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Abstract 

Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effec-
tiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic 
materials poses a significant challenge for training advanced machine learning models. This study showcases 
the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, 
enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data 
from five virtual screening tasks, the version pretrained with the USPTO–SMILES dataset achieved  R2 scores exceeding 
0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small 
molecule or organic materials databases and outperforms three traditional machine learning models trained directly 
on virtual screening data. The success of the USPTO–SMILES pretrained BERT model can be attributed to the diverse 
array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The 
study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could 
further enhance model performance. Overall, this research validates the feasibility of applying transfer learning 
across different chemical domains for the efficient virtual screening of organic materials.

Scientific contribution
This study verifies the feasibility of applying transfer learning to large language models in different chemical fields 
to help organic materials perform virtual screening. Through the comparison of transfer learning from different 
chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials 
is realized.
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Introduction
Organic materials, such as organic photovoltaics (OPVs), 
organic light-emitting diodes (OLEDs), and organic 
redox flow batteries (ORFBs), play a crucial role in mate-
rials science and their unique functional properties are 
widely utilized in various research fields [1–4]. Since 
organic materials have complex structures, it is often 
costly to explore them through wet experiments. There-
fore, virtual screening helps to screen target organic 
materials before conducting wet experiments. Starting 
from the simplest Quantitative Structure–Activity Rela-
tionships (QSAR) models, virtual screening has a long 
history in the field of drug discovery [5–8]. Nowadays, 
in the era of artificial intelligence, different types of state-
of-the-art (SOTA) machine learning model architectures 
have been developed for the virtual screening of drug-
like small molecules, including Transformers [9], graph 
neural networks [10, 11], sequence-graph hybrid models 
[12], and large language models (LLMs) [13].

On the other hand, in 2015, the Aspuru-Guzik group 
proposed the concept of a “computational funnel” to 
explain the virtual screening procedure of organic mate-
rials [14]. The process comprises several levels, each 
increasing in computational intensity. Initially, machine 
learning techniques rapidly predict material properties 
(e.g., HOMO and LUMO positions, optical properties) by 
exploiting complex relationships within relevant chemi-
cal subsets, efficiently identifying promising candidates 
with minimal resource expenditure. Later in the funnel, 
Density Functional Theory (DFT) computations provide 
detailed and accurate analyses of the remaining candi-
dates. The process is finalized by an experimental test, 
which is slow and costly, but the number of candidates 
reaching this stage has been minimized by the previ-
ous levels [14]. While several studies utilized machine 
learning methods for the property prediction of organic 
materials [15–18], they could not avoid one major chal-
lenge—the limited number of training data.

There are several ways to address the problem of 
scarce training data. Some researchers have chosen to 
augment the dataset by supplying a wider range of phys-
ical and chemical information at the molecular level 
[19–21]. Another common strategy is transfer learn-
ing [18, 22, 23], a popular machine learning technique 
that involves pre-training with a large dataset and fine-
tuning using smaller datasets, which allows for efficient 
learning using limited resources. However, traditional 
transfer learning based on supervised learning requires 
similar types of targets in the pre-training dataset and 
fine-tuning datasets. Otherwise, the transfer learn-
ing may produce results opposite to those expected 
[24]. On the other hand, recent studies suggest that 

the Bidirectional Encoder Representations from Trans-
formers (BERT) model [25] with an unsupervised pre-
training phase and a supervised fine-tuning phase may 
be able to address the limitation of supervised transfer 
learning in chemistry. Schwaller et  al. developed and 
successfully used a BERT-based framework, rxnfp, for 
predictive chemical reaction classification, which pre-
trained and fine-tuned the BERT models using data-
bases consisting of different classification systems [26]. 
In our group’s previous studies on PorphyBERT [17] 
and SolvBERT [27], we found that unsupervised learn-
ing using BERT models and their subsequent fine-tun-
ing allows the model to learn chemistry from a large 
number of molecules without being affected by differ-
ences in the targets of the pre-training dataset and fine-
tuning datasets.

