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Abstract   
enviPath is a widely used database and prediction system for microbial biotransformation pathways of primarily xeno-
biotic compounds. Data and prediction system are freely available both via a web interface and a public REST API. 
Since its initial release in 2016, we extended the data available in enviPath and improved the performance of the pre-
diction system and usability of the overall system. We now provide three diverse data sets, covering microbial 
biotransformation in different environments and under different experimental conditions. This also enabled develop-
ing a pathway prediction model that is applicable to a more diverse set of chemicals. In the prediction engine, we 
implemented a new evaluation tailored towards pathway prediction, which returns a more honest and holistic view 
on the performance. We also implemented a novel applicability domain algorithm, which allows the user to estimate 
how well the model will perform on their data. Finally, we improved the implementation to speed up the overall 
system and provide new functionality via a plugin system.

Scientific contribution   
The main scientific contributions are the development of a pathway prediction model applicable to diverse chemi-
cals, a specialized evaluation method for holistic performance assessment, and a novel applicability domain algorithm 
for user-specific performance estimation. The introduction of two new data sets, and the creation of links to EC classes 
make enviPath a unique resource in microbial biotransformation research.
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Introduction
enviPath is a unique resource that focuses on micro-
bial biotransformation pathways of primarily xenobiotic 
chemical compounds [1]. Since its initial release in 2016, 

enviPath has become widely adopted in research and 
industry. enviPath distinguishes itself from other meta-
bolic pathway databases (e.g., KEGG [2–4]) by focus-
ing on chemicals that are man-made xenobiotics and 
are known or suspected environmental contaminants. 
The primary objective of enviPath is to offer details on 
experimentally observed enzyme-catalyzed reactions of 
environmental contaminants, which can be useful for 
several applications such as bioremediation, chemical 
risk assessment, and analysis of contaminants and their 
transformation products in the environment. Figure  1 
shows the Benzyl Sulfide pathway from the Eawag-BBD 
data package [1, 5] as an example.
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enviPath also provides a pathway prediction engine 
[6–8] to predict microbial biotransformation pathways. 
The system uses biotransformation rules to detect func-
tional groups in organic compounds, and prioritization 
rules to fine-tune the predictions of corresponding reac-
tions and products. Both types of rules are based on reac-
tions found in the enviPath databases. Figure 2 shows the 
home page of enviPath with the prompt that can be used 
to submit compounds to the prediction engine.

Over the past years, we have made continuous 
improvements to enviPath, in terms of the data sets, the 
algorithm, and capabilities of the prediction engine. In 
particular, we have introduced two new data sets, namely 
Eawag-Soil [9] and Eawag-Sludge [10], in addition to our 
primary data set, Eawag-BBD. Eawag-Soil provides path-
way information from soil degradation studies, extracted 
from pesticide registration dossiers (draft assessment 
reports, DAR) that have been made publicly available 
by the European Food Safety Authority (EFSA). It also 
includes details about different experimental conditions 
and, when available, a biotransformation half-life (DT50 ) 
value. The Eawag-Sludge package contains pathways 
and kinetic information regarding microbially mediated 
transformation processes in biological wastewater treat-
ment, along with details about experimental conditions 
and supplementary information such as the source of 
the sludge used in the biotrasformation experiment. The 
information has been extracted from various scientific 
publications across different journals.

To aid in understanding which enzymes can facilitate 
certain biotransformation reactions in environmental 

microbial communities, we established connections 
between transformation rules and EC classes. Most exist-
ing tools developed to predict enzymes that may catalyze 
a given transformation reaction have been trained on 
natural metabolic reactions [11–13]. Hence, they are not 
very effective for predicting enzymes involved in contam-
inant biotransformation. To address this, we introduced a 
new feature called enviLink [14], which establishes con-
nections between generalized biotransformation rules 
and 3 rd-level EC classes sourced from the Eawag-BBD 
data and KEGG.1

We made several improvements to the prediction 
engine. Most importantly, we implemented a more 
comprehensive evaluation approach for pathway pre-
dictions that considers entire pathways rather than iso-
lated reactions [15], we provide an applicability domain 
for biodegradation predictions [16], and we enhanced 
the computational efficiency of prediction and model 
training.

