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Abstract  Protein language models (PLMs) play a dominant role in protein representation learning. Most existing 
PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it 
simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues 
often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should 
recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-
pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokeniza-
tion, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance 
on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, 
a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 
elements achieve optimal performance. Our code, model weights, and datasets are available at https://​github.​com/​
ginnm/​Prote​inPre​train​ing. 

Scientific contribution  This study introduces advanced protein sequence tokenization analysis, leveraging the byte-
pair-encoding algorithm and unigram. By recognizing frequently occurring combinations of amino acids as single 
tokens, our proposed method enhances the performance of PLMs on downstream tasks. Additionally, we present 
PETA, a new comprehensive benchmark for the systematic evaluation of PLMs, demonstrating that vocabularies of 50 
and 200 elements offer optimal performance.
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Graphical Abstract

Introduction
Proteins play a pivotal role in sustaining life forms and 
have found extensive applications in human endeavors, 
including gene editing [1, 2], drug discovery [3], and 
enzymatic catalysis [4]. Furthermore, gaining insights 
into protein properties or enhancing their functional-
ity holds significant practical value, such as enhancing 
the function of the original protein [5] or annotating an 
unknown sequence [6]. Protein engineering typically fol-
lows two common approaches: laboratory-based experi-
ments and computation-based methods. The former 
includes structural analysis [7], expression purification 
[8] and direct evolution [9], while valuable, are time-
consuming and heavily reliant on domain-specific knowl-
edge. This limitation falls short of meeting the evolving 
demands of both the scientific community and industry. 
Conversely, the computation-based modeling strategy 
relies on machine-learning or physics-based methods 
that are often not particularly accurate but are cost-
effective and time-saving. Thanks to the advancements 
in protein sequencing technology [10], new avenues have 
opened up for training large-scale protein models capa-
ble of capturing a more comprehensive understanding. 
For instance, ESM series [11–13] to leverage the UniProt 
database [14] which contains over 200 million protein 
sequences or its subsets for training purposes.

In recent years, there has been significant development 
in pre-trained protein language models [11–13, 15–19]. 
A protein will be tokenized into a sequence of bio-tokens 
(per-AA or multi-aa) and then use a pre-trained Trans-
former to convert this sequence into dense vectors, 
which serve as representations of the protein. Typically, 

these models tokenize the protein sequence by naturally 
dividing it into its constituent amino acids. The vocabu-
lary size for amino acids is approximately 20, contrasting 
with natural language models, which often encompass 
thousands of words or sub-words. Many tokenization 
algorithms [20, 21] have been effectively employed in lan-
guage models to replace character-level tokenization by 
grouping frequently co-occurring characters into words 
and show different performance in pre-trained human 
language models [22, 23]. However, we discovered that, 
in the domain of proteins, there had been no systematic 
research evaluating how different tokenization algo-
rithms impact protein language models. In this paper, 
we draw inspiration from [24] and aim to develop a uni-
versal amino acid coding approach capable of delivering 
robust performance across various protein-related tasks, 
while harnessing the benefits of knowledge sharing and 
transfer as shown in Fig 1. A recent study [25] has shown 
reducing vocabulary size will decrease the model’s per-
formance and distort evolutionary information, and we 
conduct a more comprehensive study on increasing the 
alphabets based on pre-training. To facilitate a thorough 
assessment and take cues from the success of benchmark 
datasets in domains like computer vision and natural lan-
guage processing, e.g., ImageNet [26] and GLUE [27], 
we have meticulously curated a collection of 33 datasets 
categorized into 15 distinct tasks. These datasets are inte-
gral to advancing the realm of deep learning in protein 
comprehension. Our PETA benchmark encompasses 
five groups of tasks, including protein fitness prediction, 
protein localization prediction, protein-protein interac-
tion prediction, protein solubility prediction, and protein 
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fold prediction. For each individual dataset, we evaluate 
the performance of three types of tokenizers, two new 
residue-pair tokenizers are used to train five models with 
distinct vocabularies respectively and one per-amino-
acid (Per-AA) model acts as baseline. Two different pool-
ing mechanisms and three random seeds are employed 
in downstream tasks to mitigate potential classification 
biases. We anticipate that our comprehensive analysis of 
protein tokenizers and the PETA benchmark will serve 
as a pivotal milestone for the continued advancement of 
protein language model pre-training.

Our contributions are as follows:

•	 Creation of the PETA Benchmark: We meticulously 
curate the PETA benchmark, a comprehensive 
collection of 33 datasets categorized into 15 dis-
tinct protein-related tasks. This benchmark spans 
5 diverse aspects of protein research. It provides a 
standardized evaluation framework for protein lan-
guage models.

•	 Protein Tokenization Analysis: We summarize how 
the amino acid coding approach enhances the effec-
tiveness of protein language models across diverse 
protein-related tasks. By addressing the influence of 
amino acid combinations, the research offers valua-
ble insights into the optimization of protein language 
models.

•	 Comprehensive Experiments: We have pre-trained 
13 protein language models with 3 types of tokeniz-
ers, and thousands of downstream experimental 
evaluations are conducted to ensure the validity of 
the results. The model weights, code, etc. are com-
pletely open-source in the community.

