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Abstract 

An automated pipeline for comprehensive calculation of intermolecular interaction energies based on molecular 
force-fields using the Tinker molecular modelling package is presented. Starting with non-optimized chemically intui-
tive monomer structures, the pipeline allows the approximation of global minimum energy monomers and dimers, 
configuration sampling for various monomer–monomer distances, estimation of coordination numbers by molecular 
dynamics simulations, and the evaluation of differential pair interaction energies. The latter are used to derive Flory–
Huggins parameters and isotropic particle–particle repulsions for Dissipative Particle Dynamics (DPD). The compu-
tational results for force fields MM3, MMFF94, OPLS-AA and AMOEBA09 are analyzed with Density Functional Theory 
(DFT) calculations and DPD simulations for a mixture of the non-ionic polyoxyethylene alkyl ether surfactant C10E4 
with water to demonstrate the usefulness of the approach.

Scientific Contribution
To our knowledge, there is currently no open computational pipeline for differential pair interaction energies at all. 
This work aims to contribute an (at least academically available, open) approach based on molecular force fields 
that provides a robust and efficient computational scheme for their automated calculation for small to medium-sized 
(organic) molecular dimers. The usefulness of the proposed new calculation scheme is demonstrated for the genera-
tion of mesoscopic particles with their mutual repulsive interactions.
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Introduction
The quantitative description of non-bonding interactions 
between molecules is fundamental to understanding and 
designing chemical processes in materials and life sci-
ences [1, 2]. In contrast to covalent bonding within mole-
cules, non-bonding intermolecular interactions comprise 
dispersed variations of electromagnetic interactions like 
dipole/dipole, dipole/induced dipole, induced dipole/
induced dipole (van der Waals) interactions, hydro-
gen bonding, (partial) charge interactions, π–π, cation/
anion–π or polar π-effects. Each different spatial configu-
ration of two molecules can be assigned a correspond-
ing nonbonding intermolecular interaction energy. Its 
determination is challenging because the intermolecular 
interactions are generally small compared to covalent 
bonding and especially to the total energy of a molecular 
configuration.

For an accurate quantitative description, a quantum 
chemical treatment with a suitable model chemistry is 
commonly advised, e.g., application of Density Func-
tional Theory (DFT) with an appropriate combination 
of functional and basis set: the complexation energy (i.e., 
the energy difference between a specific dimer configura-
tion and the two monomer molecules that form it) can 
then quantify the intermolecular interaction. In particu-
lar, Symmetry-Adapted Perturbation Theory (SAPT) 
allows direct computation of non-bonding intermolecu-
lar interactions (i.e., without the need to calculate the 
total energies of monomers and dimer) and provides a 
physically meaningful decomposition of its contributing 
(electrostatics, induction, dispersion, short-range repul-
sion) terms [2]. Recent DFT-SAPT approaches have dem-
onstrated a comparatively fast calculation in combination 
with remarkable accuracy for small- to medium-sized 
dimers up to the adenine–thymine base pair [3, 4].

When multiple spatial dimer configurations need to be 
sampled, quantum chemical approaches become increas-
ingly expensive due to their considerable computational 
complexity, as a single calculation can easily take minutes 
or even longer. As a purely classical alternative, molecu-
lar force fields may be employed instead: they allow 
intermolecular energy calculations within fractions of a 
second for a specific spatial dimer configuration, i.e., an 
acceleration by several orders of magnitude. This comes 
at the expense of accuracy, as a given force field can easily 
lead to deceptively erroneous results.

This work aims at providing a robust automated molec-
ular force-field based calculation pipeline for compre-
hensive estimation of mutual intermolecular energies 
of a set of small to medium-sized monomer molecules. 
For a chosen force field, the monomer molecules must 
be provided with an initial, chemically intuitive spatial 
geometry with associated atom types (where for small 

molecules a planar 2D geometry provided by any 2D 
structure editor seems to be sufficient). Then, each mono-
mer start geometry is globally optimized to its minimum 
energy conformer. Several monomer–monomer dis-
tances with multiple configurations at each distance are 
sampled to obtain a near-global minimum energy dimer. 
This dimer is then locally optimized towards its global 
minimum. The sampled configurations can be averaged 
by Boltzmann weights to get mean non-bonded dimer 
interactions at different distances. The calculations can 
be extended to obtain differential molecule pair interac-
tion energies, which describe the excess intermolecular 
interaction of two different molecules in comparison to 
the average interaction of the molecules themselves (see 
Eqs. 1 and 2 in “Methods” section below), where molecu-
lar dynamics (MD) simulations are used to estimate the 
coordination numbers of neighboring molecules.

The resulting interaction energies may be useful for dif-
ferent purposes. Based on the comprehensive sampling, 
suitable spatial start configurations can be obtained for 
more elaborate (e.g., quantum chemical) refinement pro-
cedures. Pairwise non-bonded intermolecular interac-
tions can be considered as molecule-pair descriptors for 
Cheminformatics tasks like molecular similarity estima-
tion. Differential molecule pair interaction energies play 
an important role in statistical thermodynamics, e.g., 
for the quantitative estimation of excess quantities that 
determine the properties of mixtures [5]. In particular, 
they can be related to Flory–Huggins interaction param-
eters for polymer models (Eq.  9), which in turn can be 
used to describe isotropic particle–particle repulsions for 
mesoscopic simulation approaches (Eq. 10) [6]. The latter 
application is particularly studied in this work.