Construction and content
enviPath includes various entities and relationships. 
Figure 3 visualizes the core database schema. Users can 
input data using a web form or SMILES input, and the 
Prediction Engine will predict a pathway, or a stored 
pathway from the database will be shown if available. 
The predicted or stored pathway is connected to Reac-
tions and Compounds, with Reactions potentially linked 
to the Rule used to predict them. When Reactions are 
manually inserted, links to Rules can be established to 
indicate which Reaction the Rule was generalized from. 
Each entity in the system has additional information 
called Scenario, which can include details like the cor-
responding PubChem [17] entry, the enzyme involved in 
the reaction, or a set of experimental and environmental 
conditions. All entities are organized into Packages.

Data
We continuously update and add data packages contain-
ing information on microbial contaminant biotransfor-
mation pathways and kinetics, including appropriate 
meta-data describing the specific study conditions as 
Scenarios. Currently, we host the most up-to-date, well 
curated and annotated sets of microbial biotransforma-
tion pathways and half-life data for contaminants in soil 
and activated sludge. For an overview of the numbers of 
entities, see Table  1. While Eawag-Soil has been intro-
duced and described extensively in [9] and [1], below 
more details are given for the recently published Eawag-
Sludge package.

Fig. 1  The pathway Benzyl Sulfide from the Eawag-BBD package

1  The enviLink data can be found at online at enviPath: https://​envip​ath.​org/​
packa​ge/​32de3​cf4-​e3e6-​4168-​956e-​32fa5​ddb0c​e1/​rule.

https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/rule
https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1/rule
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Fig. 2  The enviPath home page

Fig. 3  Schematic representation of the enviPath framework illustrating entity interactions. User input is provided through a visual editor 
or via SMILES notation within the web interface. The computational Model predicts pathways based on this input. The depicted pathway 
is an illustrative example sourced from the database and not an actual predictive output. The pathway consists of Reactions (represented 
along edges) and Compounds (situated at nodes). A Reaction is associated with a corresponding Rule, which generalizes across multiple similar 
Reactions. In cases where Reactions are manually introduced, Rules can be added to describe the general biotransformation mechanism. 
Furthermore, all entities incorporate supplementary information referred to as Scenario. Each entity is further organized within a Package 
for systematic organization and accessibility
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Eawag‑Soil
During a recent analysis and curation of Eawag-Soil data 
[9], several errors were detected and fixed. A continu-
ously updated record of changes is kept at our Wiki.2

Eawag‑Sludge
The Eawag-Sludge package is a compilation of biodeg-
radation studies in activated sludge comprising results 
from 27 scientific articles, published between 1999 and 
2023, see Table 1 for statistics. The reporting options for 
activated sludge-specific experimental metadata consist 
of acidity (pH), addition of nutrients, biological treat-
ment technology, bioreactor type and volume, spike 
compound concentration and solvent, inoculum source, 
location and purpose of the wastewater treatment plant, 
nitrogen content, redox conditions, sludge retention 
time, total suspended solids (TSS), and type of aeration. 
In terms of chemical space, Eawag-Sludge provides bio-
degradation pathways and kinetcis for a diverse set of 
chemicals including pharmaceuticals, pesticides, and 
industrial chemicals.

Utility and discussion
Since the first implementation of the prediction engine 
[7], enviPath has undergone multiple iterations that 
improved the prediction of pathways.

Updates on the prediction engine
Important steps in improving the prediction engine were 
the improvement due to learning dependencies among 
the transformation rules [8] and extending the source 
data [9]. Further, we implemented a more realistic, holis-
tic evaluation [15] of pathway prediction and tailored 
an applicability domain specifically for metabolic path-
way prediction [16]. In the following, we will focus on 

the improvements that we implemented since the initial 
release and publication of enviPath [1].

Multi‑generation evaluation
Biotransformation prediction engines predict pathways 
by iteratively applying transformation rules to a com-
pound of interest. The easiest way to evaluate the perfor-
mance of a prediction algorithm is by assessing its ability 
to reconstruct known reactions without predicting too 
many products that are not experimentally observed. 
However, such a single-generation evaluation has only a 
limited capacity of evaluating the ability to predict whole 
pathways. Multi-generation evaluation is crucial for 
accurately assessing environmental biotransformation 
models, as it captures the complexity of pathways and 
transient intermediates often overlooked in single-gen-
eration evaluations, preventing misleading assessments 
and incorrect labeling of transformation products as false 
positives. The issue of single-generation evaluation is of 
particular importance for environmental biotransforma-
tion pathways, as such pathways are often not report-
ing short-lived, transient intermediates that are difficult 
to detect analytically. As a consequence, processes that 
take several reaction steps are sometimes reported as one 
multi-step reaction. Not accounting for these intermedi-
ates in the pathway evaluation leads to misleading assess-
ment of model performance.

