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Abstract 

Designing compounds with a range of desirable properties is a fundamental challenge in drug discovery. In pre-
clinical early drug discovery, novel compounds are often designed based on an already existing promising starting 
compound through structural modifications for further property optimization. Recently, transformer-based deep 
learning models have been explored for the task of molecular optimization by training on pairs of similar molecules. 
This provides a starting point for generating similar molecules to a given input molecule, but has limited flexibility 
regarding user-defined property profiles. Here, we evaluate the effect of reinforcement learning on transformer-based 
molecular generative models. The generative model can be considered as a pre-trained model with knowledge 
of the chemical space close to an input compound, while reinforcement learning can be viewed as a tuning phase, 
steering the model towards chemical space with user-specific desirable properties. The evaluation of two distinct 
tasks—molecular optimization and scaffold discovery—suggest that reinforcement learning could guide the trans-
former-based generative model towards the generation of more compounds of interest. Additionally, the impact 
of pre-trained models, learning steps and learning rates are investigated.

Scientific contribution
Our study investigates the effect of reinforcement learning on a transformer-based generative model initially trained 
for generating molecules similar to starting molecules. The reinforcement learning framework is applied to facilitate 
multiparameter optimisation of starting molecules. This approach allows for more flexibility for optimizing user-spe-
cific property profiles and helps finding more ideas of interest.

Keywords Molecular optimization, Scaffold discovery, Transformer, Generative model, Reinforcement learning, 
Tanimoto similarity, QSAR

Introduction
The design and optimization of compounds towards 
potential drug candidates is crucial in drug discovery. 
The main challenges include the large chemical search 
space  [1] and the requirement of optimization towards 
multiple properties e.g.  physicochemical properties, 
safety, synthetic feasibility and potency against its tar-
get. To accelerate the molecular design and optimiza-
tion process, various deep neural networks have been 
explored as molecular generative models, e.g.  recurrent 
neural networks (RNNs)  [2–4], variational autoencod-
ers (VAEs)  [5–10], transformers  [11–14], generative 
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adversarial networks (GANs) [15–18], graph neural net-
works (GNNs) [19–22] and diffusion-based models [23–
25]. Early work have been focusing on de novo molecular 
design which generates molecules from scratch without 
needing a starting compound, while there is an increas-
ing attention on conditional compound generation and 
optimization from a specific starting structure that shows 
promise, e.g.  compounds  [12, 26–30], scaffolds  [14, 
22, 31–34] and fragments  [25, 35–38]. In this work, we 
focus on compounds as starting point. In previous pub-
lications  [12, 29, 30], we treated the molecular optimi-
zation problem as machine translation task and trained 
the transformer model [39] on pairs of similar molecules 
extracted based on different similarity criteria e.g. Tani-
moto similarity on fingerprint, matched molecular pairs 
and scaffold. The model learns to generate similar mol-
ecules to a given input molecule. To generate compounds 
with desired properties, property change tokens are pre-
pended to the simplified molecular-input line-entry sys-
tem (SMILES)  [40] tokens in order to steer the model 
towards the chemical space of interest. However, this 
model is limited to the preselected set of properties dur-
ing optimization.

Reinforcement learning (RL)  [41–43] has been used 
to guide generative models to explore the chemical 
space of interest defined by a set of user-defined prop-
erties. It provides the flexibility of optimizing molecules 
towards various user-specified desired properties. Here, 
we integrate the transformer models  [30, 44] trained 
for generating similar molecules into the REINVENT 
framework [42] and evaluate the effect of reinforcement 
learning. Specifically, the evaluation will be conducted 
on two tasks i.e.  molecular optimization and scaffold 
discovery. Each task will include four example starting 
molecules with varying level of optimization challenges. 
The transformer model generates molecules similar to a 
given starting molecule, and the reinforcement learning 
is applied to enforce multi-parameter optimisation of the 
starting molecule. The integration of transformer model, 
which have learned the surrounding chemical space of 
input molecules, with RL has potential applicability in 
the context of constrained optimization of a starting mol-
ecule, e.g. molecular optimization and scaffold discovery.

