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Abstract 

Motivation  Retrosynthesis planning poses a formidable challenge in the organic chemical industry, particularly 
in pharmaceuticals. Single-step retrosynthesis prediction, a crucial step in the planning process, has witnessed a surge 
in interest in recent years due to advancements in AI for science. Various deep learning-based methods have been 
proposed for this task in recent years, incorporating diverse levels of additional chemical knowledge dependency.

Results  This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction. By 
combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph 
structure of molecules. Based on the fact that the majority of molecule structures remain unchanged during a chemi-
cal reaction, we propose a simple yet effective SMILES alignment technique to facilitate the reuse of unchanged struc-
tures for reactant generation. Extensive experiments show that our method substantially outperforms state-of-the-art 
template-free and semi-template-based approaches. Importantly, our template-free method achieves effectiveness 
comparable to, or even surpasses, established powerful template-based methods.

Scientific contribution  We present a novel graph-to-sequence template-free retrosynthesis prediction pipeline 
that overcomes the limitations of Transformer-based methods in molecular representation learning and insufficient 
utilization of chemical information. We propose an unsupervised learning mechanism for establishing product-atom 
correspondence with reactant SMILES tokens, achieving even better results than supervised SMILES alignment meth-
ods. Extensive experiments demonstrate that UAlign significantly outperforms state-of-the-art template-free meth-
ods and rivals or surpasses template-based approaches, with up to 5% (top-5) and 5.4% (top-10) increased accuracy 
over the strongest baseline.

Keywords  Template-Free Retrosynthesis Prediction, Deep Learning, Chemical Reactions, Single-step Retrosynthesis 
Prediction

*Correspondence:
Yaohui Jin
jinyh@sjtu.edu.cn
Yanyan Xu
yanyanxu@sjtu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00877-2&domain=pdf


Page 2 of 16Zeng et al. Journal of Cheminformatics           (2024) 16:80 

Introduction
Retrosynthesis prediction is a crucial task in organic 
chemistry, aiding in finding efficient synthetic pathways 
from target molecules to accessible starting materials. 
Despite significant advancements in chemical synthesis 
technology, it still remains a challenge in industries like 
pharmaceuticals. The extensive search space and the 
incomplete understanding of chemical reaction mecha-
nisms make retrosynthesis prediction difficult, even for 
experienced chemists. To address this issue, computer-
assisted synthetic planning (CASP) has gained increasing 
attention in recent years, starting from the seminal work 
by Corey. This paper focuses on single-step retrosynthe-
sis prediction, which is the fundamental step in CASP. 
It aims to predict the reactants that can lead to a given 
product molecule through a single reaction step.

Various deep-learning-based single-step retrosynthe-
sis prediction methods have been proposed in recent 
years. These methods can be broadly classified into three 
groups based on their dependency on additional chemi-
cal knowledge: template-based, semi-template-based 
and template-free methods. Template-based methods [5, 
7, 9, 44] require an extra database of reaction templates. 
They frame the retrosynthesis prediction as a classifica-
tion or retrieval problem for reaction templates suitable 
for the given product molecule to be synthesized. Among 
these solutions, Retrosim [7] utilizes molecular similarity 
to rank reaction templates; LocalRetro  [5] and GLN  [9] 
use graph neural networks to model the relationship 
between reaction templates and molecules to predict the 
most suitable reaction template; RetroKNN [44] further 
improves upon LocalRetro by addressing the issue of 
data imbalance using K-nearest neighbors (KNN). Tem-
plate-based methods have strong interpretability and can 
accurately predict reactants. However, these methods 
are often unable to cover all cases and suffer from poor 
scalability due to limitations imposed by the template 
database.

To overcome the limitations faced by template-based 
methods, researchers have turned to generative mod-
els. Semi-template-based methods incorporate chemical 
knowledge into generative models with the help of chem-
ical toolkits like RDKit [19], breaking free from the limi-
tations imposed by reaction templates. The key idea of 
most semi-template-based methods [6, 32, 33, 41, 45] is 
to first convert the product into synthons based on reac-
tion center identification and then complete the synthons 
into reactants. Graph neural networks are commonly 
used for synthon prediction, followed by leaving group 
attachment  [6, 33], conditional graph generation  [32], 
or SMILES (Simplified Molecular Input Line Entry Sys-
tem) generation  [45] for reactant completion. Apart 
from all above, RetroPrime [41] utilizes two independent 

Transformers to accomplish synthon prediction and 
reactant generation as separate tasks.

Semi-template-based methods to a certain extent are 
more in line with chemical intuition. However, these 
methods increase the complexity of inference and train-
ing as they break down retrosynthesis into two subtasks. 
Failures in synthon prediction directly affect subsequent 
reactant completion and overall performance. Besides, 
methods based on leaving group necessitates an extra 
leaving group database. This requirement, akin to tem-
plate-based approaches, imposes limitations on the mod-
el’s scalability.

As generative models, Template-free methods opt to 
generate reactants directly from the given products. In 
comparison to generating graph structures, SMILES 
provides a way to represent molecules as strings. Taking 
advantage of this, most template-free methods  [18, 31, 
34, 40, 49] use Transformer models to translate between 
product SMILES and reactants SMILES. In particular, 
Graph2SMILES  [35] replaces the Transformer encoder 
with a graph neural network, resulting in a permuta-
tion-invariant pipeline. There are also methods  [27, 
47] formulates the generation of reactants as a series of 
graph generation or editing operation and solve it auto-
regressively. Existing template-free methods generally 
follows an auto-regressive generation strategy and use 
beam search for the generation process. Consequently, 
preserving a level of diversity in the resultant outputs 
has emerged as a critical consideration for template-free 
methods  [39]. Due to the use of SMILES as input and 
output, most of template-free methods often overlook 
the rich topological and chemical bond information pre-
sent in molecular graphs. Moreover, as reactants mol-
ecules need to be generated from scratch, template-free 
methods frequently suffer from validity issues and fail to 
leverage an important property of retrosynthesis predic-
tion, i.e., the presence of many common substructures 
between products and reactants.