Since the pre-training phase of the BERT model 
involves unsupervised learning and does not require 
any property or activity data of the molecules, it is 
theoretically possible to incorporate a large number 
of molecular structures into the pre-training process, 
thereby generating a pre-trained model with a wealth 
of knowledge in a chemical space larger than one with 
only organic materials. Therefore, in addition to the 
organic materials database, drug-like small molecule 
data can be included in the pre-training data, which 
could potentially broaden the model’s horizon for the 
variety of organic parts of the organic materials. Mean-
while, chemical reaction databases can offer a wider 
range of chemical structures, including organic and 
inorganic materials, metals, complexes, and molecular 
associations. Chemical reaction data have been exten-
sively studied for pretraining models to predict reac-
tion-specific properties such as reaction outcomes [22, 
28, 29], classifications [26], and yields [30]. However, 
to our knowledge, they have not yet been explored for 
predicting molecular properties.

In this study, we first pretrained the BERT models 
using large databases such as chemical reaction data, 
drug-like small molecule data, and organic materials 
data. After pretraining, we fine-tuned these models 
using small organic materials databases for different 
prediction tasks. In addition, to further explain the per-
formance of the models trained on different combina-
tions of the pretraining and fine-tuning databases, we 
summarized their statistics of organic build blocks and 
visualized their chemical space. Furthermore, we inves-
tigated the effect of the size of the pretraining and fine-
tuning datasets on the predictive performance of the 
models. Finally, we compared the best models proposed 
in this study with the models without an unsupervised 
pretraining phase and with the Transformer/BERT 
models pretrained using other databases.
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Methods
Datasets for pretraining
ChEMBL
ChEMBL is a manually curated database of bioactive 
molecules with drug-like properties. It brings together 
chemical, bioactivity, and genomic data to help translate 
genomic information into effective new drugs [31]. The 
data used in this study were obtained from the ChEMBL 
download channel (https:// www. ebi. ac. uk/ chembl, 
accessed April 10, 2023), which contains Simplified 
Molecular Input Line Entry System (SMILES) [32] data 
for 2,327,928 drug-like small molecules.

Clean energy project database (CEPDB)
In 2008, Aspuru-Guzik et al. launched the Harvard Clean 
Energy Project (CEP) to help find high-efficiency organic 
photovoltaic materials [33]. They built the main CEP 
using a combinatorial molecular generator, and by 2019, 
the project team had synthesized at least 2,322,849 mol-
ecules. In this study, CEPDB data was downloaded from 
https:// figsh are. com/ artic les/ datas et/ molda ta_ csv/ 96404 
27 (accessed April 12, 2023), from which  104,  105, and  106 
molecules were randomly selected as training datasets, 
referred to as CEPDB-10K, CEPDB-100K, and CEPDB-
1M, respectively.

United States patent and trademark office (USPTO) 
databases
The USPTO database (https:// figsh are. com/ artic les/ datas 
et/ Chemi cal_ react ions_ from_ US_ paten ts_ 1976- Sep20 
16_/ 51048 73, accessed on April 13, 2023) contains reac-
tions extracted through text-mining from U.S. patents 
published between 1976 and September 2016, available 
as reaction SMILES. The USPTO database used in this 
study was derived from the study by Giorgio Pesciullesi 
et al. [22] and contains 1,048,575 reactions. In addition, 
the molecules were extracted from these chemical reac-
tions, resulting in 5,390,894 molecules that comprised 
the USPTO–SMILES dataset. Furthermore, duplicate 
molecules were removed from the molecules in the 
USPTO–SMILES dataset to obtain the USPTO–SMILES-
clean dataset, which contains 1,345,854 molecules with 
different SMILES.

Datasets for fine‑tuning and evaluation
Metalloporphyrin and porphyrin database (MpDB)
Porphyrins are a class of heterocyclic macrocycle organic 
compounds containing four modified pyrrole substitu-
ents interconnected by methyl bridges (=CH–) at their 
α-carbon atoms. Porphyrins are the active central struc-
ture of chlorophyll and have tunable photochemical 
properties when coordinated with metal ions. MpDB is 
derived from the Computational Materials Repository 

database (CMR) of porphyrin-based dyes database [34, 
35] (https:// cmr. fysik. dtu. dk/ dssc/ dssc. html, accessed 
on March 23, 2023). MpDB contains 12,096 porphyrins 
or metalloporphyrins, including detailed structural and 
energy level information. The porphyrin dye structures 
in MpDB were converted to canonical SMILES using 
our previously developed framework [17]. This database 
has been utilized to train machine learning models for 
predicting HOMO–LUMO gaps [17, 18, 36], which also 
served as a virtual screening task in our study.