Related work
Protein representation learning
Representation learning harnesses knowledge acquired 
from large-scale corpora to generalize across various 

tasks. Early approaches primarily employed machine 
learning techniques from natural language processing, 
such as word2vec [28] and doc2vec [29], to extract fea-
tures from protein sequences [30–32]. Recently, deep 
learning has exhibited tremendous potential by ena-
bling models with increased capacity and deeper encod-
ers, capable of handling millions or billions of protein 
sequences. ESM-1V [12], SESNet [33], and ECNet [34], 
which focus on predicting mutation fitness. Addition-
ally, ESM-1b [13] and ESM-2 [11] employ mask language 
modeling. ProtTrans [18] pre-trains language models 
under various architectures [35–39], while XTrimo [40] 
aligns its pre-trained architecture with GLM [41]. Ankn 
[19] uses an asymmetric encoder and decoder framework 
and different mask probabilities to improve the pre-train-
ing performance. CPCProt [42] leverages a contrastive 
predictive coding loss, whereas ProGen [15, 16], UniRep 
[43], ProXLNet [18], ProtGPT2 [17], and Tranception 
[44] are pre-trained using next amino acid prediction 
tasks. Although many of these approaches share common 
objectives with natural language processing, there are 
also innovations like ProteinBERT [45] and CARP [46] 
which employ convolutional networks for downstream 
tasks. Some works delve into protein multiple sequence 
alignments (MSAs) [44, 47, 48], while others take struc-
ture-based approaches to extract topology information 
for inverse folding [49–51], protein design [52, 53], and 
protein engineering [54]. Notably, LM-GVP [55], MIF-ST 
[50], and ProtSSN [56] integrate sequence and structural 
information to enhance the learning of effective protein 
representations [57, 58]. In this benchmark, our primary 
focus revolves around evaluating the performance of lan-
guage models utilizing different tokenization strategies.

Protein modeling benchmarks
A comprehensive benchmark has shown great influ-
ence in the traditional computer science community and 
driven the research direction of different works [26, 27, 

Fig. 1  The protein sequence is formed into a new discrete token sequence through different word segmentation methods. As the size 
of the vocabulary increases, the amino acid composition of a single token becomes more complex
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59–61]. However, it is worth noting that the field of com-
puting protein engineering still lacks a large-scale bench-
marking framework. In contrast, the biennial Critical 
Assessment of Protein Structure Prediction (CASP) [62] 
has emerged as a gold standard for assessing advance-
ments in protein structure prediction. In tandem with 
CASP, the Critical Assessment of Functional Annotation 
(CAFA) challenge [63] has been established to evalu-
ate the prediction of protein functions. Several notable 
works, such as DeepSequence [64], Envision [65], and 
ProteinGym [44], focus on measuring very different func-
tional fitness variations in response to diverse protein 
modifications, including substitutions and insertions/
deletions. Techniques like deep mutational scanning 
(DMS) [66] and other protein engineering methods are 
used to build up these datasets. On the other hand, works 
like SoluProtMutDB [67], SKEMPI [68], and ProTher-
mDB [69] concentrate on assessing specific properties 
concerning single amino acid variations (SAVs). Addi-
tionally, FLIP [70] offers various data partitioning meth-
ods across three protein landscapes for evaluating fitness 
prediction. The TAPE benchmark [71] encompasses five 
tasks, with three focusing on structure prediction and 
the remaining two targeting fitness prediction. PEER 
[72] encompasses seventeen biologically relevant tasks 
spanning five aspects of protein understanding. Protein-
GLUE [73] comprises seven downstream tasks designed 
for self-supervised protein representation learning. Dee-
pLoc [74, 75] provides datasets for subcellular localiza-
tion classification. The STRING database [76] annotates 
protein-protein interactions (PPIs) with seven types of 
interactions. TDA [77] generates protein-related datasets 
and tasks tailored for drug discovery. ESOL website [78] 
aggregates solubility scores for ensemble E.coli proteins.

Methods
We designed PETA to answer two important questions:

•	 Is residue-wise tokenizer good enough for protein 
language model pre-training?

•	 How do different vocabulary sizes influence the rep-
resentation ability on downstream tasks?

Most of the works choose one tokenizer aligned with pre-
vious research without much concern, to answer the first 
question, we utilize three amino acid segmentation strat-
egies including residue-wise and sub-word tokenizers. 
For the second question, we design larger vocabulary size 
arranged from {50, 100, 200, 800, 1600, 3200} for the Uni-
gram and BPE segmentation methods. The model trained 
under per-AA is the baseline, it has a vocabulary size 
of 20 common amino acids and many works adopt this 
[11–13, 18, 49]. It is worth noting that these vocabulary 

sizes do not contain special tokens, such as < mask > or 
< pad > . In general, we utilize three tokenization meth-
ods, two types of classification heads, and two model 
pipelines to solve different tasks in the PETA benchmark. 
The framework of PETA is shown in Fig 2.

Amino acid segmentation
In this study, we utilize three classic sequence segmen-
tation methods: per-amino-acid encoding (Per-AA), byte 
pair encoding (BPE) [20], and unigram language mod-
eling (Unigram) [21] as shown in Fig  1. Per-AA focuses 
on individual amino acid units, enabling high-resolution 
analysis of subtle variations. BPE offers flexibility by 
segmenting sequences into subunits, effectively captur-
ing structural information, while Unigram, based on 
character-level statistics, captures global sequence char-
acteristics. These diverse methods collectively enhance 
our comprehensive analysis of protein sequences, each 
serving a unique role in addressing specific analytical 
requirements.

Byte pair encoding
BPE segments sequences into the most frequent subunits 
or tokens. This method iteratively merges the most fre-
quently adjacent pairs of characters into a single token, 
thus reducing the vocabulary size and simplifying the 
model’s complexity. In the context of protein sequences, 
BPE helps in identifying and encoding common motifs 
and structural domains that are crucial for functional 
characterization. By applying BPE, we can efficiently 
manage and interpret large datasets, as it bridges the 
gap between amino acid-level granularity and holistic 
sequence representation. This method is widely used in 
various natural language models such as GPT [79] and 
BERT [36].