The backbone of the calculation pipeline is imple-
mented using the Java programming language. All force-
field-based calculations are performed with the Tinker 
Molecular Modelling package [7]. The Tinker package 
is modularized into stand-alone, task-based executa-
bles (marked in italics in “Methods” section below), 
which fit well into the Java backbone-driven parallelized 
computational scheme that fully exploits the computa-
tional capabilities of multicore workstations. All force 
fields provided by Tinker can be used for the calculation 
pipeline.

Methods
The force-field-based intermolecular energy EC

ij (r) 
between two molecules i and j is determined by differ-
ent non-covalent-bonding contributions (van der Waals 
and partial charge interactions, hydrogen bonding etc.) 
and depends on the intermolecular distance r between 
the centers of the molecules as well as their relative 
spatial configurations C . For each specific distance rfix 
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there is a minimum energy configuration Cmin with 
E
Cmin
ij

(

rfix
)

≤ EC
ij

(

rfix
)

 . The global minimum energy 
dimer is characterized by a distinct distance rmin so 
that Emin

ij = E
Cmin
ij (rmin) ≤ EC

ij (r) , i.e. rmin is the distance 
between the centers of two molecules i and j when the 
dimer geometry corresponds to the global energy mini-
mum. If different spatial configurations with a fixed 
intermolecular distance rfix are averaged, an averaged 
intermolecular energy for this distance 〈Eij〉

(

rfix
)

 is 
obtained: The corresponding minimum energy distance 
r〈E〉,min with �Eij�min = �Eij�

(

r�E�,min

)

≤ �Eij�(r) does not 
necessarily coincide with minimum distance rmin of 
the global minimum energy dimer. Among the con-
crete averaged configurations with a fixed intermolecu-
lar distance rfix the configuration C∗ with the minimal 
intermolecular energy is denoted EC∗

ij

(

rfix
)

≥ E
Cmin
ij

(

rfix
)

.
A differential pair interaction energy describes the 

excess intermolecular interaction of molecules i and j in 
comparison to the average interaction of the molecules 
themselves. This may be defined with respect to the 
global minimum energy dimers

or corresponding averages (see Eqs.  5 and 6 below for 
calculation details)

A positive (negative) differential pair interaction energy 
indicates a less (more) favorable intermolecular interac-
tion compared to the individual ones. When differential 
pair interaction energies are applied to lattice models, all 
vertices of the lattice have a fixed number of surround-
ing neighbours (e.g. Z = 4 in two dimensions or Z = 6 
in three dimensions). In contrast, continuum models can 
(and usually do) have different coordination numbers Zij , 
where the number Zij of molecules j surrounding mole-
cule i can (and usually does) differ from the number Zji of 
molecules i that surround molecule j . Equations 1 and 2 
can be extended accordingly to

and

(1)�Eij = Emin
ij −

1

2
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respectively, where superscript Z denotes the coordi-
nation number extension in contrast to Eqs.  1 and 2, 
Emin
ij = Emin

ji  and �Eij�min = �Eji�
min but Zij may be differ-

ent from Zji , i.e. Zij  = Zji.
Thus, the estimation of differential pair interaction 

energies requires two steps: (I) A calculation scheme to 
obtain the different (averaged) molecule pair interaction 
energies Emin

ij  ( 〈Eij〉min ), and (II) a procedure to estimate 
the different coordination numbers Zij . In the follow-
ing, the concrete implementation of a corresponding 
automated calculation pipeline for a selected molecular 
force field using the Tinker Molecular Modelling package 
is described. All dimer-related calculations are started 
with the global minimum energy conformers of the two 
constituent monomer molecules (see following “Global 
minimum energy monomers” section), where multi-
ple dimer configurations are analyzed with these global 
minimum energy monomers (see following “Global mini-
mum energy dimers” section) to obtain an approximate 
configuration for the global minimum energy dimer. The 
latter is achieved by optimizing this final approximate 
dimer configuration without constraints using all atomic 
degrees of freedom, so that the monomers are no longer 
confined to their individual global minimum energy 
conformers.

Global minimum energy monomers
The global minimum energy conformers are derived in 
advance from conformer search procedures: STARTING 
from an initially defined chemically intuitive geometry 
of a monomer molecule, a first geometry improvement 
is achieved with Tinker optimize using the Optimally 
Conditioned Variable Metric (OCVM) optimization 
technique [by default with a root mean square (RMS) 
gradient of 0.01  kcal/mole/Å] [8]. The resulting locally 
optimized geometry is then transferred to a low-mode 
conformational search (LMOD) with Tinker scan to 
find the minimum energy conformer (where by default, 
the RMS gradient for the LMOD procedure is set to 
0.0001 kcal/mole/Å, the energy threshold for local min-
ima is set to 100 kcal/mole, torsion angles are automati-
cally selected, and five eigenvectors are used for the local 
search) [9]. For small molecules with O(10) number of 
atoms, the detected minimum energy conformers usually 
coincide with the global minimum energy conformers.
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Global minimum energy dimers
To approximate the global minimum energy dimer 
of a pair of molecules i and j , the centers of the mol-
ecules are positioned at different distances ranging 
(by default) from 3 to 16 Å in steps of 0.5 Å where the 
initial relative configuration of the two molecules is 
arbitrary. For each distance, a configuration sampling 
procedure is performed, which is sketched in Fig. 1. A 
(unit) sphere around each center is constructed with a 
number of Nsphere evenly spaced points being generated 
on each sphere using a Fibonacci lattice as an adequate 
approximation (in comparison to a latitude–longitude 
lattice the surface points generated by a Fibonacci lat-
tice are more evenly spaced with a smaller axial ani-
sotropy) [10]. By rotating the molecules around their 
centers so that two adjacent spherical surface points 
and the centers of both molecules lie on a straight 
axis, Nsphere × Nsphere configurations are generated 
for which the corresponding interaction energies are 