Benzodithiophene organic photovoltaics (OPV–BDT)
Organic Photovoltaics (OPVs) are solar cells that uti-
lize organic materials, primarily carbon-based com-
pounds, to convert sunlight into electricity. In 2019, St. 
John et al. created a database of 91,000 candidate mole-
cules for OPV applications [37], which was subsequently 
employed for machine learning to predict the properties 
of OPVs [37, 38]. This database includes various photo-
electric properties of the molecules, including HOMO 
energy, LUMO energy, HUMO–LUMO gap, and spectral 
overlap. In our study, we focused on a subset of 10,248 
OPVs that contain benzodithiophene (BDT), a typi-
cal donor material in OPVs, and renamed this subset as 
OPV–BDT. A virtual screening task was then conducted 
to predict the HOMO–LUMO gap of the OPV–BDT 
molecules.

Experimental database of optical properties of organic 
compounds (EOO)
EOO is a comprehensive collection of data on the optical 
characteristics of organic chromophores—an essential 
class of compounds in photochemistry. Initially created 
by Joung et  al. in 2020, this database contains 20,236 
data points, encompassing 7016 unique organic chromo-
phores in solvents or solid states [39]. The EOO database 
has previously been employed to train a graph convo-
lutional network (GCN) for predicting the maximum 
absorption wavelength (MAW) and maximum emission 
wavelength (MEW) of these compounds [13, 40, 41]. For 
our study, we focused on the same two predictive tasks, 
utilizing 17,295 data points for MAW and 18,142 data 
points for MEW.

Database of organic donor–acceptor molecules (solar)
Organic donor–acceptor molecules are an important 
class of compounds in organic photochemistry due to 
their unique electronic and optical properties. A database 
of organic donor–acceptor molecules is publicly avail-
able in the CMR (https:// cmr. fysik. dtu. dk/ solar/ solar. 
html, accessed on March 23, 2023), which contains the 
Kohn–Sham (B3LYP) HOMO, LUMO, HOMO–LUMO 
gap, and singlet–triplet gap of organic donor–acceptor 

https://www.ebi.ac.uk/chembl
https://figshare.com/articles/dataset/moldata_csv/9640427
https://figshare.com/articles/dataset/moldata_csv/9640427
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://cmr.fysik.dtu.dk/dssc/dssc.html
https://cmr.fysik.dtu.dk/solar/solar.html
https://cmr.fysik.dtu.dk/solar/solar.html
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molecules. We selected the Kohn–Sham HOMO–LUMO 
gap (KS_gap) as the label for the virtual screening task, 
with a total of 5366 data.

The distributions of the property values in all the fine-
tuning datasets introduced above are shown in Figure S1.

Models
BERT
Bidirectional Encoder Representations from Transform-
ers (BERT) is a pretrained natural language processing 
model developed by Google [25]. BERT has two distinct 
phases: pretraining and fine-tuning. During pretraining, 
BERT learns about the contextual relationships between 
words and sentences through unsupervised learn-
ing on large amounts of text data. Fine-tuning involves 
additional training by virtual screening classification 
or regression tasks. In this way, the pretrained model is 
better able to predict the specific nuances of the virtual 
screening task, ultimately achieving higher performance. 
Fine-tuning BERT typically requires the use of only a 
small amount of task-specific data and is therefore much 
faster than pretraining.

The BERT model architecture used in this study was 
built based on the rxnfp framework [26]. The pretraining 
data was randomly divided into two parts: training set 
and validation set, with a ratio of 9:1 and training epochs 
of 20. During pretraining, only the SMILES of molecules 
were provided to the model, and the model learned the 
structural information of molecules in an unsupervised 
learning way. For fine-tuning, the regression task dataset 
used for the fine-tuning phase was randomly split into 
training, validation, and test sets in a fine-tuning ratio of 
8:1:1. Each fine-tuning was done with 50 training epochs 
and the learning rate was set to  10–5

. The most proficient 
pretrained model underwent further optimization in 
the fine-tuning stage, with specific adjustments made to 
the learning rate and the dropout probability of neurons 
within the hidden layers.