Another important issue addressed by the proposed 
evaluation framework are higher-generation transforma-
tion products. In branched pathways, concentrations of 
higher-generation transformation products are expected 
to be significantly lower than any initially spiked parent 
compound concentrations, up to a point where transfor-
mation products might not be detectable anymore. This 
may lead to an incorrect evaluation as false positives even 
if the model correctly predicts the occurrence of this 
transformation.

To address the issue of evaluating whether predicted 
pathways are coherent with experimental observations, 
a new multi-generation evaluation framework has been 
implemented in enviPath [15]. It includes a scoring sys-
tem that puts decreasing weight on higher generation 
transformation products and does not penalize the pre-
diction of intermediates (see Fig. 5).

The finite number of transformation rules that do not 
cover the full transformation space of the reference data 
leads to another challenge. The single-generation per-
formance of models trained on different packages (i.e., 
different pathways, reactions, compounds, or rules) are 
not comparable. The models are based on a specific set 
of rules and reference transformations. Hence, proper-
ties of the prediction task, such as class distributions or 
number of targets, depend on the training package. The 

Table 1  Data statistics of the main packages in enviPath

We give the number of Compounds, Reactions, and Pathways per dataset. 
Additionally, we give the number or compounds that have a half-life associated 
with them. Since the initial enviPath release with only the BBD package, we 
strongly increased the data set size and provide a far more diverse set of 
pathways and reactions

BBD [1] Soil [9] Sludge [10]

Compounds 1399 1780 1070

Compounds 
with half-lives

– 895 172

Reactions 1480 2447 521

Pathways 219 317 184

2  seehttps://​wiki.​envip​ath.​com/​doku.​php?​id=​chang​elog_0.​3.0.

https://wiki.envipath.com/doku.php?id=changelog_0.3.0
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new multi-generation approach overcomes this problem 
by being model agnostic, that is it allows the comparison 
of models trained on different packages. This allows for 
example to study the effect of adding additional transfor-
mation rules.

Figure  4 gives an example evaluation result for both 
single-generation and multi-generation measures. The 
figure shows that multi-generation evaluation returns 
lower precision and recall values compared to single-
generation evaluation. This highlights the importance 
and impact of effects such as the loss of complete sub-
structures in the pathways when specific reactions are 
not predicted.

Applicability domain
Prediction accuracy of the pathway prediction engine 
drops substantially for molecules that differ greatly 
from known data. Applicability concepts are impor-
tant to estimate whether the model interpolates within 
known training data or extrapolates to unseen chemical 
space [18, 19]. For the prediction of reactions, not only 
the molecular structure of the reactant is important, but 
also the transformation itself [20]. Additionally, for rule-
based prediction models the predicted transformations 
are restricted to the set of transformation rules (tem-
plates) and tools have to be developed, indicating when 

a molecule might be insufficiently covered by the set of 
rules. In the multilabel setting in enviPath. where multi-
ple transformation rules are predicted, there may be no 
applicability domain where all transformations can be 
accurately predicted. To address this, a tailored appli-
cability domain has been developed for enviPath that 
assesses the reliability of a new compound’s predicted 
pathway for each individual transformation (visualized 
in Fig.  6), leading to more accurate predictions and the 
development of more effective biotransformation models 
[16].

Our approach [16] provides two applicability domain 
assessments on the compound level and two assess-
ments on the transformation level. For all compounds 
we calculate an applicability score that indicates whether 
the compound is similar to the training set, in terms of 
fingerprints and compatible rules. Additionally, all func-
tional groups containing hetero atoms are highlighted in 
green (red), indicating that they are (not) sufficiently rep-
resented in the training set. For each transformation, we 
provide a reliability score and a local goodness of fit. The 
reliability score represents the average similarity of the n 
most similar compounds in the training set for which the 
same transformation rule applies, while the local good-
ness of fit is the ratio of correct predictions for these n 
compounds. The parameter n can be set by the model 
developer.
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Fig. 4  Precision-Recall curves for different holdout experiments. Each 
of the experiments keeps A random subset of the data as test set, 
repeating the experiments 100 times. Then both single-generation 
and multi-generation evaluation is performed. The legend gives 
the data sets used in the evaluation. Details on the specific 
composition of the data sets are given in our previous publication [15]