Unigram language modeling
Unigram modeling simplifies text segmentation by inde-
pendently calculating the likelihood of each word based 
on how often it appears in the data. Unlike the BPE 
method, which looks at the frequency of pairs of adjacent 
characters, Unigram creates a list of words by finding the 
most likely combination of tokens to form a language 
model. This approach is especially useful for analyzing 
protein sequences because it can identify rare, yet impor-
tant, amino acids or patterns that other methods might 
miss. Additionally, Unigram’s probabilistic approach 
allows it to adjust the vocabulary flexibly according to the 
context of the sequence, making it adaptable to new or 
uncommon variations. This flexibility makes it suitable 
for working with multiple languages or in situations with 
limited language data [80].
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Pre‑training protein language models
Model architecture
Our pre-training architecture employs RoFormer [81], 
an autoencoding model that adopts a BERT-like struc-
ture augmented with rotary positional embeddings, as 
illustrated in Fig. 2 (a). These rotary positional embed-
dings effectively harness positional information within 
sequences. Detailed hyperparameter configurations are 
delineated in "Experimental Setups" section. Initially, 
protein sequences are tokenized and transformed into 
one-hot encoded representations. These representa-
tions are subsequently fed into RoFormer’s encoder, 
which generates sets of hidden states that main-
tain the length consistency with the input tokenized 
sequence. Finally, these hidden states are transformed 
into a vector with a dimensionality corresponding to 
the vocabulary size, upon which a softmax function is 
applied to yield the reconstruction probability density 
distribution.

Pre‑training objective
We employ the mask language modeling (MLM) objec-
tive for pre-training our models [35]. Given an input 
sequence, a subset of tokens is selected at random and 
replaced with a special mask token. The model is then 
trained to predict these masked tokens based on the 
unmasked context tokens. The loss function for this 
objective can be defined as:

here, x is a sequence from the dataset X, and x/M rep-
resents the sequence with masked tokens removed. 
p(xi|x/M) is the conditional probability of predicting 
the correct token xi given the context x/M . The aim is to 
minimize the negative log-likelihood of the true token at 
each masked index i, which in this case are amino acids, 
given the unmasked sequence as context. Intuitively, the 

(1)LMLM = Ex∼XEM
∑

x

− log p(xi|x/M)

Fig. 2  The framework of PETA. (a) Pre-trained models use rotary position embedding, which possesses favorable theoretical properties 
and is an absolute positional encoding applicable to linear Attention. (b) We employed two distinct classification heads, namely mean pooling 
and attention1d pooling. The former is the most commonly used method at present, while the latter is relatively more complex. (c) Our benchmark 
comprises 15 downstream tasks, which can be categorized into five groups. Some of these downstream tasks include multiple datasets or data 
splitting methods, amounting to a total of 33 datasets
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model must learn to identify the dependencies between 
the masked and unmasked tokens to successfully predict 
the masked positions.

Language modeling perplexity
We use Perplexity (PPL) to evaluate the performance of 
the MLM, computed as:

where N is the number of masked tokens, as well as xi is 
the ith token of sequence. To account for potential unfair 
comparisons arising due to varying vocabulary sizes 
across different models, we introduce the metric of Nor-
malized Perplexity (NPPL) range from 1 to positive infin-
ity. The formula for Normalized Perplexity is as follows:

where V is the vocabulary size.

Pre‑training data
We train all models on UniRef90 [82], a comprehensive 
protein sequence database that contains approximately 
138 million sequences from diverse life forms. This large-
scale database serves as a robust training set for captur-
ing the underlying patterns and intricacies associated 
with protein sequences. For model validation, a subset of 
100,000 sequences is reserved from the UniRef90 data-
base. The validation set serves multiple purposes: moni-
toring the training process by observing perplexity during 
pre-training to ensure correct model behavior, and select-
ing hyperparameters such as batch size and learning rate 
via grid search, where we split the validation set into 
subsets A and B (in an 8:2 ratio) for training and evalu-
ation respectively. Additionally, it is used to compute the 
metric of normalized perplexity to assess the effective-
ness of pre-training results. This setup ensures that the 
trained models are subjected to a variety of sequence pat-
terns, thereby facilitating a more robust understanding 
of protein sequences. By reserving a significant number 
of sequences for validation, we also ensure an unbiased 
assessment of the model performance.

Classification head
To test the potential bias caused by different classification 
methods, the Mean Pooling and Attention1d Pooling are 
adopted under our evaluation, as shown in Fig 2 (b). The 
former is trained on the average of features aligned with 
the first dimension, using MLP and ReLU activation to 
make a prediction. The latter is trained on an attention 

(2)PPL = exp(−
1

N

N∑

i=1

log p(xi|x))

(3)NPPL = exp (−
1

N × V

N∑

i=1

log p(xi|x))

mechanism and a 1D convolution layer to map different 
weights to embed and predict the label.

Model pipeline
Protein-wise tasks Leaning a function y = fθ (x) that 
maps protein x to a label y, where fθ is parameterized 
by a sequence-based encoder and a classification head 
defined upon the residue-wise or residue-pair protein 
embedding.

Protein-pair tasks Leaning a function y = fθ (x) that 
maps a pair of proteins ( x1, x2 ) to a label y, where fθ is 
parameterized by a pair of siamese sequence-based 
encoders and a classifier defined upon the sum of the 
embeddings of two proteins.

Benchmark tasks
The PETA benchmark includes 15 tasks within 5 groups 
and 33 datasets in total, mainly focusing on protein-wise 
and protein-pair tasks. We have curated tasks from influ-
ential protein engineering applications and made updates 
to certain datasets to ensure their relevance and accu-
racy, a summary of the downstream dataset statistics is 
shown in Table 1.

Fitness prediction
This set of tasks aims to forecast functional attributes of 
proteins, which may be either discrete or continuous in 
nature.

GB1 fitness prediction assesses fitness scores among 
mutations within the GB1 landscape from [86]. Given a 
protein sequence x, we map it to a regression value y ∈ R , 
where a fitness score of 1 represents the wild-type and 0 
indicates non-binding affinity. In our analysis, we utilize 
all the dataset splits proposed in FLIP [70], encompass-
ing “one-vs-rest”, “two-vs-rest”, “three-vs-rest”, “low-vs-
high” and “Sampled”. For example, “one-vs-rest” indicates 
the wild type and single mutants are assigned to train 
and validation, while the rest are assigned to test. More 
details about dataset splits can be found in supplemen-
tary materials Section.