Baseline models
Two classical machine learning models, Random For-
est (RF) and Support Vector Machine Regression (SVR) 
were used as baseline models. The molecular representa-
tion selected for these two models is MAP4, a molecu-
lar fingerprint that combines circular substructures and 
atom pairs [42]. MAP4 offers a broader range of appli-
cability compared to other fingerprints developed spe-
cifically for drug-like small molecules [42]. It has been 
utilized in data-driven synthesis planning and property 
prediction [43, 44]. In addition, a graph convolutional 
network (GCN) developed by Shen et al. [44] was chosen 
as another baseline model. GCN reads the SMILES of a 
molecule and converts the molecule into a graph format. 

Each of the three baseline models was trained directly by 
the regression tasks on organic materials in a supervised 
learning way. Furthermore, DeepChem-77M is a pre-
trained model based on the RoBERTa [45] transformer 
using 77M unique SMILES from ChemBERTa [46] for 
pretraining. In this study, the model was directly fine-
tuned by the regression tasks on organic materials.

Chemical space visualization
The SMILES of the molecule are partially encoded by 
the unsupervised learning model during the pre-train-
ing process, generating a molecular fingerprint. The 
dimensionality of the fingerprint was reduced by Tree 
Map (TMAP), where the high-dimensional data was 
transformed into a tree structure through the MinHash 
algorithm [47]. Finally, the Molecular fingerprints with 
reduced dimensions were visualized by an interactive 
visualization tool called Faerun [48], displaying both the 
local and global data structure of the chemical space.

Results and discussions
In this study, we adopted BERT, one of the SOTA models 
in natural language processing, as the foundational model 
architecture. The training of BERT was divided into a 
pretraining and a fine-tuning phase, as shown in Fig.  1. 
The BERT models were pretrained using databases in dif-
ferent chemical domains, such as USPTO (chemical reac-
tions), ChEMBL (drug-like small molecules), and CEPDB 
(organic materials), respectively. The pretrained mod-
els were then fine-tuned for different regression tasks in 
organic materials, including the band gap in MpDB and 
OPV–BDT, KS_gap in Solar, and the MAW and MEW in 
EOO. It is worth noting that these five virtual screening 
tasks differ significantly in terms of the range of values 
and type of properties. The major hyperparameters for 
the pretraining and fine-tuning phases are listed in Tables 
S1 and S2.

To eliminate the possible effects of differences in the 
structure of Reaction SMILES (the original format of 
USPTO) and normal SMILES data, we further prepared 
two additional USPTO datasets by extracting the SMILES 
of all the reaction components from the USPTO dataset, 
generating USPTO–SMILES (Fig. 2, step 1), and then fur-
ther removed the duplicate SMILES in USPTO–SMILES 
to generate USPTO–SMILES-clean (Fig. 2, step 2).

Performance of pretrained BERT models for virtual 
screening tasks
Figure 3 illustrates the prediction performance of the five 
models pretrained using different databases and subse-
quently fine-tuned with virtual screening tasks. Given the 
challenge of directly comparing absolute errors across 
tasks due to variations in their units, the evaluation 
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primarily utilizes the  R2 metric, with detailed results on 
Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE) for each model provided in Tables S3 to 
S5. The standard deviation and significance test are pro-
vided in Table  S6. Among the evaluated models, those 
pretrained on the USPTO–SMILES database consist-
ently achieved the highest performance across all five vir-
tual screening tasks. Intriguingly, the model pretrained 
using the CEPDB database, which is the sole database 
dedicated to organic materials, exhibited the lowest 
performance in four out of the five tasks. This outcome 
underscores the significant impact of the choice of the 
pretraining database on the model’s effectiveness in vir-
tual screening applications.

Figure 3 illustrates that among the three models trained 
using differently processed USPTO data, those pre-
trained on USPTO–SMILES consistently outperform 
the model using raw USPTO data. This improvement 
highlights the benefits of extracting molecular SMILES 
from the raw data, which likely enhances pretrain-
ing by eliminating non-structural information (Fig.  2). 