determined by Tinker analyze (with settings to only 
compute the non-bonding interactions for a signifi-
cantly accelerated performance). In addition, for each 
single configuration the second molecule is rotated 
for a number Nrot of angles around the axis with cor-
responding interaction energy calculations, so that in 
total Nsphere × Nsphere × Nrot spatial configurations are 
sampled for a single fixed distance between the mono-
mer molecules (with each monomer being constrained 
to its individual global minimum energy conformer). 
The distance resolution is then refined around the dis-
tance with the detected minimum interaction energy 
dimer by reducing the step size from 0.5 to 0.1 Å, and 
then again from 0.1 to 0.01 Å (compare Fig. 2), so that a 
final near minimum energy dimer configuration is eval-
uated for the latter resolution. This resulting configura-
tion C∗ is then optimized with Tinker optimize without 
constraints using all atomic degrees of freedom (i.e. the 
monomers are no longer confined to their individual 

Fig. 1  Configuration sampling for the acetic acid dimer: a An initial dimer of two acetic acid molecules is constructed with a distinct distance 
between the centers of both molecules (with each monomer being constrained to its individual global minimum energy conformer). b Spheres 
around the centers of the molecules are populated with a number Nsphere of evenly distributed (equidistant) points on their surfaces. c The 
interaction energy is determined for every configuration where two adjacent spherical surface points and the centers of both molecules lie 
on a straight axis (which is achieved by corresponding rotations of the molecules around their centers). d For each single configuration in c 
the second molecule is also rotated for a number of angles Nrot around the axis with a corresponding interaction energy calculation. e By varying 
and refining the distance between the molecule centers, the minimum energy dimer is determined and finally optimized to approximate the global 
minimum energy dimer without constraints using all atomic degrees of freedom. For the acetic acid dimer two perspectives of the finally optimized 
global minimum energy dimer with Emin

ij  are shown, using the MMFF94 force field [11]
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global minimum energy conformers) to arrive at the 
force-field dependent approximation for Emin

ij  of the 
two molecules i and j , the global minimum energy 
dimer using the specified force-field.

Configuration sampling
If configuration sampling is desired for a specific distance 
rfix of the dimer molecules, the (already) obtained inter-
action energies of the Nsphere × Nsphere × Nrot configura-
tions for this distance may be averaged with Boltzmann 
weights wC

(

rfix
)

 for a defined temperature (with kB , the 
Boltzmann constant, and T , thermodynamic tempera-
ture) using Emin

ij :

Then 〈Eij〉 can be evaluated from the different 〈Eij〉(r) . 
Figure 2 shows the quantitative results for the acetic acid 
dimer using the Merck molecular force field (MMFF94) 
[11].

(5)wC

(

rfix
)

= e
−

ECij

(

rfix

)

−Emin
ij

kBT

(6)

〈

Eij
〉(

rfix
)

=

∑Nsphere×Nsphere×Nrot

C EC
ij

(

rfix
)

wC

(

rfix
)

∑Nsphere×Nsphere×Nrot

C wC

(

rfix
)

Coordination numbers
The coordination numbers Zij are estimated by MD 
simulations. The simulation box construction is based 
on a pure water box at 298  K to get consistent results. 
A water molecule has a van der Waals volume of 
V

H2O
vdW = 17.35 Å3, in a pure water box it occupies a vol-

ume of VH2O
box = 30.00 Å3 at 298 K due to its density [12] 

and molar mass [13]. This relation is mapped to other 
molecules X with

so that the edge length a of a cubic simulation box of N  
molecules X is given by

The van der Waals volumes are approximated with 
the VABCVolume [14] descriptor of the Chemistry 
Development Kit (CDK) [15, 16]. A simulation box 
with a defined number N  of molecules j (default is 
400) and defined edge length a is created using Tinker 
xyzedit. Then a single molecule i is added to the box, 

(7)
V

H2O
box

V
H2O
vdW

=
VX
box

V X
vdW

(8)a =
3

√

√

√

√N
V

H2O
box

V
H2O
vdW

VX
vdW

Fig. 2  Acetic acid dimer. Red: EC
∗

ij (r) for the minimum sampled energy configuration, Blue: Averaged interaction energy 〈Eij〉(r) for temperature 
T = 298K
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where Tinker xyzedit automatically removes mole-
cules j to keep the defined density of the simulation 
box. The (possibly unfavorable) start configuration is 
optimized with Tinker minimize to avoid atomic con-
tacts that could lead to instabilities. The following 
MD simulation uses Tinker dynamics with a step size 
of one femtosecond and an Andersen thermostat [17] 
for temperature equilibrium (default is 298 K). 10,000 
(default) initial steps are used for box equilibration, 
followed by several hundred thousand steps with data 
recording (default is 400,000). For each recorded simu-
lation step the number of molecules j surrounding the 
single molecule i is analyzed. This is done either by a 
“brute-force” counting approach or, alternatively, by 
the cell-index method with periodic boundary con-
ditions [18]. The “brute-force” approach calculates 
the distances between each atom of the single mole-
cule i and each atom of all molecules j . Alternatively, 
the cell-index method only considers the (drastically 
reduced) distances between each atom of single mol-
ecule i and the atoms of solvent molecules j in neigh-
bouring cells. The criterion for including a molecule j 
as a relevant neighbor for the coordination number Zij 
is based on the distance between its atoms and those 

of molecule i . If the distance of the respective atoms 
is less than or equal to the sum of their van der Waals 
radii plus an arbitrary “catch radius” (default is 1 Å), 
the molecules are considered neighbors. In Fig.  3, a 
snapshot of a simulation step is illustrated. For each 
simulation step, the number of neighboring molecules 
j is determined. The average over all recorded steps 
is used to estimate the coordination number Zij , see 
Fig. 3.