In this paper, we focus on the template-free gen-
erative approach for retrosynthesis prediction. Exist-
ing sequence-to-sequence methods have limitations 
in extracting robust molecular representations. They 
overlook the abundance of topological information 
and chemical bonds, and lack the ability to utilize atom 
descriptors as rich as those in graph-based methods. Fur-
thermore, template-free methods overlook the fact that 
the molecular graph topology remains largely unaltered 
from reactants to products during chemical reactions, 
as they generate reactants from scratch. While there are 
methods that attempt to solve this problem using super-
vised SMILES alignment, they require complex data 
annotation and impact model training. Given these limi-
tations, the following question naturally arises:
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Can we effectively leverage the structural information 
of product molecules using a much simpler approach?. 

To address these issues and further enhance template-
free methods, we propose a novel graph-to-sequence 
pipeline called UAlign. Our approach employs a spe-
cifically designed graph neural network as an encoder, 
incorporating information from chemical bonds during 
message passing to create more powerful embeddings 
for the decoder. We introduce an unsupervised SMILES 
alignment mechanism that establishes associations 
between product atoms and reactant SMILES tokens 
which reduces the complexity of SMILES generation and 
enables the model to focus on learning chemical knowl-
edge. Our model outperforms existing template-free 

methods by a large margin and demonstrates comparable 
performance against template-based methods.

Methods
We introduce UAlign, a novel single-step retrosyn-
thesis prediction model based on an encoder-decoder 
architecture, as demonstrated in Fig. 1. It’s a fully tem-
plate-free method without any molecule editing opera-
tion using RDKit [19]. We propose a specially designed 
variant of Graph Attention Network, which incorpo-
rates the information of chemical bonds to enhance the 
capability of capturing the structural characteristics of 
molecules.

Fig. 1  Overview of UAlign: Given a product molecule graph P and one of its DFS order OP , the graph is first fed into the graph neural network called 
EGAT

+ to obtain node features H. Then the positional encoding is added to H according to the given DFS order OP to generate the order-aware 
node features Ĥ . Finally the decoder takes Ĥ as input and generate the SMILES of reactants auto-regressively



Page 4 of 16Zeng et al. Journal of Cheminformatics           (2024) 16:80 

Preliminary
A molecule can be represented as a graph, denoted by 
G = (V ,E) , where V represents the atoms and E repre-
sents the chemical bonds. The SMILES representation of 
a molecule can be obtained by performing a depth-first 
search (DFS) starting from any arbitrary atom in the mol-
ecule graph. Given a molecule graph G = (V ,E) , we can 
generate multiple DFS orders and each DFS order corre-
sponds to a SMILES representation of the graph. Denoted 
the set of all possible DFS orders as D(V ) ⊆ P(V ) , P(V ) 
represents all permutations of the set of atoms V. For 
each DFS order O ∈ D(V ) , we denoted its correspond-
ing SMILES as Smiles(G, O), which lists all atoms in the 
order dictated by O. To facilitate our subsequent elabora-
tion, we refer to the position of an atom a in the order 
O as its rank, denoted as rank(a, O). The atom with the 
minimal rank given order O is then defined as the root 
atom, denoted as root(G, O).

Model architecture
In this section, we provide an overview of the mod-
el’s architectural design and the rationale behind it. 
Our model adopts an encoder-decoder framework, as 
depicted in Fig.  1. The encoder is tasked with extract-
ing molecular representations from the input products 
and supplying these as inputs to the decoder, which then 
generates a combination of reactants. We utilize graph 
neural networks for our encoder, which encodes the 
nodes through an iterative message-passing mechanism 
to derive node features. During each round of message-
passing, the network collects and aggregates information 
from a node’s neighbors, thereby updating the node fea-
tures. This design effectively integrates the topological 
information of the graph structure into the node features, 
naturally adapting to the task of molecular representa-
tion learning. The superiority of graph neural networks 
in this domain has been substantiated by a plethora of 
studies [15–17].

Moving on to the decoder, it is constructed based on 
the transformer decoder architecture  [37]. Generating a 
graph poses a unique challenge due to the lack of inher-
ent order among the graph’s nodes and the necessity to 
predict an adjacency matrix that is quadratic in rela-
tion to the number of nodes. However, the adoption of 
SMILES  [42] circumvents this complexity by converting 
the molecular generation problem into a more tractable 
text sequence generation task. This transformation is 
crucial because it ensures that the length of the output 
sequence is linearly proportional to the number of atoms 
involved. And the framework of text sequence gen-
eration has been extensively applied in other domains, 
such as natural language processing, providing a robust 

foundation upon which our molecular generation 
model is built  [12, 21, 22, 25]. The transformer decoder, 
equipped with a cross-attention mechanism, is adept at 
sequential generation conditioned on a given input, mak-
ing it an ideal choice for our model’s decoder. The subse-
quent sections will delve into the intricate design of the 
encoder, decoder, and other components of our model.

EGAT
+

Chemical bonds play a significant role in determining 
the properties of molecules and contain valuable infor-
mation. Previous studies [13, 26, 46] have demonstrated 
that incorporating edge information into graph neural 
networks can greatly enhance their ability to represent 
molecular structures. To fully leverage the information 
brought by chemical bonds, we propose a modified ver-
sion of the Graph Attention Network (GAT)  [38] called 
EGAT+.

Our proposed model explicitly incorporates edge fea-
tures, which represent the information derived from 
chemical bonds, into the message passing process. Dur-
ing each iteration of message passing, the EGAT+ applies 
self-attention to each node and its one-hop neighbors 
to calculate attention coefficient according to both node 
features and edge features. It then aggregates the both 
node and edge features of these neighbors, considering 
the attention coefficients, to update the node features. 
Denote the node feature of atom u as h(k)u  and the edge 
feature between atom u and v as e(k)u,v at k-th iteration of 
message passing. In math, the message passing mecha-
nism can be written as

where FFN(k)
m  , FFN(k)

e  and FFN(k)
n  are three different 

feed forward networks, a is a learnable parameter, N (u) 
denotes the one-hop neighbors of node u and ‖ denotes 
the concatenation operation. Since there are no chemi-
cal bonds with the same beginning and ending atoms, 
the e(k)u,u is also set as a learnable parameter shared among 
all atoms. The residual connection and layer normaliza-
tion  [2] are applied to prevent over-smoothing while 
enlarging the receptive field of the model [43].