Impact: GB1 serves as the binding domain of protein G 
[87], an immunoglobulin binding protein found in Strep-
tococcal bacteria [88]. This task stands as a gold standard 
for investigating epistatic interactions.

AAV fitness prediction entails the evaluation of fitness 
values associated with Adeno-associated virus (AAV) 
capsid proteins [89]. Given a protein sequence x, we 
establish a mapping to a regression value y ∈ R , focus-
ing on the mutational window spanning positions 561 
to 588 from [90]. We adopt all the dataset splits from 
FLIP [70], which includes “Mut-Des”, “Des-Mut”, “one-
vs-rest”, “two-vs-rest”, “seven-vs-rest”, “low-vs-high” 
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and “Sampled”. More details about dataset splits can be 
found in supplementary materials Section 2.1.2

Impact: AAV proteins are responsible for facilitating 
the integration of a DNA payload into a target cell by 
the virus [91]. This task specifically addresses the pre-
diction of fitness for an extended sequence subjected to 
mutations at select positions.

Thermostability prediction involves the analysis of 
protein melting curves, which are acquired through 
a mass spectrometry-based assay and meticulously 
sourced from [92]. In this endeavor, we focus on a pro-
tein sequence x, which is drawn from a vast pool of 
48,000 proteins spanning 13 diverse species. Our objec-
tive is to predict a thermostability score y ∈ R . For this 
analysis, we have employed the dataset splitting strate-
gies “Human”, “mixed_split”, and “Human_cell” as out-
lined in FLIP [70]. More details about dataset splits can 
be found in the supplementary materials Section 2.1.3.

Impact: Thermostable proteins [93, 94] demonstrate 
an ability to endure higher temperature conditions for 
extended periods or function at an accelerated rate. 
This task aligns closely with applications in protein 
engineering, particularly within industrial settings, 
where the enhanced stability of proteins can yield sub-
stantial benefits.

Fluorescence prediction primarily focuses on forecast-
ing the fitness of mutants of the green fluorescent pro-
tein (GFP) [95], as documented by [96]. In this context, 
we are presented with a GFP mutant sequence x and 
aim to predict the corresponding fluorescence intensity 
y ∈ R . We leverage the dataset and split methodology 
derived from TAPE [71], which involves training the 
model on lower-order mutants and subsequently evalu-
ating it on higher-order mutants.

Impact: Green fluorescent protein can mark par-
ticular proteins in an organic structure by its green 
fluorescence [97], this makes it easier for researchers 
to observe. This task bears significance in uncovering 
mutational patterns that either enhance or diminish 
such vital biological properties.

Stability prediction endeavors to assess the resil-
ience of proteins within their natural environment. It 
involves taking a protein sequence, denoted as x, and 
predicting its corresponding experimental stability 
score, denoted as y ∈ R . In this pursuit, we leverage the 
dataset curated from [98] and employ the partitioning 
method introduced in TAPE [71]. The training dataset 
comprises proteins sourced from four rounds of experi-
mental design, while the test dataset encompasses 

Table 1  Benchmark task details. Each task, along with its task name, category, the count of datasets or splits, the source of the dataset, 
and evaluation metric are shown below

 Reg.: regression; Cls.: classification; MSE: mean square error; Spearman’s ρ : Spearman Correlation

Task name Category Count Source Metric

Fitness Prediction

 GB1 fitness (GB1) Reg. 5 FLIP [70] Spearman’s ρ

 AAV fitness (AAV) Reg. 7 FLIP [70] Spearman’s ρ

 Thermostability (Thermo) Reg. 3 FLIP [70] Spearman’s ρ

 Fluorescence (Flu) Reg. 1 TAPE [71] Spearman’s ρ

 Stability (Sta) Reg. 1 TAPE [71] Spearman’s ρ

Protein-Protein Interaction Prediction

 Yeast PPI (Yeast) Cls. 1 PETA Accuracy

 Human PPI (Human) Cls. 1 PETA Accuracy

 SHS PPI (SHS27k) Cls. 1 PETA Accuracy

Localization Prediction

 Subcellular localization (Sub) Cls. 3 pro-loc [83], DeepLoc-2 [75] Accuracy

 Binary localization (BinLoc) Cls. 1 pro-loc [83] Accuracy

 Sorting signal (Sig) Cls. 1 DeepLoc-2 [75] Accuracy

Solubility Prediction

 Binary solubility (BinSol) Cls. 1 DeepSol [84] Accuracy

 E.coli solubility (Esol) Reg. 1 GraphSol [85] MSE

 Mutation solubility (Solmut) Reg. 3 PETA Spearman’s ρ

Fold Prediction

 Fold Prediction (Fold) Cls. 3 TAPE [71] Accuracy
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proteins that are Hamming distance-1 neighbors of the 
top candidate proteins.

Impact: The design of stable proteins in the face of 
mutations plays a pivotal role in the field of protein engi-
neering [99]. This work is instrumental in various appli-
cations, such as ensuring the effective delivery of drugs 
before they degrade.

Protein‑protein interaction prediction
Predicting protein-protein interactions (PPI) is pivotal 
for deciphering the intricate molecular networks under-
pinning cellular functions and disease mechanisms, guid-
ing targeted therapeutic interventions.

Yeast PPI prediction involves the prediction of whether 
two yeast proteins interact with each other. When pre-
sented with two proteins, denoted as x1 and x2 from 
yeast, the classifier assigns a binary label y ∈ 0, 1 to sig-
nify the presence or absence of interaction between 
them. To accomplish this task, we utilize the yeast PPI 
dataset sourced from [100]. In this dataset, half of the 
instances represent positive cases, selected from the 
DIP_20070219 database of interacting proteins [101], 
with stringent criteria that exclude proteins with fewer 
than 50 amino acids or exhibiting ≥40% sequence iden-
tity on the full dataset. The negative cases are generated 
by randomly pairing proteins that lack evidence of inter-
action, and these pairs are further filtered based on their 
sub-cellular locations.