Moreover, the USPTO–SMILES pretrained model also 
surpasses the performance of the model pretrained on 
USPTO–SMILES-clean, despite both datasets sharing 
identical data structures and covering similar chemical 
spaces. This superiority can be attributed to the USPTO–
SMILES dataset being four times larger than its clean 
counterpart. The repetition of SMILES in the USPTO–
SMILES dataset often represents molecules that are more 
commonly encountered in chemical reactions. This rep-
etition aids in a deeper understanding of chemical lan-
guage, suggesting that a larger, more repetitive dataset 
can be beneficial for model training in this context.

However, the size of the pretraining database should be 
carefully controlled. We pretrained another model using 
all the molecules from the USPTO–SMILES, ChEMBL, 
and CEPDB databases, referred to as “SMILES-all” in 
Fig. 3. Unexpectedly, the performance of this model was 
worse than that of the models pretrained on any of the 
individual databases. This phenomenon suggests that an 
excessive amount of data may not necessarily improve 
prediction performance and can, in fact, be detrimental.

Fig. 1 The workflow of this study. The models were pretrained using chemical databases from different chemical domains and then fine-tuned 
individually for different virtual screening tasks in organic materials
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A control experiment was conducted by comparing 
the performance of the USPTO–SMILES pretrained 
model, fine-tuned with the MpDB and EOO_MAW 
virtual screening tasks, against the same model 

architecture trained directly on these tasks without 
USPTO–SMILES pretraining. The  R2 of the directly 
trained models was 0.048 lower than that of the pre-
trained model for MpDB and 0.166 lower for EOO_
MAW (Table S3).

Fig. 2 The workflow for creating the USPTO–SMILES and USPTO–SMILES-clean databases. The SMILES of molecules in USPTO were extracted 
to create USPTO–SMILES, while the duplicate SMILES in USPTO–SMILES were removed to create USPTO–SMILES-clean

Fig. 3 R2 values of transfer learning using different databases for pretraining
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Statistics of organic building blocks in the databases
The superior performance of models pretrained with the 
USPTO–SMILES and ChEMBL databases over those 
using the CEPDB, an organic material database, can 
be attributed to the richer diversity of organic build-
ing blocks available in the former two (Fig. 4). Utilizing 
RDKit’s Chem.Fragments package, we quantified the 
number of common organic building blocks across the 
pretraining and fine-tuning databases, with these find-
ings detailed in Fig. 5 and further elaborated in Table S7. 
Figure  5a–c reveal that USPTO–SMILES and ChEMBL 
contain a significantly broader spectrum of organic 
building blocks compared to CEPDB. Specifically, of the 
85 identified organic building blocks, CEPDB lacked 
72, whereas USPTO–SMILES and ChEMBL were miss-
ing only one. This extensive repository of organic build-
ing blocks in USPTO–SMILES and ChEMBL is crucial 
for the enhanced performance of the BERT models pre-
trained on these databases for the virtual screening tasks.

Chemical space coverage
We aimed to explore the extent of chemical space encom-
passed by the databases used for pretraining and fine-
tuning our models. To achieve this, we applied TMAP 
[47] for dimensionality reduction on the fingerprints 
generated by the USPTO–SMILES model and visual-
ized the resultant chemical space using Faerun [48]. 
As depicted in Fig.  6, the chemical space covered by 

USPTO–SMILES (highlighted in orange) is broader than 
that covered by both ChEMBL (in green) and CEPDB (in 
blue). This broader coverage by USPTO–SMILES can be 
more comprehensively explored through the interactive 
TMAP visualizations available in the S.I. The expansive 
chemical space coverage of USPTO–SMILES accounts 
for its pretrained models outperforming those pretrained 
on ChEMBL, despite both databases featuring a similar 
diversity of organic building blocks. This superior per-
formance can be attributed to USPTO–SMILES not 
only encompassing drug-like small molecules found in 
ChEMBL but also including metals, non-metallic inor-
ganic compounds, and organic materials frequently used 
as catalysts or reagents in reactions. In addition, since 
TMAP is an unsupervised learning technique, mole-
cules with similar structures tend to be adjacent to each 
other on the TMAP, even if they are not from the same 
database.