Methods
Transformer based molecular generator
We focus on the transformer models trained on a set of 
similar molecular pairs. The molecules are represented 
as SMILES and the SMILES are tokenized to construct 
a vocabulary, which contains all possible tokens. After 
training, the models can generate similar molecules 
to a given input molecule. In particular, two models 
trained on varying size of training data are examined 

in REINVENT: the transformer model  [30] trained 
on around 6.5 million molecular pairs extracted from 
ChEMBL and the transformer model [44] trained on over 
200 billion molecular pairs from PubChem. The molec-
ular pairs with a Tanimoto similarity ≥ 0.5 based on 
RDKit Morgan fingerprints (radius = 2, with counts) are 
selected. To generate multiple molecules, the non deter-
ministic, multinomial sampling is used. At each time 
step, a token is randomly selected based on the probabil-
ity distribution over the vocabulary.

REINVENT
REINVENT  [42, 45] is an AI-based tool for molecular 
design and optimization. It contains three main compo-
nents: a molecular generative model, a scoring function 
which scores the generated molecules based on a set of 
user-specified scoring criteria and produces a combined 
score as reward, and RL as a search algorithm to steer the 
generated model towards the chemical space with high 
reward. Additionally, to reduce the risk of mode collapse 
and encourage the diversity of the generated molecules, 
REINVENT uses a molecular memory system called the 
diversity filter (DF) with different implemented strategies. 
The DF penalizes the generation of identical compounds 
or compounds sharing the same scaffold that have been 
generated too often. The generative model acts as agent 
and describes the joint probability of generating a mol-
ecule represented by a token sequence T = t1, t2, . . . , tl 
given an input molecule token sequence X as

where θ represents the model parameters, ti represents 
the i-th token of T, and l represents the length of T. 
Accordingly, the negative log likelihood (NLL) is defined 
as

Figure  1 shows the general RL workflow. The agent is 
initialized using the transformer prior, which generates 
similar molecules to an input molecule. The reinforcement 
learning loop is further performed to tune the agent’s focus 
on narrower chemical space of interest defined by a set of 
user-specified scoring components. Specifically, in each RL 
step, a batch of molecules (batch size=128) are sampled 
from the agent given the input molecule, and then evalu-
ated based on the scoring function. The evaluated score 
is combined with the prior and the agent’s negative log 

(1)P(T|X; θ) =

l
∏

i=1

P(ti|t1, . . . , tt−1, X; θ),

(2)NLL(T|X; θ) = −

l
∑

i=1

log P(ti|t1, . . . , ti−1, X; θ)
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likelihood for loss computation. The loss is defined as Eq. 3 
following [42].

NLLaug represents the augmented negative log likelihood 
defined as

where S(T ) ∈ [0, 1] is a scoring function whose value rep-
resents the evaluated desirability of molecule sequence 
T. It is an aggregation function of multiple scoring com-
ponents. More details of S can be found in [42]. σ > 0 is 
a scalar coefficient balancing the desirability with prior 
likelihood of a sequence, and θprior are the parameters 
of the prior. The agent is updated to minimize Eq. 3, as 
demonstrated previously  [32, 42], which encourages 
increasing the evaluated score while keeping the agent 
not very far away from the prior which has learnt to pro-
duce valid and similar molecules. Note that at the begin-
ning of the training θ = θprior , θprior are kept fixed, while 
θ are updated.

Experimental setup
The computational experiments aim to evaluate whether 
RL could improve the performance of transformer-based 
generative models in generating molecules with desired 

(3)L(θ) =
(

NLLaug(T|X)−NLL(T|X; θ)
)2
.

(4)NLLaug(T|X) = NLL(T|X; θprior)− σS(T)

properties. The evaluation is conducted for two applica-
tion scenarios, 

1 Scaffold discovery: generate new scaffold ideas that 
are active against the dopamine receptor type 2 
(DRD2) target.

2 Molecular optimization: generate close analogues to 
improve the activity against the DRD2 target com-
pared to the input molecule.