(1)

ẽ(k)u,v = FFN(k)
e (e(k)u,v),

h̃(k)u = FFN(k)
n (h(k)u ),

cu,v = a
T
[h̃(k)u �h̃(k)v �ẽ(k)u,v ],

αu,v =
exp(LeakyReLU(cu,v))

∑

v′∈N (u)∪{u} exp(LeakyReLU(cu,v′))
,

h(k+1)
u =

∑

v∈N (u)∪{u}

αu,v

(

h̃(k)u + ẽ(k)u,v

)

,

e(k+1)
u,v = FFN(k)

m ([h(k+1)
u �h(k+1)

v �e(k)u,v]), u �= v,
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The initial node features h(0)u  and edge features e(0)u,v 
are determined via several chemical property descrip-
tors, whose details are shown in Supplementary Sec. 
6. After K iterations of message passing, we can obtain 
the encoded features h(K )

u  of all atoms and make up the 
output H ∈ R

VP×d of the encoder, where d denotes the 
embedding size.

SMILES alignment
For single-step retrosynthesis prediction, a significant 
proportion of structures are shared between product 
molecules and reactant molecules  [40, 50]. However, 
SMILES-based methods often have to generate the reac-
tant SMILES from scratch, even if most of the struc-
tures of reactants are the same as those of the products. 
This results in the underutilization of input information 
and becomes the bottleneck of template-free retrosyn-
thesis prediction methods. There are methods  [31, 40] 
addressing this issue through supervised SMILES align-
ment, which involves adding supervised information to 
establish the correspondence between input and output 
tokens through cross-attention over the input and pre-
dicted tokens. This supervised training approach not only 
requires complex data annotation algorithms but also 
limits the diversity of the model’s attention map, thereby 
further affecting the model’s performance. To address the 
above-mentioned issues, we propose the unsupervised 
SMILES alignment method as follows.

Assuming we can identify the location of each prod-
uct atom in the reactants’ SMILES and provide it to the 
model, a natural correspondence can be established 
between the input and output atoms. However, during 
the inference process, revealing this information would 
lead to label leakage, which is not permitted. Therefore, 
we propose the following modification: when providing 
an order of product atoms, we expect the model to gen-
erate atom tokens in the reactants’ SMILES in this given 
order as closely as possible. By doing so, we can establish 
a correspondence between the product atoms and the 
reactants’ SMILES tokens using unsupervised methods 
without leaking any labels. We refer to this type of reac-
tants’ SMILES, which aims to preserve the given order 
of atom tokens as much as possible, as order-preserving 
reactant SMILES. Note that SMILES represents atoms 
in a molecule according to a certain DFS order, the pro-
vided order should also be a DFS order for the product 
molecule.

The generation of order-preserving reactant SMILES 
will be introduced as follows. Given the product molecule 
P = (VP ,EP) with a DFS order OP ∈ D(VP) and the cor-
responding set of reactant molecules R = {R1,R2, . . .Rl} , 
for each reactant R = (VR,ER) ∈ R , we can find a depth-
first order OR ∈ D(VR) that has a nearly consistent 
atomic appearance sequence with OP as the product and 
reactants have similar structures. For convenience, we 
name such a order as OP-corresponding order of R and 
denote it as CO(R,OP) . Mathematically, it’s defined as

Fig. 2  An example of the process to generate order-preserving reactants SMILES. The atom mapping numbers shown on the figure are included 
only for clearer explanation and will be removed in our implementation to prevent any label leakage
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where the value of inv(i, j,OP , o) equals 1 if and only if 
rank(i,OP) < rank(j,OP) and rank(i, o) > rank(j, o) , and 
equals 0 otherwise. We sort the reactants R according to 
rank(root(R,CO(R,OP)),OP) in ascending order. Then 
we generate SMILES for each reactant molecule using its 
OP-corresponding order and join them together using “.” 
to obtain order-preserving reactant SMILES.

For further discussion, we denote the order-preserving 
reactant SMILES given the reactant molecules R and a 
DFS order O of product as OPSmiles(R,O) . An exam-
ple of the process to generate order-preserving reactants 
SMILES is shown in Fig. 2. The detailed implementations 
are presented in Supplementary Sec. 5.1.

Decoder
The decoder takes the node features H ∈ R

VP×d that are 
generated from the encoder, as well as the given DFS 

(2)

CO(R,OP) = arg min
o∈D(R)

∑

i∈OP∩o

∑

j∈OP∩o

inv(i, j,OP , o), order OP for the product molecule graph as input. We 
use the vanilla Transformer decoder [37] as our decoder. 
As mentioned in "SMILES alignment" Section, the order 
information of product atoms are required for SMILES 
alignment. However, the Transformer decoder is per-
mutation-invariant to memory  [20, 35], meaning it is 
not sensitive to the order of the features from encoder. 
This implies that directly performing cross-attention over 
H may not effectively capture the relationship between 
product atoms and reactant SMILES tokens. To address 
this problem, we introduce position encoding to the node 
features based on the rank of each atom in the given 
DFS order OP to generate order-aware node features Ĥ . 
Then given an input embedding sequence Z ∈ R

m×d , 
the Transformer decoder layer utilizes the order-aware 
node features as keys and values in all the cross-attention 
layers. This process ultimately generates the decoded 
embeddings Ẑ ∈ R

m×d . These embeddings are then fed 
into feed-forward layers FFN1 : R

d → R
T to predict 

Table 1  Top-k accuracy for retrosynthesis prediction on USPTO-50K

For comparison purpose, the Aug. Transformer is evaluated without the test augmentation. Best performance of each model type is in bold. The average and standard 
deviation of our method over five different random seeds are reported

* indicates the model with SMILES augmentation.