Effect of the relative size of pretraining and fine‑tuning 
datasets
To better comprehend the impact of pretraining and fine-
tuning dataset sizes on prediction performance, we ran-
domly selected 2 million to 10,000 data instances from 
USPTO–SMILES and 1 million to 10,000 data instances 
from ChEMBL and CEPDB, respectively, and pretrained 
the models using these sampled datasets (Fig. 7). Within 
the framework of the USPTO–SMILES and ChEMBL 
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Fig. 5 Statistics of organic building blocks in a CEPDB, b ChEMBL, c USPTO–SMILES, d MpDB, e EOO_MAW, and f solar. For the details of these 
organic building blocks, an alternative tabular form of this summary is shown in Table S7. Detailed information about the statistical structure 
is in Figure S2
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pre-training datasets, the  R2 for four out of the five tasks 
assessed typically demonstrated a decreasing trend with 
the reduction in the size of the pre-training dataset. 
Conversely, this decline was not evident in the tasks pre-
trained on the CEPDB dataset, likely a consequence of 
the previously discussed insufficiency in chemical infor-
mation inherent to CEPDB.

Comparison with the baseline models
To further understand the predictive capability of 
USPTO-pretrained models for the virtual screening 
of organic materials, the best-performed USPTO-pre-
trained models in this study were compared with four 
baseline models, encompassing two traditional machine 
learning models, a GCN [44], and the DeepChem-
77M [46, 49] model trained on a Roberta architecture 
(Table 1). The hyperparameters of these models are pro-
vided in Tables S8 and S9. The findings indicate that our 
USPTO–SMILES model surpasses all competitors across 
four of the five evaluated tasks, underscoring the supe-
riority of our approach in virtual screening applications. 
Furthermore, the comparative underperformance of 
DeepChem-77M could be ascribed to its pre-training on 
the PubChem database, which offers a narrower chemical 

space than USPTO as discussed above, and its adoption 
of a Roberta architecture with fewer hidden layers than 
BERT, potentially diminishing its performance.

In addition, different fractions of the OPV–BDT data-
set were used to demonstrate the effect of data size on 
the performance of our USPTO–SMILES model com-
pared to the RF baseline model. As shown in Fig.  8, 
while the RF performs better with less than 40% of the 
OPV–BDT dataset and both models have  R2 values lower 
than 0.85, the USPTO–SMILES model surpasses the RF 
when the training data fraction exceeds 40%. Moreover, 
the performance gap between the two models widens 
as the training data size increases. This is because BERT 
models are more complex than simple machine learn-
ing models and require more data to learn and general-
ize patterns effectively. Once a certain data threshold is 
reached, their generalization ability exceeds traditional 
models, leading to superior performance. In the context 
of virtual screening of organic materials, obtaining more 
training data and improving the predictive performance 
of models can synergistically enhance the accuracy of vir-
tual screening. It is advisable to acquire additional train-
ing data (e.g., through DFT computation) and develop 
a higher-performing model (i.e.,  R2 > 0.95) rather than 

Fig. 6 The two-dimensional chemical space of USPTO–SMILES, CEPDB, ChEMBL, Solar, MpDB, OPV_BDT, and EOO. The molecules representation, 
dimensionality reduction, and visualization were implemented by BERT, TMAP [47], and Faerun [48], respectively. To maximize the visualization, 
50,000, 20,000, and 20,000 data were randomly selected from USPTO–SMILES, ChEMBL, and CEPDB, respectively, for visualization
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Fig. 7 R2 value of five virtual screening prediction tasks with models pretrained using random samples of a CEPDB, b ChEMBL, and c USPTO–
SMILES of different sizes
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settling for a mediocre model (i.e.,  R2 < 0.85) without fur-
ther computation.

Furthermore, the time required for the complete train-
ing of these models is shown in Table  2. Although the 
training of our USPTO–SMILES model took longer than 
other machine learning-based and graph neural network-
based models, all training times were roughly within 1 h. 
Given that these training sessions were conducted on a 

PC equipped with an affordable NVIDIA GeForce RTX 
3060 GPU, the efficiency of our model is considered 
acceptable for daily research purposes.