As a proxy for biologcal activity, we use the DRD2 activ-
ity model from Olivecrona et al.  [41] which was trained 
on data extracted from ExCAPE-DB [46]. The output of 
the model is the predicted probability of a given molecule 
to be active (pIC50≥5). For both scaffold discovery and 
molecular optimization, it is common to start with com-
pounds which have already shown reasonable potency. 
Four compounds were selected from the DRD2 active 
compounds with pIC50≥ 5 in ExCAPE-DB as input start-
ing molecules for thorough investigation. Figure 2 shows 
the input compounds, pIC50, the predicted probabili-
ties to be active P(active) and Quantitative Estimate of 
Drug-likeness (QED) [47] scores. These compounds were 
selected to simulate different challenges with respect to 
input starting structure and property score. Addition-
ally, as a supplementary analysis, 100 compounds were 
selected from the DRD2 active compounds as input com-
pounds, with each compound having P(active)>0.5 and 
being randomly chosen from the top 100 most frequent 
unique scaffolds.

Baseline and REINVENT configuration
The goal is to evaluate whether RL could help steer the 
transformer-based generative model towards a desir-
able chemical- and physical-property space. Therefore, 
the transformer models trained on molecular pairs but 
without RL serve as baselines. For the main experiments, 
we use our most recent transformer model  [44] which 
is trained on the PubChem database. For RL, different 
REINVENT configurations are used, see Table 1.

Scoring components: Since we are interested in generat-
ing compounds that are active against the DRD2 target, 
the DRD2 activity model is added to the scoring function. 
Additionally, QED is included to prevent the model from 
generating molecules that have high predicted probability 

Fig. 1 General RL workflow. The agent is initialized (0) 
by a transformer prior which learns to generate similar molecules 
to a given input molecule. The RL loop starts with sampling (1) 
a batch of molecules represented as SMILES which then are scored 
based on the set of user-specified scoring components (2). The loss 
is computed by combining the score and the negative log likelihood 
of the generated molecules and finally the agent is updated (3) 
to minimize the loss

Fig. 2 Input starting molecules. P(active): predicted probability to be active according to the DRD2 activity model
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to be active but are not drug-like. For the task of molecu-
lar optimization, an extra scoring component, Tanimoto 
similarity based on RDKit Morgan fingerprints (radius 
= 2, with counts) is added to encourage generating mol-
ecules that are similar to corresponding input compound.

Diversity filter: Different diversity filter strategies are 
used. DF(comp) penalizes the same compound being gen-
erated frequently while DF(scaffold) penalizes the com-
pounds sharing the same Murcko type scaffold. For the 
task of molecular optimization, the option DF(scaffold) is 
not used since the goal is to generate molecules which are 
highly similar to the input compound. For comparison, 
we also include noDF which corresponds to no diversity 
filter being applied.

The RL loop is run for 1000 steps with each step gener-
ating 128 molecules1, which results in total 128,000 mol-
ecules. Therefore, for the baseline model without RL, we 
sample 128,000 molecules for comparison. Since multi-
nomial sampling is non-deterministic, we run the experi-
ments ten times and report the averaged results with ± 
one standard deviation for the input starting molecules 
in Fig. 2.

Evaluation metrics
In general, we are interested in understanding whether 
RL could help to generate additional, diverse high-scor-
ing compounds. Table  2 shows the evaluation metrics 
used for the tasks of scaffold discovery and molecular 
optimization. For scaffold discovery, the focus is to find 
a novel scaffold which exhibits high chance to be active 
and good QED score (i.e.  P(active)>0.6 and QED>0.6). 
Additionally, the improved predicted activity and QED 
over input compounds are examined in a secondary anal-
ysis. For molecular optimization, it is favourable to have 
close analogues to the input molecule with improved pre-
dicted probability to be active and improved QED. Here, 
“scaffold” represents Murcko scaffold from RDKit which 
removes the side chains and the “generic scaffold” is the 
Murcko scaffold which converts all atom types to carbon 
and all bonds to single.