Impact: The yeast dataset serves as a widely recognized 
benchmark [102, 103] for assessing model performance, 
and yeast PPI prediction substantially enhances our com-
prehension of cellular processes by unveiling intricate 
protein interactions and providing crucial insights into 
the functional roles of proteins within yeast cells.

Human PPI prediction task predicts whether two 
human proteins interact or not. When provided with 
protein sequences x1 and x2 from humans, the predic-
tor generates a binary label y ∈ 0, 1 to indicate the pres-
ence or absence of interaction between them. We adopt 
the dataset from [104], comprising positive protein pairs 
obtained from the Human Protein Reference Database 
(HPRD) [105] and negative protein pairs sourced from 
different cellular compartments with no documented 
interaction [106]. To ensure data quality, self-interactions 
and duplicate interactions were removed, resulting in the 
creation of two datasets, namely “AB” and “CD.” The “AB” 
dataset encompasses the entire dataset, while the “CD” 
dataset comprises selected proteins with identities below 
25%. For evaluation, we exclusively employ the “AB” split 
strategy in this task.

Impact: Human PPI prediction holds immense prac-
tical significance in clinical research. Notably, insights 
into protein interactions linked to diseases enhance our 

understanding of human disease mechanisms, paving the 
way for innovative therapeutic strategies [107, 108].

SHS PPI prediction is to classify the type of interac-
tion between a given protein pair. Given two protein 
sequences, x1 and x2 , the model aims to predict a label 
y where y ∈ {0, 1..., 6} . These interaction types encompass 
categories such as “reaction”, “activation”, and “catalysis”, 
among others. Our analysis utilizes a dataset derived 
from interaction pairs specific to Homo sapiens, sourced 
from the STRING database [76]. We adopt preproc-
ess strategies as recommended by [109] where the sub-
optimal health status (SHS) dataset is divided into two 
subsets: “SHS27k” and “SHS148k”. For computational 
efficiency, our study focuses solely on the “SHS27k” sub-
set. The data is partitioned into training, validation, and 
test sets at a random split ratio of 8:1:1.

Impact: Understanding and categorizing the precise 
interactions between protein pairs is pivotal in unrave-
ling intricate cellular mechanisms and shedding light on 
complex biological pathways. This knowledge not only 
aids in defining drug efficacy through network-based 
“drug-disease proximity measures” [110] but also plays a 
crucial role in interpreting the outcomes of genome-wide 
association screens [111].

Localization prediction
Identifying the localization or local-related biological 
mechanism of proteins within various cellular compart-
ments is of paramount importance in the process of 
functional annotation.

Subcellular localization prediction aims to dig out the 
specific cellular location of a given natural protein. Given 
a protein sequence denoted as x, the model assigns it to 
multiple possible localizations y ∈ 0, 1, ..., 9 , which may 
include designations such as ”Nucleus” and “Cytoplasm”, 
among others. To accomplish this task, we utilize two 
datasets from DeepLoc-1 [74] and DeepLoc-2 [75]. For 
the DeepLoc-1 dataset, we apply the split methodology 
introduced by [83]. Regarding the DeepLoc-2 dataset, 
its original split strategy involves 5-fold cross-validation 
from SwissProt. In our implementation, we employ the 
first three partitions as training data, the fourth as vali-
dation data, and ultimately evaluate the model’s perfor-
mance on the last partition and the independent test 
dataset of human protein atlas (HPA) [112].

Impact: The subcellular localization of proteins plays a 
crucial role in deciphering the fundamental mechanisms 
of diseases linked to abnormal subcellular localization 
[113, 114]. Notably, some proteins are recognized for 
their ability to localize within multiple cellular compart-
ments, underscoring the intricate and pertinent nature of 
this research domain.
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Binary localization prediction constitutes a sub-prob-
lem of the aforementioned task. The model’s respon-
sibility is to decide whether a given protein x should be 
categorized as “membrane-bound” or “soluble,” denoted 
as y ∈ 0, 1 . The datasets for training and testing are drawn 
from DeepLoc-1 [74], which includes an additional label 
system where “S” represents soluble, “M” corresponds to 
membrane-bound, and “U” signifies unknown localiza-
tion. To train the model, we employ the same data par-
titioning method as introduced by [83], while excluding 
data points labeled as “U”.

Impact: Predicting protein localization as either mem-
brane-bound or soluble is vital for deciphering cellular 
functions, particularly in signal transduction and trans-
port [115]. It plays a pivotal role in drug discovery, ena-
bling the design of targeted therapies against membrane 
proteins.

Sorting signal prediction elucidates the intricate pro-
cess of subcellular localization by identifying biological 
mechanisms within sorting signal sequences that guide 
proteins to specific subcellular structures or organelles. 
When presented with a short sequence x, the model 
assigns it to one of nine classes denoted as y ∈ 0, 1, ..., 8 , 
encompassing designations such as “Signal Peptide (SP)” 
and “Mitochondrial Transit Peptide (MT)”, among others. 
This constitutes a multi-label classification task, and we 
employ the dataset sourced from DeepLoc-2 [75]. As the 
original dataset lacks an official split strategy, we perform 
a random split with a train/validation/test ratio of 8:1:1.

Impact: Protein sorting signals facilitate the precise 
intracellular localization of proteins, thereby sustaining 
cellular homeostasis and the integrity of subcellular com-
partments [116, 117]. These signals typically entail inter-
actions with partner proteins or sorting complexes. It is 
significant to investigate protein sorting signals for com-
prehending the intracellular localization and functional 
intricacies of proteins.