Our approach to enhancing virtual screening meth-
odologies could see significant improvements by incor-
porating a commercial database like Pistachio, which 
offers a more comprehensive collection of reaction data 
than the USPTO by including reactions from the Euro-
pean Patent Office (EPO). Access to Pistachio directly 
is, unfortunately, not possible for our team. However, 
we utilized the open-source rxnfp-Pistachio, a model 
pretrained on Pistachio by Schwaller et al. [26] (https:// 
rxn4c hemis try. github. io/ rxnfp/, accessed on March 29, 
2023), for preliminary comparisons. According to our 
initial analysis presented in Tables S3 to S5, replacing 
the USPTO database with Pistachio for pretraining could 
enhance the performance of virtual screening, especially 
in the EOO_MEW and Solar tasks. It is important to clar-
ify that this observation does not detract from our origi-
nal findings. Rather, it reinforces our proof-of-concept 

Table 1 The performance comparison between the USPTO–SMILES model and the baseline models

The bold values indicate the maximum values in each column

R2 MpDB EOO_MAW EOO_MEW OPV_BDT Solar

USPTO–SMILES (our study) 0.9428 0.9443 0.8229 0.9637 0.8174

Support vector regressor (SVR) 0.9320 0.2086 0.2187 0.0862 0.7714

Random forest (RF) 0.8953 0.8959 0.8081 0.8748 0.8416
GCN [44] 0.8950 0.8384 0.6809 0.8827 0.8045

DeepChem-77M [49] 0.9097 0.8098 0.6457 0.5750 0.6158

Fig. 8 The impact of different fractions of the OPV–BDT dataset on the prediction performance of the USPTO–SMILES and the RF models

Table 2 Computing time consumed by various models

SVR and RF run on Intel Core i7-11700, and other models run on NVIDIA GeForce 
RTX 3060

Cost time (min) MpDB EOO_MAW EOO_MEW OPV_BDT Solar

USPTO–SMILES 40.3 58.1 60.5 35.7 37.8

SVR 10.6 21.4 25.4 6.6 3.2

RF 9.3 12.8 11.8 6.7 10.9

GCN 23.1 15.8 31.2 35.4 28.7

Deepchem-77M 9.8 15.5 23.1 28.2 18.5

https://rxn4chemistry.github.io/rxnfp/
https://rxn4chemistry.github.io/rxnfp/
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that leveraging chemical reaction data is advantageous 
for the virtual screening of organic materials. We advo-
cate for further investigation into the potential of the Pis-
tachio database by researchers who have access to it.

Additionally, a rough comparison was conducted 
between our USPTO–SMILES model and other mod-
els from previous studies using the same data source 
(Table  3). Our model outperformed the Transformer 
model on the MpDB dataset and the GCN model on 
the EOO–MAW dataset. Although the ASGN model 
achieved a lower MAE than our model, it was trained on 
the entire OPV database, whereas our model was trained 
on a subset containing only BDT donors.

Conclusions
In this study, we have successfully demonstrated the con-
cept of pretraining deep learning models on databases not 
specifically related to organic materials, such as ChEMBL 
and USPTO, for the virtual screening of organic materials. 
Leveraging the unique unsupervised pretraining phase of 
the BERT model, we demonstrate the feasibility of transfer 
learning across diverse chemical domains, including organic 
materials, drug-like small molecules, and chemical reac-
tions. Our findings reveal that among the various BERT 
models pretrained on different databases, those pretrained 
using molecular SMILES data extracted from the USPTO 
database exhibited superior predictive performance in the 
majority of virtual screening tasks. This enhanced perfor-
mance can be attributed to the USPTO database’s broader 
variety of organic building blocks and its more extensive cov-
erage of chemical space. Our study underscores the poten-
tial of applying cross-domain transfer learning to address 
the challenge of data scarcity in the virtual screening of 
organic materials and possibly other chemical categories. 
By showcasing the effectiveness of pretraining deep learn-
ing models on diverse chemical databases, we aim to inspire 
further research in this direction, encouraging the explora-
tion of more extensive databases like Pistachio and fostering 
advancements in the field of virtual screening.
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