Results and discussion
RL vs No RL for the scaffold discovery task
Most RL settings perform better than No RL in terms 
of generating molecules with the predicted probability 
to be active>0.6 and QED>0.6 via all evaluation metrics 
and for all input compounds (Fig.  3). RL_DF(cmp) gen-
erates more unique compounds than RL_noDF, which 
validates the advantage of penalizing the compounds 

Table 1 Overview of model configuration

1 DF: Diversity Filter

Model name Description

RL Scoring function DF1 Task

No RL (Baseline) No NA NA Scaffold discovery; Molecular optimization

RL_noDF Yes DRD2 activity model; QED No Scaffold discovery; Molecular optimization

RL_DF(cmp) Yes DRD2 activity model; QED Compound Scaffold discovery; Molecular optimization

RL_DF(scaffold) Yes DRD2 activity model; QED Scaffold Scaffold discovery

RL_DF(cmp)_Sim Yes DRD2 activity model; QED Compound Molecular optimization

Tanimito similarity

Table 2 Evaluation metrics

Metrics Scaffold Molecular
hopping optimization

#Unique compounds with P(active)>0.6 and QED>0.6 �

#Unique scaffolds with P(active)>0.6 and QED>0.6 �

#Unique generic scaffolds with P(active)>0.6 and QED>0.6 �

#Unique compounds with improved P(active) and QED � �

#Unique scaffolds with improved P(active) and QED �

#Unique generic scaffolds with improved P(active) and QED �

#Unique compounds with improved P(active) and QED; Tanimoto similarity>0.7 �

1 The RL process (1000 steps) takes about 30 mins with about 800 MB GPU 
memory on a single GPU Nvidia Tesla V100.
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that have been generated frequently to improve diversity. 
RL_DF(scaffold) generates more unique scaffolds and 
generic scaffolds than RL_noDF and RL_DF(cmp), which 
suggests the benefit of penalizing the frequent generated 
scaffolds. Especially for scaffold discovery efforts, this 
can be a useful strategy to increase scaffold diversity.

Furthermore, we examine the performance of achiev-
ing higher P(active) and QED upon the input molecules 
for a secondary analysis. Similar trend can be found 
that most RL settings perform better than No RL for all 
input compounds except compound 4 (Fig.  4). The rea-
son why RL struggles with compound 4 might be that 
the predicted activity for the starting molecule is already 
very high, which makes it difficult to identify even more 
potent compounds with RL. Additionally, for compound 
2 and compound 4, RL_DF(scaffold) performs worse 
than RL_noDF and RL_DF(cmp) which indicates changes 
in the scaffold for these compounds does not improve 
activity and/or QED. One possible explanation for this 
is that the scoring function is not set and optimized 
towards improving predicted activity and QED explicitly. 
It aims to generate molecules with high scores, but not 
necessarily higher than the input molecules. This might 
also contribute to the observed high standard deviation 
across different runs. Overall, depending on the starting 
molecules’ properties and structural complexity, it is not 
unexpected to observe different behaviors. For exam-
ple, for compound 1 with P(active)=0.61, it appears to 

be easier to improve when exploring diverse scaffolds. 
While for compound 4 which already has P(active)=0.94, 
it is difficult to improve and change the scaffold.

RL vs No RL for molecular optimization task
Figure  5 shows the results for the molecular optimi-
zation task with molecules achieving higher P(active) 
and QED scores. Most RL settings perform better than 
No RL on all evaluation metrics except for compound 
4. RL_DF(cmp) generally generates more compounds 
with improved properties and are less similar to the 
input molecule, as can be seen from the lower number 
of compounds with Tanimoto similarity>0.7 in compar-
ison with RL_DF(cmp)_Sim. This indicates that adding 
Tanimoto similarity to scoring function help generat-
ing molecules that are more similar to the input com-
pound, which is useful for local molecular optimization 
- exploration of the close chemical space of an input 
compound.

The improvement of RL over No RL is not as large as 
seen in the scaffold discovery task (Fig. 3). This may be 
because there is more possibilities in discovering com-
pounds with diverse scaffolds and relatively favorable 
properties, compared to identifying molecules that 
closely resemble the input molecule while exhibiting 
improved properties.

Notably, for compound 4 which has P(active)=0.94, 
RL (i.e. RL_DF(cmp)_Sim) shows a slight improvement 

Fig. 3 Scaffold discovery task: mean values and ±1 standard deviation over 10 runs for the number of unique compounds, scaffolds and generic 
scaffolds that show P(active)>0.6 and QED>0.6. RL generally outperforms No RL, and RL_DF(scaffold) performs best on finding most unique 
scaffolds and generic scaffolds with desirable properties

Fig. 4 Scaffold discovery task: mean values and ±1 standard deviation over 10 runs for the number of unique compounds, scaffolds and generic 
scaffolds that show improved P(active) and QED compared to corresponding input molecule
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over No RL, unlike in the scaffold discovery task 
(Fig.  4). This might because the Tanimoto similarity 
scoring component helps the model generate more sim-
ilar compounds to compound 4, which are also more 
likely to be highly active.