Flory–Huggins and mesoscopic repulsion parameters
Differential pair interaction energies may be directly uti-
lized to estimate Flory–Huggins interaction parameters χij 
by

to describe polymer solutions [5], with �〈Eij〉
Z being 

defined in Eq. 4.
For “bridging the gap between atomistic and mesoscopic 

simulation” (Groot and Warren [6]), the interacting mol-
ecules can be identified with the particles of “bottom-up” 
mesoscopic Dissipative Particle Dynamics (DPD), where 

(9)χij =
�
〈

Eij
〉Z

kBT

Fig. 3  Averaged coordination number Zij of a single acetic acid molecule in 400 water molecules starting after 10,000 initial steps (for box 
equilibration) with a “catch radius” of 1 Å using the MMFF94 force field. The averaged coordination number converges to a value of 17.7. Box 
graphics: Left: Snapshot of a simulation step of a single acetic acid molecule in 400 water molecules. Right: Magnification of the neighboring water 
molecules around the single acetic acid molecule. Yellow spheres: atoms of the single acetic acid molecule with their van der Waals radii. Grey 
spheres: Neighboring water molecules considered for the coordination number determination
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the microscopic Flory–Huggins interaction parameters χij 
can be directly related to mesoscopic isotropic particle–
particle repulsions aij(T ) (expressed in units of kBT , with 
ρDPD being the dimensionless DPD density, refer to [6] for 
details)

which determine the conservative DPD forces FC ,DPD
ij :

with FC ,DPD
ij , FC ,Bond

ij  , soft repulsive DPD force and har-
monic bond force on particle i exerted by particle j; aij , 
maximum isotropic repulsion between particles i and j ; 
rij = ri − rj = rijr

0
ij; r

0
ij , unit vector. The numerical factor 

(3.4965) in Eq. 10 is derived from Eq. 24 in reference [6] 
where the inverse value (0.286) is given.

In interplay with the dissipative (frictional) forces FD
ij  

and random forces FR
ij the conservative forces FC

ij  guide 
the trajectories ri(t) of the DPD particles according to 
Newton’s equation of motion:

with mi, ri , mass and position vector of particle i ; t , time; 
Fi , total force on particle i exerted by other particles j ; 
N  , total number of particles in simulation; FC

ij , F
D
ij , F

R
ij , 

conservative, dissipative, and random force on particle i 
exerted by particle j.

Thus, the described calculation pipeline may be applied 
to construct a force-field-based particle set for DPD 
simulations.

Pipeline code availability
The pipeline code is written in Java and openly available at 
[19]. A dedicated installer executable for the Java pipeline 
code, which comprises a full Java runtime environment, 
is available at [20] for the Windows operating system. 
For Linux operating systems a zip file is available at [20]. 
According to its licensing terms the Tinker executables 
for optimize, scan, analyse etc. have to be downloaded 
from its website [21] into a specified pipeline directory: 
a detailed instruction how to perform this is provided at 
[22]. A set of stand-alone Mathematica notebooks [23] for 
result visualizations is provided at [24]. A test pipeline is 
available at [19] to ensure proper installation.

(10)aij(T ) = 75
kBT

ρDPD
+ 3.4965kBTχij

(11)FC
ij = FC ,DPD

ij + FC ,Bond
ij

(12)FC ,DPD
ij

(

rij

)

=

{

aij
(

1− rij
)

r0ij for rij < 1

0 for rij ≥ 1

(13)mi
d2ri
dt2

= Fi =

N
∑

j=1,j �=i

(

FC
ij + FD

ij + FR
ij

)

Pipeline calculation performance
Calculation of a full single differential pair interaction 
energy for the force fields MM3, MMFF94 and OPLS-AA 
with default settings ( Nsphere × Nsphere × Nrot = 144×

144 × 16 = 331,776 dimer configurations for each fixed 
distance to approximate the intermolecular interaction 
energies, 10,000 equilibration steps and 400,000 simula-
tion steps for the MD simulations to estimate the coor-
dination number with 400 molecules in the box) takes 
several hours, where the AMOEBA09 force field requires 
a multiple. Since the pipeline supports comprehensive 
calculation parallelization for a set of monomer mol-
ecules, a single differential pair interaction energy can 
be obtained on average in less than an hour on a 64-core 
AMD Ryzen™ Threadripper™ PRO 5995 CPU worksta-
tion [25].

DFT calculations for result evaluation
DFT calculations are performed with Gaussian 16 [26] and 
analyzed with GaussView 6 [27]. All molecular geometries 
are optimized using the dispersion-corrected wB97XD 
functional [28] with the 6–311++G(d,p) basis set where 
counterpoise calculations are used to obtain basis set 
superposition error (BSSE) corrected interaction energies. 
All Gaussian jobs files used are openly available at [29].

DPD simulations for result evaluation
All DPD simulations of this study are performed with the 
MFsim simulation system [30] using the Jdpd simulation 
kernel [31]. All constructed particle sets and MFsim sim-
ulation jobs are openly available at [32].

