 0.020 0.988 ± 0.006
FoldX 0.575 ± 0.064 0.867 ± 0.037

Rosetta 0.628 ± 0.064 0.876 ± 0.039

conservation 0.937 ± 0.037 0.970 ± 0.020

predictSNP 0.918 ± 0.030 0.973 ± 0.011

ESM variants 0.929 ± 0.027 0.981 ± 0.009

https://loschmidt.chemi.muni.cz/predictonco/job/pdgfrb_N666T
https://loschmidt.chemi.muni.cz/predictonco/job/pdgfrb_N666T
https://loschmidt.chemi.muni.cz/predictonco/job/tie2_G1036D
https://loschmidt.chemi.muni.cz/predictonco/job/tie2_G1036D
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the importance of p53 variants in both somatic and ger-
mline contexts and their same functional impact, this 
case study exemplifies the utility of the tool in the assess-
ment of hereditary cancer predisposition. The full report 
can be accessed at the following link—https:// losch midt. 
chemi. muni. cz/ predi ctonco/ job/ p53_ K101Q

Discussion
Prediction of the effect of missense mutations on can-
cer-related protein structures is a complicated task. This 
paper presents our pipeline for tackling this problem, 
thus allowing clinical bioinformaticians to easily run 
multiple cancer-related analyses for their target muta-
tions on a curated list of proteins.

A major part of the pipeline capitalises on structural 
bioinformatics, and it requires the presence of good 
quality protein structures for accurate analysis. How-
ever, a high number of cancer-associated structures are 
transmembrane channels and thus only have fragmented 
domain-level structures. Some of them can be multi-
meric, and thus modelling proves a challenge. Despite 
AlphaFold [23] being touted as a major groundbreaker 
in the field of protein structure modelling, it proves inef-
ficient in modelling large multi-subunit, multimeric pro-
teins as quaternary domain level interactions are difficult 
to model. Thus the structural bioinformatics part of the 
pipeline is limited to working with high-quality struc-
tures at the domain level. AlphaFold-Multimer [17] can 
be used to predict the multimeric conformation in 70% 
of heteromeric cases and 72% of homomeric cases to 
limit this problem,  and  it is unclear whether this accu-
racy of predictions is viable for working with oncogenic 
or tumour suppressor proteins, especially when the final 
prediction will likely be used in a medical context.

Currently, the web server provides predictions for 44 
target proteins, which were selected based on their rel-
evance to the field of oncology. Appropriate processing 
of a new structure to be used in the pipeline requires 
expert-level knowledge of multiple bioinformatic tools. 
Curation in this field is a recognized bottleneck, espe-
cially in the case of the interpretation of results [7].) The 
addition of new target proteins to the internal database 
connected to the PredictONCO web server is possible 
and it is offered to the user community based on direct 
requests. Once a protein is curated, all mutations in its 
structure can be easily analysed. Moreover, the pipeline 
can also work with sequence-only data, and the trained 
XGBoost classifier can also reliably predict using only the 
sequence-based features, with only a 4% drop in average 
precision.

The pipeline has no standard run time as it mostly 
depends on whether structural analysis needs to be 

performed along with sequence-based analysis or not. 
The structural analysis increases the computational 
load, and the complexity of the structure can further 
increase the run time. However, the calculations gen-
erally do not take more than two days to complete. It 
is unclear whether this time frame is long or short as 
run time benchmarking would require the existence of 
other similar tools, techniques or pipelines for com-
parative purposes, and specialised methodologies that 
deal with the same case do not exist. However, this time 
window meets the initial requirements for the use of 
the web server in clinical practice as well as for research 
and educational purposes. Furthermore, it helps assist 
in making the result interpretation step easier as inter-
pretation itself is a recognized bottleneck [7].)

Comparison to other similar tools is difficult as, as of 
this writing, we did not come across a pipeline integrat-
ing multiple approaches to predict the effect of a mis-
sense mutation on a cancer-related protein. However 
several databases and online data integrating tools do 
exist. The two most prominent of these databases are 
the International Cancer Genome Consortium (ICGC) 
[46] and The Cancer Genome Atlas (TCGA) [50]. Fur-
thermore, survival analysis tools also exist and are pri-
marily based on 4 types of data: (i) mRNA data, such as 
PRECOG [19], (ii) ncRNA data, such as OncoLnc [3], 
(iii) DNA methylation and mutation data, such as cBio-
Portal [18], and (iv) Protein data, such as TCPA [31]. 
Additionally, the Swiss-PO web tool for mapping gene 
mutations on the 3D structure can be used, but it only 
allows for intuitive and qualitative analysis of mutations 
that have already been experimentally determined [25]. 
In comparison to the aforementioned database, PSn-
pBind is also difficult as it only catalogues changes to 
binding affinities of ligands due to binding site single-
nucleotide polymorphisms (SNPs) [2].

Our pipeline currently only supports missense muta-
tions, as it is unable to handle insertions, deletions, or 
fusions of oncogenic proteins because individual tools 
in the pipeline are not able to analyse them. How-
ever, substitutions do make up a large number of can-
cer-associated mutations as a large number of genes 
associated with various cancer types contain single 
nucleotide variants [15]. For common solid tumours, 
95% of cancer driver mutations in humans are single-
base substitutions. Approximately, 90.7% of these result 
in the amino acid being substituted for another, non-
synonymous one [14]. Thus, even though insertions, 
deletions, and fusions cannot be analysed using the 
pipeline, it still provides predictions for a significant 
majority of cancer-related alterations. The tool is freely 
accessible to the community of bioinformaticians and 

https://loschmidt.chemi.muni.cz/predictonco/job/p53_K101Q
https://loschmidt.chemi.muni.cz/predictonco/job/p53_K101Q
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medical doctors and will provide fast and useful analy-
sis of data from the sequencing of patient samples.
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