Figure 6 investigates the Tanimoto similarity to the cor-
responding input compound changes as RL steps pro-
gress. It can be seen that RL_noDF mostly maintains a 
decent similarity as RL steps increase, while RL_DF(cmp) 
exhibits a declining similarity but mostly above 0.5. 
RL_DF(cmp) encourages the generation of more unique 
compounds with improved properties than RL_noDF 
(as shown in Fig.  5) at the expense of reduced similar-
ity. RL_DF(cmp)_Sim helps to increase similarity com-
pared to RL_DF(cmp) (Fig. 6) and leads to more unique 

compounds with similarity above 0.7 and improved prop-
erties than RL_noDF and RL_DF(cmp) as shown in Fig. 5.

Effect of pre‑trained priors
Here, we evaluate the effect of the priors trained on dif-
ferent sizes of training data, in particular, the transformer 
model trained on ChEMBL  [30] and PubChem  [44]. 
Figure  7 shows the number of unique scaffolds with 
P(active)>0.6 and QED>0.6 for scaffold discovery task. 
Without RL, the PubChem prior already yields more 
compounds of interest than the ChEMBL prior. This 
could be because the PubChem prior was trained on 
a much larger scale (200B vs 6.5M). Most RL con-
figurations improve performance for both priors. The 
PubChem prior consistently outperforms the ChEMBL 

Fig. 5 Molecular optimization task: mean values and ±1 standard deviation over 10 runs for the number of unique compounds that show 
improved P(active) and QED compared to corresponding input molecule (“Compounds” in Figure) and additionally Tanimoto similarity above 0.7 
(“Similarity>0.7” in Figure). RL generally outperforms No RL, and RL_DF(cmp)_Sim performs best in generating compounds with improved 
properties and Tanimoto similarity above 0.7 compared with corresponding input compound

Fig. 6 Molecular optimization task: Tanimoto similarity to input compound per RL step. Results are mean values and ±1 standard deviation over 10 
runs

Fig. 7 Scaffold discovery task: effect of pre-trained priors. Results are mean values and ±1 standard deviation over 10 runs for the number of unique 
scaffolds that show P(active)>0.6 and QED>0.6



Page 7 of 15He et al. Journal of Cheminformatics           (2024) 16:95  

prior with the exception of RL_DF(scaffold) where 
ChEMBL prior show comparable performance. This 
might be because the PubChem prior has a knowledge 
of closer area of an input molecule than ChEMBL prior, 
resulting in a slower adaptation of diverse scaffolds gen-
eration. Figure 8 shows the results for molecular optimi-
zation task. Similarly, the PubChem prior generates more 
compounds with desirable properties compared to the 
ChEMBL prior. In general, RL facilitates the generation 
of more compounds with desirable properties for both 
priors, with the PubChem prior typically outperforming 
the ChEMBL prior in the evaluated tasks.

Effect of learning steps
Here, we evaluate the effect of varying number of RL 
learning steps, i.e.  100, 1000 and 2000 steps. Figure  9 
shows the number of unique scaffolds with P(active)>0.6 
and QED>0.6 for scaffold discovery task when vary-
ing the number of learning steps. For simplicity, we 
only show RL_DF(scaffold). It can be seen that RL_
DF(scaffold) exhibits a consistent trend of generating 
more unique scaffolds with desirable properties as the 
number of steps increases, while No RL shows limited 
improvement. This is expected because without RL, 
the same area of chemical space is searched every step, 
whereas RL allows the agent to update at each step, 
exploring different regions. A similar trend can be found 
for the molecular optimization task in Fig. 10. With more 

steps, RL_DF(cmp)_Sim tends to generate more unique 
compounds with improved properties that are similar 
to input molecule. Overall, these findings suggest that 
increasing the number of learning steps typically leads to 
the discovery of more compounds of interest.