Model Top-k accuracy (%)

Reaction class known Reaction class unknown

1 3 5 10 1 3 5 10

Template-Based

 RetroSim [7] 52.9 73.8 81.2 88.1 37.3 54.7 63.3 74.1

 NeuralSym [30] 55.3 76.0 81.4 85.1 44.4 65.3 72.4 78.9

 GLN [9] 64.2 79.1 85.2 90.0 52.5 69.0 75.6 83.7

 LocalRetro [5] 63.9 86.8 92.4 96.3 53.4 77.5 85.9 92.4

 RetroKNN [44] 66.7 88.2 93.6 96.6 57.2 78.9 86.4 92.7
Semi-Template-Based

 RetroXpert* [45] 62.1 75.8 78.5 80.9 50.4 61.1 62.3 63.4

 G2G [32] 61.0 81.3 86.0 88.7 48.9 67.6 72.5 75.5

 GraphRetro [33] 63.9 81.5 85.2 88.1 53.7 68.3 72.2 75.5

 RetroPrime* [41] 64.8 81.6 85.0 86.9 51.4 70.8 74.0 76.1
Template-Free

 Transformer [37] 57.1 71.5 75.0 77.7 42.4 58.6 63.8 67.7

 SCROP [49] 59.0 74.8 78.1 81.1 43.7 60.0 65.2 68.7

Liu’s Seq2seq [24] – – – – 37.4 52.4 57.0 61.7

 Tied Transformer [18] – – – – 47.1 67.1 73.1 76.3

 Aug. Transformer* [34] – – – – 48.3 – 73.4 77.4

 MEGAN [27] 60.7 82.0 87.5 91.6 48.1 70.7 78.4 86.1

 GTA* [31] – – – – 51.1 67.6 74.8 81.6

 Graph2SMILES [35] – – – – 52.9 66.5 70.0 72.9

 Retroformer* [40] 64.0 82.5 86.7 90.2 53.2 71.1 76.6 82.1

 RetroBridge [14] – – – – 50.8 74.1 80.6 85.6

 Ours*- Average 66.4 86.7 91.5 95.0 53.5 77.3 84.6 90.5
 Ours*- Standard Deviation 0.1 0.2 0.2 0.1 0.2 0.3 0.3 0.2
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the tokens T̂  that should be generated. In summary, the 
decoder can be mathematically expressed as

Two‑stage training
There is a significant distribution shift between graphs 
and SMILES representations. Moreover, our model is 
specifically designed to generate non-canonical SMILES, 
which may contain more complex patterns compared to 
canonical SMILES. To achieve this goal, we propose a 
two-stage training strategy in this paper. The first stage 
aims to align the distributions between two distinct 
modalities: SMILES and molecular graphs, while ena-
bling the model to learn the patterns of non-canonical 
SMILES. Given a molecule graph M and one of its pos-
sible DFS orders OM , the training task is to translate the 
graph into the corresponding SMILES representation 
based on the given order OM . In detail, this is reached by 
training the model to generate Smiles(M,OM) given mol-
ecule M and DFS order OM.

Once the first stage training converges, we proceed 
to the second stage, which focuses on retrosynthesis 
prediction. In this stage, the model is trained using the 
order-preserving reactant SMILES as targets. Given a 
product molecule graph P, a possible DFS order OP , and 
a set of reactants R , the model is expected to generate 
OPSmiles(R,OP).

Data augmentation
Different from those Transformer-based methods  [31, 
34, 40] taking SMILES as input and canonical SMILES as 
target, our method takes a graph as input and is trained 
with non-canonical SMILES. That means the previ-
ous SMILES augmentation tricks are not suitable for us. 
Similar to  [40], we choose to augment the training data 
on-the-fly.

(3)

Ĥ = H + PE(OP),

Ẑ = TransformerDecoder(Z,OH),

T̂ = FFN1(Ẑ).

For the first stage, at each iteration, for each molecule 
M = (VM ,EM) , we have a 50% chance of using a random 
DFS order OM as the input for the model, and using the 
corresponding Smiles(M,OM) as the training target. For 
the other 50%, we randomly select another molecule 
M′ = (VM′ ,EM′) from the dataset to form a new molecu-
lar graph M̃ = (VM ∪ VM′ ,EM ∪ EM′) , and find the DFS 
order OM̃ that can generate canonical SMILES for M̃ . M̃ 
and OM̃ are then fed into the model and the target is set 
as the canonical SMILES of M̃ . Such an augmentation 
method enables the model to output the atom tokens 
according to the given DFS order and be aware of differ-
ent components within a graph.

For the second stage, at each iteration, for each prod-
uct molecule P = (VP ,EP) , we have a 50% probability of 
using a random DFS order as input, and for the remain-
ing part, we use the DFS order capable of producing 
canonical SMILES for product as input. The target used 
for training is the order-preserving reactant SMILES 
generated based on the input DFS order. This data aug-
mentation method allows the model to focus more on 
the DFS order for canonical product SMILES while also 
noticing the correspondence between product atoms and 
the output SMILES tokens.

Loss function
Both of the two stages of training can considered as a 
kind of translation between graphs and SMILES, thus 
we use the loss widely used for auto-regressive language 
generation models for training. Denote the training tar-
get as T = {t1, t2, . . . , tn} and the output of the model 
T̂ = {t̂1, t̂2, . . . , t̂n} , the loss can be written as

where lcls(·) is the classification loss.
Moreover, we have introduced numerous definitions 

to establish a foundation for understanding the model’s 
overall training process. To facilitate comprehension, 
we have encapsulated the entire training procedure in 
Algorithm 1.

(4)L =

n
∑

i=1

lcls(t̂i, ti),
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Algorithm 1  The training procedure.
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Results and discussion
In this section, we conduct extensive experiments to 
make a comprehensive evaluation of our proposed 
UAlign.