Solubility prediction
This group of tasks is to predict the protein solubility, 
which is critical for optimizing protein expression, puri-
fication, and drug development processes.

Binary solubility prediction aims to determine whether 
a protein is soluble or insoluble. When presented with 
a protein denoted as x, the model assigns it to a binary 
label, y ∈ 0, 1 . The dataset and data partitioning approach 
is drawn from DeepSol [84], where protein sequences 
exhibiting a sequence identity of ≥ 30% to any sequence 
in the test set are excluded from the training set. This 
task shares similarities with binary localization predic-
tion but explicitly focuses on modeling solubility.

Impact: Protein solubility is pivotal for swiftly and 
efficiently selecting appropriate protein samples, saving 

resources and time, particularly in biotechnology, drug 
development, and laboratory protein purification [118, 
119]. It improves experiment success rates and resource 
allocation while advancing scientific research.

E.coli solubility prediction involves forecasting the sol-
ubility value of E. coli proteins using an ensemble data-
base, downloadable from the eSOL website [78]. When 
provided with a sequence from E. coli, the model predicts 
a regression value, denoted as y ∈ R . Solubility, in this 
context, is defined as the ratio of the supernatant frac-
tion to the total fraction, as determined in physiochemi-
cal experiments referred to as PURE [120]. We utilize the 
training and validation datasets sourced from GraphSol 
[85] and further partition the validation dataset into sep-
arate validation and test sets.

Impact: E.  coli, as a prevalent host organism for pro-
tein expression, demands precise solubility predictions 
to optimize recombinant protein production, purifica-
tion, and subsequent functional studies [121]. Such pre-
dictions, based on experimental data and computational 
models, facilitate the selection of suitable protein candi-
dates for diverse applications [122], ranging from struc-
tural biology to drug discovery and industrial processes.

Mutation solubility prediction measures the impact of 
mutations on protein solubility. Given a mutated protein 
sequence denoted as x, the model predicts the solubility 
change y ∈ R relative to the wild-type sequence. This task 
encompasses three distinct protein mutation datasets, 
with mutations occurring at single points within proteins 
such as “Beta-lactamase TEM (blat)”, “Chalcone Synthase 
(cs)” and “Levoglucosan Kinase (lgk)”. These datasets 
were sourced from SoluProtMutDB [67] which provides 
manually curated and reliable data in the standardized 
format. Data points where recorded mutations did not 
align with the original sequence were excluded, and the 
training, validation, and test datasets were partitioned in 
an 8:1:1 ratio.

Impact: Low protein solubility is a significant hurdle 
in industrial processes and is implicated in numerous 
human diseases [123]. Investigating the impact of muta-
tions on protein solubility not only sheds light on the 
mechanisms underpinning disease development but also 
enhances the application of protein engineering in vari-
ous industrial domains.

Fold prediction
While AlphaFold [124] and RoseTTAFold [125] have 
made significant strides in structure prediction, the 
fold prediction task still remains a rigorous assessment 
to evaluate the representation quality of the sequence 
model.

Fold prediction is the automated classification of pro-
tein sequences into one of 1,195 known protein folds, 
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facilitating the modeling of the sequence-structure rela-
tionship. Given any sequence x, the objective is to predict 
the fold label y ∈ 0, 1, ..., 1194 , determined by the back-
bone coordinates of the corresponding protein struc-
ture. This task utilizes the dataset from [126], originally 
derived from the SCOP 1.75 database [127]. Notably, this 
dataset meticulously addresses homologous sequence 
redundancy between test and training datasets through 
two distinct strategies: a three-level redundancy reduc-
tion at fold/superfamily/family levels and sequence iden-
tity reduction.

Impact: Fold prediction is essential for unraveling 
the intricate relationship between a protein’s primary 
sequence and its three-dimensional structure, with pro-
found implications for fields ranging from structural biol-
ogy to drug design [128].

Experiments
Experimental setups
We perform the pre-training of our models on 8 A100-
80GB GPUs, using a data-parallel distribution strategy. 
The global batch size is set to 1024 (local batch size is set 
to 32), and the maximum sequence length is constrained 
to 1024 tokens. We employ dropout regularization with 
a rate of 0.1 during the pre-training phase to mitigate 
overfitting. The architecture comprises 12 encoder layers, 
with each layer having a hidden size of 768 and an inter-
mediate size of 3072. The multi-head attention mecha-
nism contains 12 heads, each with a dimensionality of 64. 
For model optimization, we utilize the Adam optimizer, 
with a learning rate initialized at 1e-4. The maximum 
number of training steps is set to 530,000. The learning 
rate schedule involves a warm-up mechanism for the 
first 2000 iterations, following which the learning rate 
is linearly decayed to zero. The Adam hyperparameters 
are configured as follows: epsilon is 1e-8, β1 = 0.9 and 

β2 = 0.98 . Gradient clipping is applied with a maximum 
value of 5.0 to prevent exploding gradients. Our imple-
mentation leverages the PyTorch framework in conjunc-
tion with the Hugging Face library, aligning with best 
practices for efficient and scalable training of language 
models.

In the case of supervised tasks, all pre-trained model 
weights are kept fixed to ensure a fair evaluation of their 
representation capabilities. Classifiers are trained using a 
batch size of 256, a learning rate of 0.001, and the Adam 
optimizer. Early stopping is employed with a patience 
threshold of 20 epochs, with a maximum of 100 epochs 
for training. It is important to note that these hyperpa-
rameters were adopted without adjustments, drawing ref-
erence from [70]. Each individual experiment underwent 
training three times using different random seeds, and 
the final results represent the average scores obtained.