Effect of learning rates
Here, we evaluate the effect of different learning rates, 
i.e.  0, 1e-5, 1e-4 (default) and le-3. Notebly learning 
rate=0 is equivalent to No RL. Figure 11 shows the num-
ber of unique scaffolds with P(active)>0.6 and QED>0.6 
for scaffold discovery task with increasing learning rate. 
For simplicity, we focus on RL_DF(scaffold). It can be 
seen that as the learning rate increases up to 1e-4, more 
scaffolds with desirable properties are found, indicating 
the model is guided more efficiently towards the desired 
chemical space. Meanwhile, the variance between dif-
ferent runs increases. This may be because with a higher 
learning rate, each update to the model parameters is 
larger, directing the model’s focus towards a more dif-
ferent region of the chemical space. A too high learning 
rate i.e.  le-3 in this study, results in noisy and unstable 
update. Figure 12a–d shows the overlap of three runs for 
the unique compounds generated by RL_DF(scaffold) for 
compound 1. It shows a tendency of reduced overlap as 
the learning rate increases, indicating each run tends to 
explore different parts of the chemical space. Addition-
ally, a larger chemical space is explored with a higher 
learning rate of up to 1e-4. These factors might contribute 

Fig. 8 Molecular optimization task: effect of pre-trained priors. Results are mean values and ±1 standard deviation over 10 runs for the number 
of unique compounds that show improved P(active) and QED over corresponding input molecule

Fig. 9 Scaffold discovery task: effect of learning steps on the number of unique scaffolds with P(active)>0.6 and QED>0.6. Results are mean values 
and ±1 standard deviation over 10 runs. RL_DF(scaffold) consistently generates more unique scaffolds with desirable properties as the number 
of steps increases
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Fig. 10 Molecular optimization task: effect of learning steps on the number of unique compounds with improved P(active) and QED score, 
and a Tanimoto similarity >0.7 compared to corresponding input molecule. Results are mean values and ±1 standard deviation over 10 runs. 
RL_DF(cmp)_Sim generally produces more unique compounds with improved properties that are similar to input molecule as the number of steps 
increases

Fig. 11 Scaffold discovery task: effect of learning rates on the number of unique scaffolds with P(active)>0.6 and QED>0.6 when using RL_
DF(scaffold). Results are mean values and ±1 standard deviation over 10 runs. Learning rate=0 is equivalent to No RL. Increasing learning rate (up 
to 1e-4) tends to explore the desired chemical space more efficiently while introducing higher variance between different runs. Learning rate 1e-3 
leads to dramatic decrease in model performance

Fig. 12 Scaffold discovery task: overlap of three runs with varying learning rates (lr) on the unique compounds (a-d) and unique scaffolds 
with P(active)>0.6 and QED>0.6 (e-h) produced by RL_DF(scaffold) for compound 1. Generally, higher learning rate (up to 1e-4) results 
in less overlap chemical space between different runs and exploration of larger chemical space
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to the greater variance in the number of unique scaffold 
with desirable properties between different runs (Figs. 11 
and 12e–g). The results for the molecular optimiza-
tion task can be found in Supplementary Figs. S1 and S2 
where similar results are found.

A learning rate of 1e-3 is too high and results in very 
large differences between different runs (Fig.  12d) and 
much fewer scaffolds of interest are found (Fig.  12)
h. Figure  13 compares the percentage of valid mol-
ecules generated by RL_DF(scaffold) for compound 1 
when learning rate is 1e-4 and 1e-3. It can be seen that 
learning rate 1e-4 produces stable output and a high 
percentage of valid molecules between different runs, 
while vast variance is observed when the learning rate 
is 1e-3.

Figure  14 examines the prior NLL distribution of 
unique compounds generated by RL_DF(scaffold) for 
compound 1 with varying learning rates. With a higher 
learning rate (up to 1e-4), a larger chemical space, devi-
ating from prior, is explored. This is because RL helps 

steering the agent towards the chemical space with 
favourable properties, potentially directing it away from 
prior. Consequently, the agent has a higher chance (lower 
NLL) to generate molecules with desirable properties 
than the prior (Fig. 14 right).