Results and discussion
To demonstrate the applicability of the different 
steps of the calculation pipeline, several small mol-
ecules are selected: Water (abbreviated H2O), meth-
ane (Me), ethane (Et), methanol (MeOH), dimethyl 
ether (Me2O) and the acetic acid dimer (HAc). The 
calculation results for this molecule set are evalu-
ated and compared with alternative approaches and 
experimental results. All averaged energies and MD 
simulations refer to a temperature of T = 298K  . All 
intermolecular energy calculations were performed with 
Nsphere × Nsphere × Nrot = 144 × 144 × 16 = 331,776 
dimer configurations for each fixed distance of the mol-
ecule centers.

Acetic acid dimer
The acetic acid dimer is stabilized by two hydrogen 
bonds and has a planar geometry. Calculation results 
with the MMFF94 force field are shown in Figs.  2 and 
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4. Figure 2 depicts the minimal energy configuration C∗ 
energies EC∗

ij

(

rfix
)

 for each specific distance rfix in red, 
exhibiting a single minimum at rfix = 4.91  Å with EC∗

ij  
(4.91  Å) = − 15.9  kcal/mole. The corresponding aver-
aged intermolecular energies 〈Eij〉

(

rfix
)

 are shown in 
blue, where the single minimum distance coincides at 
rfix = 4.91 Å with 

〈

Eij
〉

 (4.91 Å) = − 15.4 kcal/mole in this 
case. The two hydrogen bonds of the minimal energy 
configuration C∗ have a length of 1.69 Å and a distance 
of 2.63 Å between the corresponding donor and acceptor 

oxygen atoms (see Fig.  4), which is close to the experi-
mental values of 2.68 Å [33].

With the final optimization of the near minimal 
energy configuration C∗ the global MMFF94 force-
field-based minimum energy configuration Cmin with 
Emin
ij = E

Cmin
ij (rmin) = −17.6 kcal/mole is obtained, 

which is 1.7  kcal/mole below the sampled minimal 
energy C∗ configuration: the finally optimized dimer 
keeps the distance of rmin = 4.91 Å but shows a planar 
geometry with a slightly reduced hydrogen bond length 

Fig. 4  Minimal energy configuration C∗ of the acetic acid dimer with two hydrogen bonds

Fig. 5  Acetic acid dimer with the MMFF94 force field. Bottom: minimal sampled energy configuration C∗ with EC
∗

ij  (4.91 Å) = − 15.9 kcal/mole. Top: 
optimized global minimum energy configuration Cmin with Emin

ij = E
Cmin
ij  (4.91 Å) = − 17.6 kcal/mole
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of 1.63  Å and a distance of 2.62  Å between the donor 
and acceptor oxygen atoms (see Fig. 5).

Mutual dimer calculations
Table  1 presents the mutual dimer calculations: it com-
prises 〈Eij〉 and EC∗

ij  for the detected minima (compare 
Fig. 2) as well as the global force-field-based energy mini-
mum Emin

ij  for force fields MMFF94, AMOEBA09, MM3 
[34] and OPLS-AA [35, 36] with the water models TIP3P 
[37] and TIP5P [38]. As expected, the nonpolar pure alkyl 
(methane and ethane) dimers exhibit only small interac-
tion energies, the acetic acid dimer with two hydrogen 
bonds shows the largest interaction, and the polar dimers 
are in between. There are clear differences between the 
force fields, with the OPLS-AA (TIP5P) interactions for 
the alcohol–water dimers being the strongest. On aver-
age, MM3 differs most significantly from the other force 
fields.

For the HAc–HAc and the Me–Me dimer the results 
for force fields OPLS-AA, AMOEBA09 and MMFF94 
were compared with corresponding DFT single point 
calculations (denoted DFT sp). In addition, the spatial 
configurations with Emin

ij  were used as start geometries 

for DFT geometry optimizations (denoted DFT opt), 
see Table 2. The DFT calculations indicate that the auto-
mated pipeline leads to acceptable near minimum ener-
gies and corresponding spatial configurations—with 
individual exceptions: in contrast to the MMFF94 and 
OPLS-AA force fields, AMOEBA09 results in an eclipsed 
minimum energy configuration for the Me–Me dimer 
instead of a staggered one (see Fig. 6, this eclipsed con-
figuration is maintained by the DFT geometry optimi-
zation), but this finding has no significant influence on 
the subsequent investigations due to its low energetic 
effect (see Table 2). The difference in interaction energies 
between the DFT opt and the OPLS-AA force field result 
for the HAc–HAc dimer is most significant.

Coordination numbers Zij
Table  3 contains the mutual coordination numbers Zij 
(at T = 298K  ), where a single molecule i is surrounded 
by 400 molecules j, using the MMFF94, OPLS-AA (with 
TIP3P and TIP5P water models), and AMOEBA09 
force fields. For comparison, static packing [40] results 
are included which were taken from previous research 
[41] and obtained with the commercial Blends software 

Table 1  Force-field based intermolecular interaction energies in kcal/mole for the different dimers (averages are obtained at T = 298K)

Dimer MMFF94 MM3 AMOEBA09 OPLS-AA (TIP3P) OPLS-AA (TIP5P)

〈Eij〉 EC
∗

ij
Emin
ij

〈Eij〉 EC
∗

ij
Emin
ij

〈Eij〉 EC
∗

ij
Emin
ij

〈Eij〉 EC
∗

ij
Emin
ij

〈Eij〉 EC
∗

ij
Emin
ij

Et–Et − 0.4 − 0.8 − 0.8 − 0.4 − 0.8 − 0.8 − 0.7 − 1.3 − 1.4 − 0.6 − 1.2 − 1.2

EtOH–Et − 0.4 − 1.0 − 1.0 − 0.4 − 0.9 − 0.9 − 0.9 − 2.0 − 2.1 − 0.7 − 1.5 − 1.5

EtOH–EtOH − 4.3 − 6.2 − 6.5 − 5.8 − 7.3 − 7.5 − 4.0 − 6.2 − 6.6 − 4.8 − 6.8 − 7.3