Evaluation protocol
Benchmark Datasets. We adopt three datasets for evalu-
ation: (1) USPTO-50K consists of 50,016 atom-mapped 
reactions grouped into 10 different classes; (2) USPTO-
FULL comprises 1,013,118 atom-mapped reactions with-
out any reaction class information. (3) USPTO-MIT 
consists of 479,035 atom-mapped reactions without any 
reaction class information. To ensure a fair comparison, 
we adopt the same training/validation/test splits as those 
in a previous study  [9] for USPTO-50K and USPTO-
FULL datasets. The training/validation/test splits is 
aligned with the previous study  [16]. The detailed data 
processing procedure and the statistical information of 
the processed dataset are presented in Supplementary 
Sec. 2.

Metrics. We utilize the following three evaluation met-
rics for evaluation: top-k accuracy, top-k SMILES validity, 
top-k round-trip accuracy and Computational Cost. The 
detailed definitions for the first three metrics are pro-
vided in Supplementary Sec. 3.

Performance comparison
Top-k Accuracy. We compare our model with existing 
single-step retrosynthesis prediction in terms of top-k 
accuracy on all the datasets. The results are summa-
rized in Tables  1, 2 and 3. On the USPTO-50K dataset, 
our model achieves an average top-3 accuracy of 77.3%, 
average top-5 accuracy of 84.6% and average top-10 accu-
racy of 90.5% under the reaction class unknown setting, 
surpassing the SOTA template-free method by 3.2%, 
4.0% and 4.9% respectively. And with reaction class given 
on USPTO-50K dataset, our model achieves an average 
top-3 accuracy of 86.7%, average top-5 accuracy of 91.5% 
and average top-10 accuracy of 95.0%, which exceeds 
the SOTA template-free method by 4.2%, 4.0% and 4.8% 
respectively. It is worth noting that, even when taking the 
standard deviation into consideration, the lower-bound 
performance of our model still surpasses all template-
free methods in terms of all metrics. Moreover, our 
model outperforms all the semi-template-based methods 
with a noticeable margin. It’s also encouraging to see that 
our method, as a template-free method, achieves com-
petitive or even superior performance against the pow-
erful template-based methods such as LocalRetro under 
both settings of USPTO-50K dataset. On UPSTO-MIT 
dataset, our model achieves the top-1 accuracy of 59.9% 
and top-10 accuracy of 86.4%, which even outperforms 
the existing template-based SOTA method LocalRetro 
significantly. Additionally, our models achieved a top-1 
accuracy of 50.4% on the USPTO-FULL dataset, which 
exceed that of the current SOTA model GTA by 3.8%. 
These findings sufficiently demonstrate the effectiveness 
of our method. The contribution of each proposed mod-
ule will be further validated in "Ablation Study" section.

Table 2  Top-k accuracy for retrosynthesis prediction on USPTO-
MIT

Best performance of each model type is in bold

Model Type Model Top-k accuracy (%)

1 3 5 10

template-based NeuralSym [30] 47.8 67.6 74.1 80.2

LocalRetro [5] 54.1 73.7 79.4 84.4
template-free Liu’s Seq2seq [24] 46.9 61.6 66.3 70.8

AutoSynRoute [23] 54.1 71.8 76.9 81.8

RetroTRAE [36] 58.3 - - -

Ours 59.9 76.9 82.0 86.4

Table 3  Top-k accuracy for retrosynthesis prediction on USPTO-
FULL

Best performance of each model type is in bold

* indicates the model with SMILES augmentation.

Model Type Model Top-k accuracy (%)

1 3 5 10

Template-based RetroSim [7] 32.8 – – 56.1

NeuralSym [30] 35.8 – – 60.8

GLN [9] 39.3 – – 63.7
LocalRetro [5] 39.1 53.3 58.4 63.7

Semi-template-based RetroPrime* [41] 44.1 59.1 62.8 68.5
Template-free MEGAN [27] 33.6 – – 63.9

Aug. Transformer* [34] 46.2 – – 73.3

Graph2SMILES [35] 45.7 – – 63.4

GTA* [31] 46.6 – – 70.4

Ours* 50.4 66.1 71.3 76.2

Table 4  Top-k SMILES validity for retrosynthesis prediction on 
USPTO-50K with reaction class unknown

Model Top-k validity (%)

1 3 5 10

Transformer [37] 97.2 87.9 82.4 73.1

Graph2SMILES [35] 99.4 90.9 84.9 74.9

RetroPrime [41] 98.9 98.2 97.1 92.5

Retroformer [40] 99.2 98.5 97.4 96.7

Ours 99.8 99.7 99.3 98.2
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It is noteworthy that while template-based approaches 
have achieved remarkable performance on the USPTO-
50K dataset, their reliance on external template libraries 
has emerged as a constraint as datasets grow in scale and 
complexity. This dependency leads to a substantial deg-
radation in model performance. In contrast, template-
free methods have demonstrated superior versatility and 
adaptability, qualities that render them especially appro-
priate for managing large-scale and intricate datasets.

Top-k SMILES Validity. We use vanilla Transformer, 
RetroPrime, Retroformer and Graph2SMILES as robust 
baselines to compare the validity of SMILES in our study. 
SMILES generation models for retrosynthesis tasks 
often encounter challenges with maintaining SMILES 

validity. We do not take the methods based on templates 
or molecule editing as baseline here because the valid-
ity of generated SMILES can be guaranteed by the tem-
plates or chemical toolkits. Unlike graph-based models, 
SMILES-based methods need to ensure that the gener-
ated content adheres to the parsing rules of SMILES, 
without leveraging chemical tools such as RDKit. Conse-
quently, SMILES-based approaches are more susceptible 
to generating invalid SMILES compared to graph-based 
models. As shown in Table  4, our model demonstrates 
superior top-1 and top-5 molecule validity compared to 
other models, even without employing canonical SMILES 
as our training objective. This improvement could be 
attributed to the proposed two-stage training strategy 
and data augmentation, which assist the model in captur-
ing various SMILES patterns effectively.