Figures  15 and 16 show example molecules gener-
ated for scaffold discovery and molecular optimization 
task respectively. We can see that these molecules are 
typically more likely (lower NLL) to be generated by the 
agent using RL compared to the prior.

Effect of balancing factor σ
Here, we evaluate the effect of σ in Eq. 4 which balances 
the desirability of a molecule (enforced by the scoring 
objective) and the likelihood of this molecule gener-
ated from the prior. A default value is 120. Figure  17 
shows the results for the molecular optimization task. 
A lower σ generally results in more unique similar mol-
ecules (i.e. Tanimoto similarity > 0.7) for all three RL 
settings as shown in Fig.  17a. This is because a lower 

Fig. 13 Percentage of valid molecules generated per RL step produced by RL_DF(scaffold) for compound 1. Too high learning rate 1e-3 results 
in dramatic instability

Fig. 14 Left: the prior NLL distribution of unique compounds generated by RL_DF(scaffold) for compound 1 with varying learning rate. 
Right: the prior and agent NLL distribution of unique scaffold with P(active)>0.6 and QED>0.6 generated by RL_DF(scaffold) for compound 1 
when learning rate=1e-4. The lower the NLL of a molecule, the higher the chance to generate
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σ keeps the agent closer to the prior which is trained 
to generate similar molecules. Meanwhile, a higher σ 
generally helps generate more unique compounds with 
improved properties in Fig. 17b. Ultimately, there is no 
clear trend in the number of unique compounds that 
are both similar and show improved properties when 
varying σ in Fig. 17c. Among the three RL settings, RL_
DF(cmp)_Sim generates the most unique similar com-
pounds while RL_DF(cmp) generates the most unique 
compounds with improved properties. This is because 
without Tanimoto similarity included in the scoring 
objective, the agent could explore chemical space more 
freely in search of high scoring compounds, potentially 
deviating from the prior. In general, RL_DF(cmp)_
Sim performs best in finding compounds with both 

similarity and improved properties. RL_DF(cmp) gen-
erates more unique similar compounds than RL_noDF 
as shown in Fig.  17a indicating the benefit of diver-
sity filter to improve uniqueness. When σ=120, RL_
DF(cmp) mostly becomes worse than RL_noDF. This 
might be because the high σ shifts the agent away from 
the prior.

Overall, for local molecular optimization, the goal is to 
generate (1) unique molecules that are (2) highly simi-
lar (i.e. Tanimoto similarity > 0.7) to the input molecule 
while also showing (3) desirable properties (improved 
properties in this case). Achieving all these criteria is 
important and challenging since they can be conflict-
ing. The prior, scoring objectives and diversity filter have 
direct impact on similarity, desirable properties, and 

Fig. 15 Scaffold discovery task: example of generated compounds with P(active)>0.6 and QED>0.6
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uniqueness respectively. Lowering σ brings the agent 
closer to the prior, thus producing more similar mol-
ecules but also finding less compounds with improved 
properties. Scoring objectives guide the agent towards 
the chemical space of high scoring compounds but this 
could also lead to deviations from the prior. The diver-
sity filter helps in exploring more unique compounds but 
could also have less similar compounds when σ(=120) is 
high. Therefore, it is crucial to understand and consider 
the impact of these factors.

Supplementary comparison of RL and No RL
Here, we examine the effect of RL in a larger scale, spe-
cifically with 100 input starting molecules. A single run 

is conducted for each configuration. Figure 18 shows the 
results for the scaffold discovery task with each point 
representing the performance for each input starting 
molecule. Clearly, all three RL settings generate more 
unique compounds, scaffolds and generic scaffolds that 
show P(active)>0.6 and QED>0.6 than No RL, with 
RL_DF(scaffold) performing the best followed by RL_
DF(cmp) and RL_noDF. This re validates the advantage of 
RL over No RL, and the use of diversity filtering which 
penalizes frequently generated compounds or scaffolds to 
improve diversity.