Pre‑training results
Following the pre-training phase, all models achieved 
a reduction in loss to an acceptable level, demonstrat-
ing effective learning from the training data. Table 2 and 
Table  3 present the perplexity and normalized perplex-
ity metrics calculated on the test set for both Byte Pair 
Encoding (BPE) and Unigram models, respectively. For 
the base model employing a per-amino-acid (Per-AA) 
tokenization strategy, the Perplexity value is 7.78, and the 
corresponding Normalized Perplexity is 1.06.

In the supplementary materials, Figures S1 to S30 show 
the loss curves, as well as the perplexity and normalized 
perplexity curves for the pre-trained models. It is impor-
tant to note that evaluations were performed at intervals 
of 10,000 steps. These figures collectively demonstrate 
that all models have converged to a reasonable range, 
substantiating their effectiveness in learning the underly-
ing data distribution.

Table 2  Perplexity and Normalized Perplexity on the validation set for the BPE model

Tokenization BPE

Vocabulary size 50 100 200 400 800 1600 3200

Perplexity 9.51 13.66 23.67 34.87 49.64 72.39 105.01

Normalized Perplexity 1.05 1.03 1.02 1.01 1.00 1.00 1.00

Table 3  Perplexity and Normalized Perplexity on the validation set for the Unigram model

Tokenization Unigram

Vocabulary size 50 100 200 400 800 1600 3200

Perplexity 8.26 12.95 26.98 62.39 81.11 115.90 220.77

Normalized Perplexity 1.04 1.03 1.02 1.01 1.01 1.00 1.00
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Benchmark results overview

To provide researchers with insights into how the aug-
mentation of vocabulary size in PLMs affects embedding 
quality, we conducted a systematic evaluation. The scores 
in Table  4 represent a given vocabulary size, how many 
datasets or splits, on average performance, surpassing 
the traditional Per-AA method (with a vocabulary size of 
20). For example, We have 33 datasets or splits in total, 
and 22 of them outperform the baseline method using a 
vocabulary size of 20 when using a vocabulary size of 50. 
This counting method is obtained by comparing the aver-
age scores on each dataset, for the extended vocabulary 
models. The average score on each dataset was computed 
from the mean of 12 experiment results (2 tokenization 
methods x 2 classification heads x 3 random seeds). For 
the baseline models, the average score on each dataset 
was derived from the mean of 6 experiments (2 classi-
fication heads x 3 random seeds). More detailed results 
of each experimental setting can be found in the supple-
mentary materials Table S1 to S54.

Our experimental findings have led to several key 
insights:

•	 Significant Impact of Vocabulary Size. Extensive 
experimentation has unequivocally demonstrated 
that vocabulary size profoundly influences protein 
representation, albeit with varying degrees of impact 

across different types of downstream tasks. Notably, 
in every dataset associated with fold prediction, an 
inverse relationship was observed wherein enhance-
ments in vocabulary size correlated with negative 
optimization.

•	 Existence of an Optimal Vocabulary Threshold. Con-
trasting with language models utilized in NLP, PLMs 
with an excessively large vocabulary size can poten-
tially exert detrimental effects on downstream tasks. 
Specifically, when the vocabulary size surpasses 800, 
the majority of tasks are performed suboptimally 
compared to the baseline model that employs per-
AA segmentation.

Downstream tasks
Fitness Prediction. Table  5 showcases results for five 
distinct tasks under the Fitness Prediction and the eval-
uation metric is Spearman correlation. It is worth high-
lighting that the datasets for GB1, AAV, and Thermo 
have different splits and the details are shown in Fig  3. 
A key observation from the data is the mixed effects of 
adding more words to the vocabulary. Compared to the 
per-AA tokenization, the performance of most splits is 
improved with an expanded vocabulary. However, AAV 
was an exception, experiencing a significant drop in per-
formance as the vocabulary grew, with decreases rang-
ing from 3% to 7.4% . In contrast, the performance of 

Table 4  The number of datasets or splits whose average score exceeds the baseline model of 20 vocabulary size

 Fit: protein fitness; PPI: protein-protein interaction; Loc: protein localization; Sol: protein solubility; Fold: protein fold

Vocabulary Sum (33) Fit (17) PPI (3) Loc (5) Sol (5) Fold (3)

50 22 10 3 5 4 0

100 19 8 2 5 4 0

200 20 9 3 4 4 0

800 16 5 3 4 4 0

1,600 15 5 2 4 4 0

3,200 15 5 2 4 4 0

Table 5  Performance on Fitness Prediction and Localization Prediction

Each value indicates the mean(std) score across all experiments within the same vocabulary size. The values colored with  are higher than the Per-AA method. 
Datasets marked with (*) indicate the number of dataset splits. For instance, GB1 encompasses five different dataset splits within the same dataset. The score with a 
vocabulary size of 50 reflects results across 60 experiments (5×2×2× 3, representing the number of dataset splits, tokenization methods, classification heads, number 
of random seed experiments)

† The top three are highlighted by , , Third.
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Flu benefited from a larger vocabulary. Interestingly, the 
average performance for GB1 and Stab began to decline 
after the vocabulary size reached 200, even falling below 
the baseline set at a vocabulary size of 20. Thermo is not 
sensitive to vocabulary size changes, fluctuating approxi-
mately 0.5% up or down.

Localization Prediction. The right side of Table 5 pre-
sents results from five datasets under the category of 
Localization Prediction, and the monitored metric is 
Accuracy. Across all datasets and partitioning method-
ologies, the task of subcellular localization prediction 
consistently achieves a remarkable classification accuracy 
exceeding 90. This accuracy remains quite stable, with 
any changes in performance staying within 1% despite dif-
ferences in vocabulary size. Drawing from these experi-
mental insights, it is evident that language models handle 

both multi-class and single-class prediction tasks for pro-
tein localization relatively easy. Moreover, the vocabulary 
size seems to have minimal influence on the prediction 
outcomes for protein localization tasks.