Top-k Round-Trip Accuracy. To assess the accuracy of 
our predicted synthesis plans, we utilize the Molecule 
Transformer  [29] as the benchmark reaction predic-
tion model and calculate the top-k round-trip accuracy. 
We take RetroPrime, Retroformer and Graph2SMILES 
as our strong SMILES-based baselines. We also use 
take graph-based method GraphRetro into comparison. 
The results are presented in Table  5. The results clearly 
indicate that our model outperforms all SMILES-based 
baselines by a considerable extent and even exceeds the 
well-established graph-based method, GraphRetro. This 
underscores the efficacy of our unsupervised SMILES 
alignment mechanism, which enables the model to effi-
ciently leverage substructures from product molecules 
to construct reactants. This mechanism allows the model 
to focus more intently on learning reaction mechanisms, 
thereby yielding more plausible predictive outcomes. In 
summary, our model has exhibited a robust capacity for 
generating coherent and efficacious synthesis pathways, 
specifically tailored for advanced downstream applica-
tions such as multi-step retrosynthesis planning.

Computational Cost. The computational cost is a criti-
cal metric for single-step prediction models, particu-
larly when these models are intended to be integrated 

Table 5  Top-k round-trip accuracy for retrosynthesis prediction 
on USPTO-50K with reaction class unknown

Model Top-k round-trip acc. (%)

1 3 5 10

GraphRetro [33] 80.5 73.3 68.3 59.3

Transformer [37] 71.9 54.7 46.2 35.6

Graph2SMILES [35] 76.7 56.0 46.4 34.9

RetroPrime [41] 79.6 59.6 50.3 40.4

Retroformer [40] 78.9 72.0 67.1 57.2

Ours 80.9 74.0 69.0 60.2

Table 6  Average inference time per sample on USPTO-50K 
dataset

Model Avg. 
Inference 
Time (s)

GraphRetro [33] 0.344

Graph2SMILES [35] 0.037

RetroPrime [41] 1.359

Retroformer [40] 0.803

Ours 0.481

Table 7  Effects of different modules on retrosynthesis performance in reaction class unknown setting of USPTO-50K dataset

Best performance is in bold

Method Top-k acc. (%) Top-k round-trip acc. (%) Top-k validity (%)

1 3 5 10 1 3 5 10 1 3 5 10

UAlign (Full Version) 53.6 77.6 84.6 90.3 80.9 74.0 69.0 60.2 99.8 99.7 99.3 98.2
− Two-Stage Training 53.1 75.6 82.8 88.8 80.4 72.3 66.9 57.6 99.2 97.7 96.1 92.2

− Data Augmentation 48.5 71.8 79.2 85.9 78.2 70.5 65.1 56.0 99.1 98.4 97.7 95.6

− SMILES Alignment 45.5 65.2 71.4 77.5 70.3 57.9 51.0 40.1 97.8 95.3 93.6 89.2

Transformer [37] 42.4 58.6 63.8 67.7 71.9 54.7 46.2 35.6 97.2 87.9 82.4 73.1



Page 11 of 16Zeng et al. Journal of Cheminformatics           (2024) 16:80 	

with other searching algorithms for multi-step ret-
rosynthesis planning and are expected to be invoked 
repeatedly. In our comparative analysis, we included 
SMILES-based baselines including RetroPrime, Retrofor-
mer, Graph2SMILES, and the graph-based baseline, Gra-
phRetro. We performed inference on the test set of the 
USPTO-50K dataset using a single NVIDIA RTX 3090 
graphics card. The average inference time per sample is 
detailed in Table 6.

As it is shown in the table, our model exhibits the sec-
ond-fastest inference speed among the SMILES-based 
methods and shows a negligible difference in inference 
time when compared to the graph-based baseline, Gra-
phRetro. The superior inference speed of Graph2SMILES 
is attributed to its use of an RNN as the decoder, which 
has a computational complexity linearly related to the 
length of the output sequence. In contrast, the other 
SMILES-based methods are constructed with a trans-
former decoder, resulting in a computational complex-
ity that is quadratically related to the output sequence 
length. These results underscore the capability of our 
method to rapidly infer results based on input, position-
ing it favorably for integration with searching algorithms 
that require extensive exploration and trial-and-error in 
the construction of multi-step retrosynthesis planning 
systems.

It is noteworthy that our method does not implement 
batch-wise parallelism and only utilized 2GB of GPU 
memory during inference. There is significant room for 

optimization in our code, which could enable parallel 
inference for multiple samples, thereby achieving greater 
hardware utilization efficiency and faster average infer-
ence speeds.

Ablation study

We investigate the effects of different components in our 
proposed pipelines. The result is summarized in Table 7.

Two-Stage Training. We eliminate the initial training 
phase and directly train the model for the retrosynthesis 
prediction task. As indicated in Table  7, the two-stage 
training strategy has consistently led to enhancements in 
all evaluated metrics. This observation implies that the 
two-stage training strategy effectively enables the model 
to adeptly learn the intricacies of molecular SMILES rep-
resentations, thereby yielding higher quality and more 
plausible retrosynthetic analysis outcomes.

Data Augmentation. We remove the data augmen-
tation during the second training stage, which means 
training solely using the DFS order that can generate 
canonical SMILES. Table  7 demonstrates a significant 
decline in model performance across all metrics. This 
clearly demonstrates that our data augmentation signifi-
cantly improves the model’s performance.