H2O–Et − 0.2 − 0.5 − 0.5 − 0.2 − 0.5 − 0.5 − 0.5 − 1.3 − 1.3 − 0.3 − 0.9 − 0.9 − 0.3 − 0.8 − 0.8

H2O–EtOH − 4.9 − 6.3 − 6.7 − 6.3 − 7.5 − 7.7 − 4.8 − 6.4 − 6.5 − 5.4 − 6.7 − 7.3 − 5.5 − 7.6 − 10.9

H2O–H2O − 5.0 − 6.3 − 6.8 − 5.9 − 7.2 − 7.4 − 3.3 − 4.9 − 5.0 − 5.1 − 6.5 − 6.9 − 4.8 − 6.5 − 7.3

Me–Et − 0.3 − 0.6 − 0.6 − 0.3 − 0.6 − 0.6 − 0.4 − 0.9 − 0.9 − 0.4 − 0.8 − 0.8

Me–EtOH − 0.3 − 0.7 − 0.7 − 0.3 − 0.7 − 0.7 − 0.6 − 1.7 − 1.7 − 0.5 − 1.0 − 1.0

Me–H2O − 0.2 − 0.3 − 0.3 − 0.2 − 0.3 − 0.3 − 0.4 − 1.2 − 1.2 − 0.2 − 0.6 − 0.6 − 0.2 − 0.5 − 0.5

Me–Me − 0.2 − 0.4 − 0.4 − 0.2 − 0.4 − 0.4 − 0.4 − 0.5 − 0.5 − 0.3 − 0.5 − 0.5

Me2O–Et − 0.4 − 1.0 − 1.0 − 0.4 − 0.9 − 1.0 − 0.9 − 1.9 − 2.0 − 0.8 − 1.4 − 1.4

Me2O–EtOH − 3.8 − 5.6 − 5.9 − 5.4 − 6.6 − 6.7 − 3.3 − 5.6 − 5.9 − 3.1 − 5.2 − 5.6

Me2O–H2O − 4.5 − 5.8 − 6.1 − 5.0 − 6.2 − 6.3 − 4.3 − 6.0 − 6.2 − 3.9 − 5.2 − 5.4 − 3.2 − 4.4 − 4.5

Me2O–Me − 0.3 − 0.7 − 0.7 − 0.3 − 0.7 − 0.7 − 0.6 − 1.5 − 1.6 − 0.5 − 1.0 − 1.0

Me2O–Me2O − 1.2 − 2.4 − 2.4 − 0.7 − 1.5 − 1.6 − 1.6 − 3.1 − 3.2 − 1.5 − 2.4 − 2.4

MeOH–Et − 0.3 − 0.8 − 0.8 − 0.3 − 0.7 − 0.7 − 0.7 − 1.7 − 1.8 − 0.6 − 1.4 − 1.4

MeOH–EtOH − 4.7 − 6.2 − 6.4 − 5.9 − 7.3 − 7.5 − 4.6 − 6.4 − 6.7 − 5.1 − 6.7 − 7.2

MeOH–H2O − 4.6 − 6.0 − 6.5 − 6.0 − 7.6 − 7.6 − 3.8 − 5.6 − 5.8 − 4.9 − 6.4 − 6.9 − 6.4 − 8.0 − 10.8

MeOH–Me − 0.3 − 0.6 − 0.6 − 0.3 − 0.5 − 0.5 − 0.5 − 1.4 − 1.4 − 0.4 − 0.9 − 0.9

MeOH–Me2O − 4.2 − 5.7 − 5.9 − 5.4 − 6.6 − 6.7 − 4.0 − 5.8 − 6.2 − 3.7 − 5.2 − 5.5

MeOH–MeOH − 4.3 − 5.9 − 6.1 − 5.8 − 7.1 − 7.2 − 3.7 − 5.6 − 5.8 − 4.5 − 6.2 − 6.6

HAc–HAc − 15.4 − 15.9 − 17.6 − 16.9 − 17.4 − 18.1 − 15.4 − 15.8 − 18.0 − 11.4 − 12.2 − 13.6
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Table 2  Force-field based interaction energies EC
∗

ij  and Emin
ij  with corresponding DFT interaction energies and configuration measures

a: Hydrogen bond length (distance oxygen to oxygen), b: Distance between carbon atoms, c: Eclipsed minimum energy configuration

The Me-Me dimer distance denotes the distance between the carbon atoms (b), while the HAc-HAc dimer distance refers to the specific hydrogen bond length 
(labelled a). Experimental values (denoted Exp.) are taken from [29] for acetic acid and [33, 39] for methane. For the Me–Me dimer the AMOEBA09 force field yields an 
eclipsed minimum energy configuration instead of a staggered one (labelled c)

Dimer EC
∗

ij

[

kcal/mole
]

Distance [Å]

DFT sp Force field DFT = force field = fixed

OPLS-AA Me–Me − 0.6 − 0.5 3.57b

HAc–HAc − 14.5 − 12.2 2.69a

AMOEBA09 Me–Me − 0.5 − 0.5 3.74b, c

HAc–HAc − 15.8 − 15.8 2.76a

MMFF94 Me–Me − 0.6 − 0.4 3.74b

HAc–HAc − 11.5 − 15.9 2.63a

Dimer Emin
ij

[

kcal/mole
]