Fig. 5  The depth adjustment process according to intermediate 
metabolites determined in the predicted pathway. Compounds A 
and C are present in both observed and predicted pathways, which 
allows compound B to be identified as an intermediate metabolite. It 
can be ignored and the depth-associated weight for scoring can be 
adjusted accordingly for compound C. Figure taken from our previous 
work [15]
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The evaluation of the applicability domain criteria can 
be visualized in the pathway view (see Fig. 6) and is docu-
mented on the compound pages.

enviLink—associating biotransformation rules with EC 
classes
Understanding contaminant degradation in environ-
mental microbial communities ultimately requires an 
understanding of which enzymes can catalyze specific 
biotransformation reactions given a specific chemical 
structure. Shotgun sequencing of DNA or RNA extracted 
from microbial communities (i.e., metagenomic and 
metatranscriptomic data) produces data that contains 
information on genes or gene transcripts encoding for 
specific enzymes. This information could ideally be used 
to predict the biotransformation functions of the micro-
bial community [21]. To this end, tools have been devel-
oped that allow predicting potentially catalyzing enzymes 
for a given biochemical reaction, as defined by substrates 
and products [11, 13, 22, 23]. However, these tools have 
been mostly trained on databases focusing on the metab-
olism of compounds produced by nature (e.g., KEGG). 
They are therefore of limited utility to predict enzymes 

involved in the biotransformation of xenobiotic com-
pounds, which contain many functional groups foreign to 
natural metabolic pathways.

In contrast, the Eawag-BBD package in enviPath exclu-
sively contains information on experimentally observed 
contaminant biotransformation reactions, which have 
also served as a basis for deriving the generalized bio-
transformation rules used in enviPath for pathway 
prediction [5]. Most contaminant biotransformation 
reactions in Eawag-BBD are annotated with an EC num-
ber, which has been manually extracted by a data curator 
from the original publication reporting the experimental 
evidence. Most reactions are annotated with a 4th or 3rd 
level EC number (44.2% and 43.3%, respectively).

We used the Eawag-BBD data and KEGG to develop 
enviLink, a new resource providing linkages between 
generalized biotransformation rules and 3rd-level EC 
classes. We developed the rule-EC linkages provided in 
enviLink in three steps (see Fig. 7) [14]: (i) Application of 
all Eawag-BBD biotransformation rules on Eawag-BBD 
and KEGG compounds; (ii) Comparison of "in silico" 
generated reaction pairs (i.e., substrate(s) and product(s)) 
with Eawag-BBD or KEGG reactions to find match-
ing reactions; and (iii) establishing rule-enzyme links by 
associating the enzyme class of a matching reaction with 
the rule that predicted this reaction. Finally, to derive 
linkages between generalized rules and 3rd level EC 
classes, 4th level EC numbers were summarized into the 
corresponding 3rd-level EC classes. This analysis resulted 
in 316 derived linkages between rules used for contami-
nant biotransformation prediction in enviPath and 3rd 
level EC classes. 32.6% of the identified rule-EC linkages 
overlap between the two databases, whereas 40.2% and 
27.2%, respectively, are originating from Eawag-BBD and 
KEGG only. The fact that more than one third of the link-
ages originate from Eawag-BBD exclusively demonstrates 
its unique information content with respect to contami-
nant biotransformation. For selecting top enzymes from 
the predicted enzyme candidates and comparison with 
other enzyme prediction tools, we will implement a rank-
ing metric similar to related work in the future [11, 13, 
22, 23]. enviLink is encoded in RDF triples as part of the 
enviPath RDF database. enviLink is available online.3

Runtime improvements
To enhance the runtime performance of the enviPath 
server, we have implemented several optimizations. 
Firstly, we have increased the maximum heap space for 
the Tomcat server from 2 GB to 16 GB. Secondly, we 
have optimized the data initialization and data query of 
rules in enviPath to enable faster pathway predictions. 