SMILES Alignment. In the training process, we remove 
all operations related to SMILES alignment. This includes 
the removal of the position encoding in Eq.  3, where 
the features H directly served as the input memory for 

Fig. 3  Visualization of cross-attention over order-aware node features and the predicted tokens. The number on the y-axis is the map number 
of atoms in the product. The reactants atoms that not appear in product is colored red in the x-axis. ◦ represents the end token



Page 12 of 16Zeng et al. Journal of Cheminformatics           (2024) 16:80 

the Transformer decoder. Since we eliminate the input 
related to the DFS order, the model was no longer trained 
using order-preserving reactants SMILES as the target 
but instead switched to canonical SMILES for product. 
Additionally, in this set of experiments, we remove the 
first training stage, which aligns the graph and SMILES 
modalities as the model architecture changes. The results 
are reported in Table  7, and they show a significant 
decline in performance compared to our full version, 
indicating that the proposed SMILES alignment algo-
rithm is crucial for achieving excellent performance.

It is worth noting that even without data augmentation, 
two-stage training and SMILES alignment, our model 
still outperforms the vanilla Transformer by a large mar-
gin in terms of all metrics reported in the last line of 
Table  7. This indicates that graph-based molecular rep-
resentation learning still has advantages over SMILES-
based approaches, and our proposed EGAT+ can extract 
effective molecular representations for downstream 
usage.

Case study (visualization of cross‑attention mechanism 
in transformer with UAlign)
We randomly select a case from the dataset and show-
case the cross-attention map in Fig.  3. The cross-atten-
tion map indicates the correlation between reactant 
tokens and nodes in the input product graph. This map 
is obtained by averaging the attention coefficient from 
each attention head. From the figure, it is evident that the 
predicted tokens successfully locate their corresponding 
atoms in the product, which contributes to the accurate 
prediction. The SMILES alignment can also be observed 
to assist the model in correctly identifying the reaction 
center. In accordance with the figure, the bond between 
atom C:11 and N:9 breaks during the transformation 
into reactants. Our model effectively notices this occur-
rence and focus the attention of token t̂7 on the reaction 
centers C:11 and N:9. This strategic focusing success-
fully guides the completion of the reactants, ensuring 
that the leaving group is correctly attached to the appro-
priate atoms. Additionally, we note that the attention 
coefficient at token t̂14 is concentrated on atoms C:1 and 
N:9, which are the first atoms of each reactant molecule 
according to the given DFS order. This further indicates 
that our model is able to correctly identify the sites where 
the reaction occurs and accurately cleave the chemi-
cal bonds. Moreover, the attention of newly generated 
structures (i.e., tokens t̂7 to t̂13 ) is directed towards atoms 
C:1, C:11, and O:2, which correspond to the specific 
synthon they will attach to. This demonstrates that our 
model is able to generate appropriate functional groups 
based on the molecular structure information to form 
the reactants. All the aforementioned results illustrate 

that our proposed SMILES alignment method assists the 
model in comprehending molecular structural informa-
tion and helps it to focus on learning chemical rules.

To further investigate the impact of the proposed 
SMILES alignment mechanism on model training, we 
visualize the cross-attention coefficients of different 
Transformer decoder layers. The visualization is provided 
in Supplementary Fig.  1 of Supplementary Information. 
From Supplementary Fig.  1, we can observe significant 
variations in the cross-attention across different layers. 
Additionally, the establishment of correspondence does 
not occur exclusively at certain layers, such as the first 
or last layer. This suggests that directly imposing super-
vised signals on the cross attention coefficient  [31, 40] 
for SMILES alignment is not a wise approach, whether 
applied to all layers or only the last layer. This observation 
further corroborates our assertion in "SMILES Align-
ment" section that supervised SMILES alignment meth-
ods might diminish the diversity of cross-attention maps 
across different layers, consequently impairing the mod-
el’s capacity for representation. In contrast, unsupervised 
SMILES alignment methods do not exert such an adverse 
influence. This is why our unsupervised SMILES align-
ment mechanism achieves better results than supervised 
SMILES alignment.

Case study (multi‑step retrosynthetic pathway planning)
To explore the suitability of our model for multi-step ret-
rosynthetic pathway planning, we select three distinct 
molecules as targets for synthetic route design, and the 
synthesis routes are obtained through iterative calls to 
our UAlign model, which is trained with the USPTO-
FULL dataset. The predicted pathways are summarized 
in Fig. 4.

The first case study involves Mitapivat, a compound 
approved for the treatment of hereditary hemolytic ane-
mias in February 2022  [1]. Our model successfully pre-
dicted the five-step synthetic route reported in [3], with 
each step consistently ranked within the top-2 predic-
tions. The first step entails an amide coupling reaction, 
which our model placed at rank 2, yielding the reactants 
1-(cyclopropylmethyl)piperazine (compound 2) and 
4-(quinoline-8-sulfonamido)benzoic acid (compound 3). 
Notably, at the initial step, our model also proposed an 
alternative synthesis method utilizing the Borch Reduc-
tive Amination, which was ranked at the first and is con-
sistent with the synthetic route delineated by Saunders 
et  al. Subsequently, for the synthesis of 4-(quinoline-
8-sulfonamido)benzoic acid, the model precisely exe-
cuted a functional group protection strategy during the 
second step and accurately anticipated the subsequent 
formation of the sulfonamide, effectively deconstruct-
ing the target molecule into readily available precursors. 



Page 13 of 16Zeng et al. Journal of Cheminformatics           (2024) 16:80 	

For the synthesis of 1-(cyclopropylmethyl)piperazine, the 
model strategically protected the amine functional group 
with a tert-butyloxycarbonyl moiety at the outset and, in 
the ultimate step, prognosticated the N-alkylation reac-
tion with a top-ranking accuracy. This example illustrates 
our model’s capability to uncover diverse reaction centers 
in molecular retrosynthetic design and to generate plau-
sible reactant combinations based on these insights.