Protein-Protein interaction Prediction. Table  6 sum-
maries the 3 datasets from PPI Prediction, and the metric 
is Accuracy. The table clearly shows that using more spe-
cific words helps in identifying the relationships between 
protein pairs. Additionally, datasets that are harder to 
classify show higher performance enhancements. For 
instance, in the Yeast dataset, the model with a vocabu-
lary size of 1, 600 exhibited a 3.4% average score increase 
compared to the model with a vocabulary size of 20. In 
SHS27k, every increase in vocabulary size resulted in 
performance improvements, with the biggest improve-
ment being of 2.6% . In contrast, while the Human dataset 

Fig. 3  Detail performances of the GB1, Thermo, and AAV datasets across different vocabulary sizes

Table 6  Performance on PPI Prediction, Solubility Prediction and Fold Prediction

Each value indicates the mean(std) score across all experiments within the same vocabulary size. The values colored with  are higher than the Per-AA method. 
Datasets marked with (*) indicate the number of dataset splits

† The top three are highlighted by , , Third.
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showed improvements across the board, the maximum 
increase was a mere 0.2%.

Solubility Prediction. The middle section of Table  6 
displays the findings for Solubility Prediction. While the 
evaluation metric for the three datasets in Solmut is the 
Spearman correlation, Esol employs MSE, BinSol and 
DeepSol use Accuracy as their metric. Predicting solu-
bility regression values for Esol proves to be relatively 

straightforward, the lower MSE scores indicate better 
performance, and this remains consistent across mod-
els with different vocabulary sizes. BinSol observed the 
opposite situation to Esol, the average score increased 
by 2% to 3% , which is relatively significant. An analy-
sis of the Solmut datasets indicates that models with 
expanded vocabulary sizes have the potential to improve 
performance by 1% to 5% as shown in Fig.  4. Although 
most instances show enhancement, occasional instabil-
ity is detected. Such variability could be attributed to 
the alterations in the inherent characteristics of proteins 
post-mutation.

Fold Prediction. The results for Fold Prediction are 
detailed on the right side of Table  6, and the metrics is 
Accuracy. In fold prediction, an important pattern is 
observed: as the vocabulary size enlarges, there is a clear 
drop in performance across all datasets. To illustrate, the 
superfamily split sees the most significant drop, falling by 
1.3% to 11.2% , while the family and fold splits experience 
declines of 5% and 3.8% respectively. This trend highlights 
a consistent drop in performance as the larger vocabulary 
size is. This decline could be due to the combination of 

Fig. 4  A detailed exposition is provided on the performance results 
of three distinct protein solubility mutation datasets: Beta-lactamase 
TEM (blat), Chalcone Synthase (cs), and Levoglucosan Kinase (lgk) 
across varying vocabulary sizes

Table 7  The average results of different downstream task groups under the same vocabulary with varying tokenization methods are 
presented

Each score represents the average score of all experiments within that task group, encompassing different tasks, datasets, classification heads, and random seeds. The 
values colored with  are higher than the Per-AA method. Abbreviations, Vocab.: vocabulary size; Fit: protein fitness; PPI: protein-protein interaction; Loc: protein 
localization; Sol: protein solubility; Fold: protein fold

† The top three are highlighted by , , Third.

Table 8  The average results of different downstream task groups under the same vocabulary with varying pooling heads are 
presented

Each score represents the average score of all experiments within that task group, encompassing different tasks, datasets, classification heads, and random seeds. The 
values colored with  are higher than the Per-AA method. Vocab.: vocabulary size; Fit: protein fitness; PPI: protein-protein interaction; Loc: protein localization; Sol: 
protein solubility; Fold: protein fold

† The top three are highlighted by , , Third.



Page 14 of 17Tan et al. Journal of Cheminformatics           (2024) 16:92 

multiple amino acid tokens during the encoding process, 
which might hide important details of the local struc-
tures. Consequently, this increase in vocabulary sizes 
could be negatively impacting the ability to predict struc-
ture-related tasks.

Ablation study
From Tables  7 and 8, we can observe positive optimi-
zations in most datasets and negative optimizations 
in some tasks due to the expansion of the vocabulary. 
Importantly, these optimizations, whether positive or 
negative, are independent of the tokenization method 
used, the type of classification head, and the random 
seed. The changes are solely attributed to the variations 
in vocabulary size. It is worth noting that, we remove 
Esol from Solubility Prediction due to the incomparable 
scale of the values.

Analysis of tokenizers. From Table 7, it can be observed 
that the discrepancies arising from different tokenization 
methods are minimal across various downstream tasks. 
The main source of performance variation stems from 
the impact of vocabulary size on model representation. 
Across different tasks, as the vocabulary size increases, 
the model performance exhibits a bell-shaped curve, 
showing an initial increase followed by a decline.

Impact of pooling heads. From Table  8, it can be 
observed that, when freezing the pre-trained model 
parameters and only tuning the pooling head, the perfor-
mance is highly correlated with the choice of the classi-
fication head. When using the same vocabulary size, the 
attention1d pooling method outperforms the mean pool-
ing method. Additionally, similar to the results in Table 7, 
as the vocabulary size increases, the model’s representa-
tional capacity across various downstream tasks tends to 
decline.

Conclusion
In this paper, we introduce PETA, a vocabulary study 
optimized for protein language models across a broad 
range of datasets. To mitigate potential biases arising 
from different tokenization methods, classification heads, 
and random seeds, for each fixed vocabulary size, we 
employed both BPE and Unigram tokenization methods, 
two classification heads (mean pooling and attention1d 
pooling), and experiments with three different random 
seeds on each dataset. Ultimately, we found that expand-
ing the vocabulary size to some extent (50-200) generally 
enhances performance on downstream tasks. However, 
once the vocabulary size surpasses 800, the model’s rep-
resentational power exhibits a broad decline across most 
tasks. We hope that this work and benchmark will influ-
ence the future protein language model community and 

contribute positively to human health, environmental 
development, and biomedicine.
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