Fig. 6  Pathway prediction of Atenolol with our applicability 
domain implementation. We highlight the applicability domain 
assessment for compounds, functional groups, and transformations 
in the pathway view. The reactivity centers in the structure – 
red marking means no rules trigger this activity center, green 
marking means the reactivity center is covered by at least one 
rule. A green circle around the compound gives compounds 
within the applicability domain, a red circle identifies compounds 
out of the applicability domain. The colour of the edges show 
if the reliability or local compatibility is above (green) or below (red) 
the chosen threshold

3  see https://​github.​com/​emanu​el-​schmid/​enviL​ink.

https://github.com/emanuel-schmid/enviLink
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Specifically, we have replaced the dynamic querying of 
applicable rules from data packages with a lazy initiali-
zation approach that searches applicable rules only once 
and stores the results for subsequent downstream pre-
dictions, each downstream prediction then only needs 
to load the rules that are not queried yet and needed 
for this step. The specific runtime improvements gained 
by these improvements are hard to quantify due to the 
incremental and complex nature of the implementa-
tion. However, as example we can consider the load-
ing of multiple objects from the database. This process 
changed from using individual database queries to one 
query to get the full set of requested objects in multiple 
cases. In turn, processing moved from database queries 
to in-memory operations, which drastically increased 
the runtime when handling large collections of objects, 
e.g. when applying transformation rules in the predic-
tion step.

Implementation
Besides a new and improved prediction engine, we 
improved the implementation of the system, adding new 
features to both access and manipulate data. We created a 
plugin system that eases the addition of new features for 
specific use cases in the future, we implemented a client 
library that allows users to integrate enviPath data and 
predictions directly into their code, and implemented a 

feature that enables users to merge packages, simplifying 
data integration workflows.

Plugin infrastructure
We opened the enviPath implementation and included 
more functionality via wrappers and plugins. As a first 
extension, we included the functionality of RDKit [24]. 
For example, we can now directly use reaction SMARTS 
via RDKit, which was unavailable due to limitations in the 
Ambit SMIRKS library [25]. In general, the plugins are 
available as tools to calculate descriptors or as classifiers 
in the prediction engine, making a large number of RDKit 
descriptors available for the classification process as well 
as offering new methods for the prediction engine. Besides 
RDKit, we implemented a plugin that includes Biotrans-
former [26] as an option for the prediction engine.

Client library
To ease the use of enviPath in existing pipelines, we 
implemented a library in Python that offers the func-
tionality of enviPath in a convenient interface [27]. The 
library is available at https://​github.​com/​enviP​ath/​enviP​
ath-​python. Figure  8 gives a short example code how a 
compound is submitted to the prediction engine and the 
resulting pathway is retrieved. The library is able to both 
access the data as well create new data and access the 
prediction engine.

Fig. 7  enviLink connects reactions with biotransformation rules. Each rule is associated with a list of enzymes that can catalyze the generalized 
biotransformation reaction encoded by the rule. Listed enzymes are linked to internal enviPath reactions or external KEGG reactions

https://github.com/enviPath/enviPath-python
https://github.com/enviPath/enviPath-python
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Merge packages
Finally, we added a feature to merge several packages into 
one. This allows the user to have a working main pack-
age and at the same time add new data without compro-
mising the quality of the main package until the import is 
complete. Once a new package is finalized and all data is 
added, the new package can be merged into the old one.

Outlook
Currently, a tool for automatic extraction of rules from 
biotransformation reactions is in development (enviR-
ule) [28]. enviRule can automatically cluster reactions 
into different groups based on reaction fingerprints, and 
extract rules from them. The genericity of rules is opti-
mized against the downstream transformation product 
prediction task, thus guaranteeing a good prediction 
performance when used for training predictive models. 
enviRule also offers functionalities to update the auto-
matic rules once new reaction data have been added to 
enviRule.

We further are working on implementing methods 
to identify and mitigate bias in chemical databases into 
enviPath [29]. In this process we will implement a visu-
alization that can highlight the relationships among the 
compounds and potential biases and ways to mitigate 
them. Identifying gaps and mitigating them by adding 
new data will help to grow the applicability domain of the 
models and extend the usability into new domains.

Conclusions
Over the last 8 years, enviPath has become the standard 
resource for environmental contaminant biotransfor-
mation pathways. Besides a large number of improve-
ments in usability and speed, we extended both scope of 
the database and functionality of the prediction engine. 

We added two new data sets, Eawag-Soil and Eawag-
Sludge, as well as links to enzymatic processes via 
enviLink. In terms of prediction engine, we improved 
the evaluation by considering a more holistic view of 
the predicted pathways, and implemented an applica-
bility domain function specifically for the prediction 
of metabolic pathways. In the future, we will further 
improve the prediction engine and plan to include fur-
ther data sets to extend the scope of both the data and 
trained models.
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