The second case under scrutiny is Pacritinib, an orally 
bioavailable and isoform selective JAK-2 inhibitor for the 
treatment of patients with myelofibrosis, which received 
FDA approval on February 28, 2022  [48]. As shown in 
Fig.  4(b), our model successfully delineates a eight-step 
synthesis, as described in the literature  [4], tracing the 
synthetic pathway from commercially available 5-nitro-
salicylaldehyde and 2,6-dichloropyrimidine to the final 
product. The initial step of the reverse synthesis is olefin 

Fig. 4  Multistep retrosynthesis predictions by our method. a Mitapivat b Pacritinib c Daprodust. The reaction centers and leaving groups are 
highlighted in different colors. The pathway pf molecules a and b come from literature, while the last one is verified by chemical experts
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metathesis, ranking the first in order of likelihood, fol-
lowed by another rank-2 aromatic substitution of 
4-(3-((allyloxy)methyl)phenyl)-2-chloropyrimidine (com-
pound 12) and 3-((allyloxy)methyl)-4-(2-(pyrrolidin-1-yl)
ethoxy)aniline (compound 13). Subsequently, synthesis of 
4-(3-((allyloxy)methyl)phenyl)-2-chloropyrimidine was 
correctly identified via continuous allyl substitution and 
Suzuki cross-coupling reaction as the top and the second 
choices. The reverse synthesis of 3-((allyloxy)methyl)-4-
(2-(pyrrolidin-1-yl)ethoxy)aniline was reduction of the 
nitro group, followed by another allyl substitution. In the 
final step, the model’s highest probability prediction was 
reduction of the aldehyde group, followed by a nucleo-
philic substitution. Despite the synthesis route involving 
a considerable number of steps and encompassing a vari-
ety of reaction types, our model successfully and accu-
rately predicted each step within the top-2 choices. This 
accomplishment signifies the robustness and efficacy of 
our model in the context of retrosynthetic analysis.

The final case is Daprodustat, the first oral hypoxy-
inducing factor prolyl hydroxylase inhibitor (HIF-PHI) 
for the treatment of renal anemia caused by chronic 
kidney disease (CKD)  [11]. This novel compound 
received approval for market release from the FDA on 
the 1st of February, 2023  [48]. Our model predicted 
the three-step synthetic route. The first step reports 
the hydrolysis of ester at rank 3, which is aligned with 
the route provided by Duffy et  al. Although next two 
steps provided by our method do not exist in the lit-
erature, there are all explainable. The synthesis of ethyl 
(1,3-dicyclohexyl-2,4,6-trioxohexahydropyrimidine-
5-carbonyl)glycinate (compound 21) was identified via 
dehydration condensation of 1,3-dicyclohexyl-2,4,6-tri-
oxohexahydropyrimidine-5-carboxylic acid (compound 
23) and ethyl glycinate (compound 22) as the top 
choice, which avoided using toxic ethyl isocyanatoac-
etate reported in literature. In the final step, the model’s 
highest probability prediction was amidation of ester, 
resulting in cost-effective and readily accessible starting 
materials. This case demonstrates the robust extrapo-
lative capacity of our model, highlighting its potential 
to generate synthetic routes that surpass those docu-
mented in the literature.

We also provide the results of multi-step retrosynthe-
sis planning of two powerful baselines: SMILES-based 
method Retroformer [40] and graph-based method Gra-
phRetro [33] in Supplementary Fig. 2 and Supplementary 
Fig. 3 respectively. The visualization reveals that while the 
Retroformer outperforms our method in the prediction 
of the synthetic route for Mitapivat, placing the litera-
ture pathway in a more advanced position, our model still 
accurately predicted each step of the literature-provided 
synthetic route within the top-2 choices. Conversely, 

when faced with compounds like Pacritinib, which has 
multiple potential reaction centers, the Retroformer 
exhibits disadvantages. This is evident in Supplemen-
tary Fig.  2 (b) from steps 4 to 7, where the literature-
documented synthetic route is ranked beyond the third 
position by Retroformer. Additionally, it is observable 
that Retroformer lacks robust predictive power for com-
plex reactions, such as those requiring ring formation. 
Supplementary Fig.  2 illustrates that Retroformer failed 
to successfully predict Pacritinib’s step-1 and was also 
unable to forecast both the literature pathways and the 
pathway validated by our chemical experts for Dapro-
dust. Supplementary Fig. 3 further demonstrates that the 
performance of GraphRetro is marginally worse than that 
of Retroformer. Across the three presented cases, Gra-
phRetro has not been able to successfully predict the syn-
thetic routes. All the results above suggest that our model 
demonstrates a stronger capability in handling more 
complex molecules and reaction types compared to our 
baselines.

Discussion
We present UAlign, a novel graph-to-sequence pipeline 
that achieves state-of-the-art performance in the field of 
template-free methods. Our approach outperforms exist-
ing template-free and semi-template-based methods, 
while achieving comparable results to template-based 
methods. By utilizing a specially-designed graph neu-
ral network as the encoder, our model effectively lever-
ages chemical and structural information from molecule 
graphs, resulting in powerful embedding for the decoder. 
Additionally, our proposed unsupervised SMILES align-
ment mechanism facilitates the reuse of shared substruc-
tures between reactants and products for generation, 
allowing the model to prioritize chemical knowledge 
even without complex data annotations. This signifi-
cantly enhances the performance of the pipeline.

Despite achieving commendable performance, our 
work acknowledges areas for improvement. This work 
does not integrate much domain knowledge related to 
chemical reaction mechanisms in its design, which to 
some extent, compromises its interpretability. Similarly 
to most template-free methods, our work also faces chal-
lenges in generating diverse results. Additionally, we 
recognize a significant disparity between single-step ret-
rosynthesis prediction and the complex reality of molec-
ular synthesis route planning, underscoring the need for 
more realistic evaluation metrics to validate proposed 
models. To this end, we are charting a course for future 
exploration.

We remain committed to monitoring advancements in 
the understanding of chemical reaction mechanisms and 
intend to compile pertinent information from the field 
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of chemical reactions, including kinetic and thermody-
namic data, to construct a more interpretable single-step 
retrosynthesis prediction model. We also plan to build a 
multiple-step route design system for molecular synthe-
sis, integrating UAlign with search algorithms and pre-
dictive models for reaction conditions. Based on such a 
system, we expect to work with chemists to synthesize 
complex molecules in the wet lab, assessing the capability 
of the retrosynthesis prediction model.
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