Figure  19 shows the results for the molecular optimi-
zation task. All three RL settings generate more unique 
compounds that show improved P(active) and QED 

Fig. 16 Molecular optimization task: example of generated compounds with improved P(active) and QED, and Tanimoto similarity >0.7 compared 
with corresponding input compound
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than No RL. However, for generating unique similar 
(i.e.  Tanimito similarity > 0.7) molecules, RL_noDF and 
RL_DF(cmp) perform worse than No RL. RL_DF(cmp) 

generates the most unique compounds with improved 
properties but least in the unique similar compounds. 
The reason could be that the agent was guided to focus 

Fig. 17 Molecular optimization task: effect of σ on the number of (a) unique compounds that have Tanimoto similarity above 0.7 relative 
to corresponding input compound, (b) unique compounds that show improved P(active) and QED compared to corresponding input compound 
and (c) unique compounds that show both improved P(active) and QED and Tanimoto similarity above 0.7. Results are mean values and ±1 
standard deviation over 10 runs

Fig. 18 Scaffold discovery task: comparison of No RL and RL with 100 input starting molecules in terms of generating unique compounds, scaffolds 
and generic scaffolds that show P(active)>0.6 and QED>0.6. Each point represents the performance for each input starting molecule
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on improving properties (enforced by scoring objec-
tives) and unique molecules (enforced by diversity filter) 
which might deviate from the prior for generating similar 
molecules. RL_DF(cmp)_Sim which includes Tanimoto 
similarity as an additional scoring objective help generate 
more similar compounds as shown in Fig. 19b, and move 
towards the end goal of both improved properties and 
similarity in Fig. 19c.

Conclusions
We have evaluated the effect of RL on the transformer-
based molecular generative model trained for generating 
similar molecules to a given input molecule. The genera-
tive model serves as a pre-trained model with knowledge 
of the chemical space surrounding the input molecule, 
and reinforcement learning acts as fine tuning phase to 
focus the model on the desirable chemical space based 
on a set of user-specified property objectives. This pro-
vides the flexibility of optimizing molecules towards 
task-specific property profiles. The evaluation has been 
performed on two application scenarios, scaffold discov-
ery and molecular optimization. Additionally, the effect 
of pre-trained priors, learning steps, learning rates and 
the balancing factor σ was examined. The results have 
shown that 

(i) RL generally helps generate more molecules with 
desired properties compared to No RL for both 
scaffold discovery and molecular optimization 
tasks. Additionally, different behaviors can be 
expected depending on the starting input mole-
cule’s structure and properties, e.g.  it can be chal-
lenging for RL to find molecules with improved 
activity if the starting molecule is already highly 
active.

(ii) RL consistently helps generating more compounds 
with desirable properties across priors trained 
on both ChEMBL and PubChem datasets, and 
the PubChem prior generally outperforms the 
ChEMBL prior.

(iii) Increasing the number of learning steps typically 
results in the discovery of more compounds of 
interest.

(iv) Increasing the learning rate (to a certain extent) 
tends to explore a larger chemical space and sam-
ple the chemical space of interest more efficiently, 
at the same time a higher learning rate leads to a 
higher variance between different runs. A too high 
learning rate can have a dramatic negative impact 
on the performance.

(v) For the molecular optimization task, a lower σ 
typically results in more unique similar molecules, 
whereas a higher σ tends to produce more unique 
compounds with improved properties. Ulti-
mately, there is no clear trend in the number of 
unique compounds that are both similar and show 
improved properties when varying σ.

As an example of optimizing towards user-specified 
desired properties, we have evaluated how well we can 
find more active compounds against DRD2 compared to 
a given starting molecule. However, any property can be 
optimized in the RL framework as long as it can be used 
as a scoring function. Notably, the accuracy and general-
izability of a predictive model plays an important role in 
practice.

Our evaluation has been conducted on the tasks of 
scaffold discovery and molecular optimization. How-
ever, it is not limited to these tasks and can be used for 
molecular generation tasks such as scaffold decorating or 

Fig. 19 Molecular optimization task: comparison of No RL and RL with 100 input starting molecules in terms of generating (a) unique compounds 
that show improved P(active) and QED compared to corresponding input compound, (b) unique compounds that have Tanimoto similarity 
above 0.7 relative to corresponding input compound and (c) unique compounds that show both improved P(active) and QED and Tanimoto 
similarity above 0.7. Each point represents the performance for each input starting molecule
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fragment linking by adding substructure matching scor-
ing components.
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