Distance [Å]

DFT sp Force field DFT = force field = fixed

OPLS-AA Me–Me − 0.6 − 0.5 3.57b

HAc–HAc − 15.7 − 13.6 2.68a

AMOEBA09 Me–Me − 0.5 − 0.5 3.74b, c

HAc–HAc − 17.6 − 18.0 2.73a

MMFF94 Me–Me − 0.6 − 0.4 3.73b

HAc–HAc − 15.1 − 17.6 2.62a

Dimer DFT opt Force field DFT Force field Exp

OPLS-AA Me–Me − 0.6 − 0.5 3.57b 3.57b 3.85b

HAc–HAc − 19.8 − 13.6 2.68a 2.68a 2.68a

AMOEBA09 Me–Me − 0.5 − 0.5 3.82b,c 3.74b,c 3.85b

HAc–HAc − 19.8 − 18.0 2.68a 2.73a 2.68a

MMFF94 Me–Me − 0.6 − 0.4 3.57b 3.73b 3.85b

HAc–HAc − 19.8 − 17.6 2.68a 2.62a 2.68a

Fig. 6  Minimum energy EC
∗

ij  configuration for the Me–Me dimer: Left: OPLS-AA force field with staggered configuration. Right: AMOEBA09 force 
field with eclipsed configuration
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of Materials Studio [42] using the Condensed-phase 
Optimized Molecular Potentials for Atomistic Simula-
tion Studies (COMPASS) force field [43].

Figures 7 and 8 show the similarity of trends in coor-
dination number assignment. While the MD-derived 
coordination numbers are similar for the different force 
fields used, the results for the COMPASS static packing 
approach are significantly reduced by about 50%. The 
spread of the values derived from MD (Fig. 7) is signifi-
cantly higher than that of the static packing approach. 
Interestingly, linear mapping of the coordination num-
bers to the interval [0,1] yields an approximate overlap 
of the results (Fig. 8).

Repulsion parameters aij
For the different force fields, particle sets for mesoscopic 
DPD simulations with the isotropic mutual repulsions aij 
for methane (Me), ethane (Et), methanol (MeOH), etha-
nol (EtOH), dimethyl ether (Me2O), and water (H2O) 
were constructed. The off-diagonal aij values of a particle 
set were linearly scaled with MFsim [30] so that the max-
imum absolute deviation between the smallest aij value 
and the diagonal values aii = 24.83 (for a thermodynamic 

temperature of 298 K) is 20. For the OPLS-AA force field 
the water models TIP3P and TIP5P were considered, 
denoted OPLS-AA (TIP3P) and OPLS-AA (TIP5P). 
An additional OPLS-AA (TIP5P) particle set, denoted 
OPLS-AA (TIP5P Zij = 1 ), was created which is solely 
based on the minimal averaged intermolecular energy 
〈Eij〉 with a fixed coordination number Zij = 1 for all 
dimers. With force field MM3, interaction energies can 
be calculated only, so a combined particle set was created 
using MM3 for interaction energy calculation and the 
MMFF94 force field for MD-based coordination num-
ber estimation, denoted MM3/MMFF94. The particle set 
from [41, 44], based on the COMPASS force field, is used 
for comparison.

Figure  9a–f display the different repulsion parameters 
aij . The red dashed line indicates the diagonal value of 
24.83. A crucial difference between the different parti-
cle sets is the water–methanol (H2O–MeOH) repulsion: 
for the COMPASS, OPLS-AA (TIP5P) and OPLS-AA 
(TIP5P, Zij = 1 ) force fields, this repulsion is the smallest 
one (and thus the base value for off-diagonal repulsion 
parameter scaling), whereas for force fields OPLS-AA 
(TIP3P), AMOEBA09, MMFF94, and MM3/MMFF94 

Table 3  Coordination numbers Zij (at T = 298K )

The static packing results from previous research are added for comparison only

Dimer Zij Zji

MMFF94 OPLS-AA 
(TIP3P)

OPLS-AA 
(TIP5P)

AMOEBA
09

STATIC
PACKING

MMFF94 OPLS-AA 
(TIP3P)

OPLS-AA 
(TIP5P)

AMOEBA
09

STATIC
PACKING

Et–Et 12.0 11.8 11.8 12.0 5.6 12.0 11.8 11.8 12.0 5.6

EtOH–Et 12.9 12.6 12.6 12.6 5.8 10.4 10.3 10.3 10.2 5.3

EtOH–EtOH 11.4 11.1 11.1 11.0 5.6 11.4 11.1 11.1 11.0 5.6

H2O–Et 8.7 8.2 8.2 8.4 4.5 16.3 16.4 17.3 17.2 6.9

H2O–EtOH 7.2 7.0 7.0 6.8 4.3 17.9 17.8 18.4 18.7 7.3

H2O–H2O 11.0 10.9 10.8 10.8 5.5 11.0 10.9 10.8 10.8 5.5

Me–Et 10.0 9.8 9.8 9.7 4.9 14.9 14.8 14.8 14.6 6.3

Me–EtOH 8.8 8.6 8.6 8.3 4.7 16.1 15.8 15.8 15.6 6.6

Me–H2O 13.3 13.2 14.2 13.7 6.1 10.6 10.2 10.2 10.1 5.0

Me–Me 12.3 12.1 12.1 11.9 5.6 12.3 12.1 12.1 11.9 5.6

Me2O–Et 13.0 12.8 12.8 12.7 5.7 11.0 10.7 10.7 10.7 5.3

Me2O–EtOH 11.5 11.1 11.1 11.0 5.5 11.5 11.4 11.4 11.4 5.6

Me2O–H2O 18.0 17.8 18.7 18.5 7.3 7.5 7.2 7.3 7.5 4.3

Me2O–Me 16.3 15.9 15.9 15.7 6.6 9.3 8.9 8.9 8.8 4.7

Me2O–Me2O 12.2 11.6 11.6 11.7 5.6 12.2 11.6 11.6 11.7 5.6

MeOH–Et 11.0 10.8 10.8 10.8 5.2 12.9 12.7 12.7 12.3 5.9

MeOH–EtOH 9.4 9.3 9.3 9.3 5.0 13.3 13.4 13.4 13.0 6.2

MeOH–H2O 14.8 14.7 15.1 15.2 6.5 8.2 8.1 8.0 8.4 4.7

MeOH–Me 13.6 13.4 13.4 13.2 6.0 10.5 10.5 10.5 9.9 5.2

MeOH–Me2O 10.0 9.7 9.7 9.8 5.0 13.8 13.6 13.6 13.4 6.1

MeOH–MeOH 11.5 11.2 11.2 11.3 5.6 11.5 11.2 11.2 11.3 5.6

HAc–HAc 9.7 10.2 10.2 10.1 5.6 9.7 10.2 10.2 10.1 5.6
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Fig. 7  Coordination numbers Zij , scaled to 1 for each force field. The black line indicates the COMPASS static packing coordination numbers 
for the homo dimers

Fig. 8  Coordination numbers Zij , linearly mapped to interval [0,1] for each force field. The black line indicates the COMPASS static packing 
coordination numbers for the homo dimers
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the water–dimethyl ether (H2O–Me2O) repulsion is 
minimal. Interestingly, the different water models TIP3P 
and TIP5P of the OPLS-AA force field exhibit this cru-
cial difference, emphasizing their relevance. Note, that 

the differences of the non-water repulsions for OPLS-AA 
(TIP3P) and OPLS-AA (TIP5P) are caused by the dif-
ferent scaling due to these different base values for off-
diagonal repulsion parameter scaling. The COMPASS 

Fig. 9  Scaled repulsion parameters aij . The red dashed line indicates the diagonal value of 24.83 for homo dimers
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Fig. 9  continued
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force field exhibits an extraordinary difference for the 
water–methane (H2O–Me) and water–ethane (H2O–Et) 
repulsions, which is otherwise not visible. A significant 

difference between the OPLS-AA (TIP5P) and OPLS-
AA (TIP5P, Zij = 1 ) force field is the water–dimethyl 
ether (H2O–Me2O) repulsion. These obvious differences 

Fig. 9  continued
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between the force fields lead to different levels of useful-
ness for DPD simulation approaches, where even a sin-
gle difference in dimer interaction can become a decisive 
factor.

DPD simulations
The created particle sets were used for DPD simulations 
of mixtures of water with the non-ionic polyoxyethyl-
ene alkyl ether surfactant C10E4, where “C10” indicates 

the number of 10 carbon atoms in the alkyl chain of the 
lyophobic part, and “E4” represents the number of 4 lyo-
philic ethylene oxide units [44]. A stable lamellar Lα phase 
is formed by a C10E4/water mixture around 298 K with a 
C10E4 mass fraction of 0.75. The performance of the par-
ticle sets for the different force fields may be evaluated 
by monitoring the emergent formation of C10E4 bilayers 
from initial random mixing in the simulation box [44]. 
The DPD simulations are carried out with the settings 

Fig. 10  Stacked bilayer superstructure formation from random mixing of a C10E4/water mixture for particle sets OPLS-AA (TIP5P Zij = 1 ) (top row), 
OPLS-AA (TIP5P) (middle row), and COMPASS (bottom row) with front view of the simulation box with vertical z-axis. Particle colours: Me: Olive, 
Me2O: Orange, MeOH: Red, H2O: Cyan

Table 4  Bilayer convergence for different particle sets (with an integration step size of 0.04)

*  Bilayer superstructure not parallel to xy-plane

Force field COMPASS MMFF94* MMFF94/MM3 AMOEBA09* OPLS-AA (TIP3P) OPLS-AA (TIP5P) OPLS-AA (TIP5P, Zij = 1)

Convergence [in 1000 
simulation steps]

116 522 – 860 846 132 62
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outlined in [44], using the SPICES 9Me–4Me2O–MeOH 
fragmentation for C10E4 [45, 46], an integration step size 
of 0.04, and a deactivated periodic boundary in z-direc-
tion (to induce bilayer formation in the xy-plane).

For particle set OPLS-AA (TIP5P Zij = 1 ), a stacked 
bilayer superstructure emerges at simulation step 62,000, see 
Fig. 10 and Table 4, which was even below the COMPASS 
particle set from [44] with 116,000 steps, where the emerged 
bilayer structure corresponds well to the one reported in 
[44], see Fig. 11. The OPLS-AA (TIP5P) particle set required 
more than twice as many simulation steps (132,000) and the 
OPLS-AA (TIP3P) particle set more than tenfold as many 
(846,000 steps). The AMOEBA09 and MMFF94 particle sets 
show a bilayer superstructure formation, but the bilayers do 
not align parallel to the xy-plane (as induced by the periodic 
boundary conditions) but parallel to the yz-plane. Using the 
hybrid MM3/MMFF94 particle set, no bilayer was formed 
within 1,000,000 simulation steps. For the specified DPD 
simulation task, the OPLS-AA (TIP5P Zij = 1 ) particle set 
can be regarded as the most suitable choice, which is in good 
agreement with experimental findings.

Conclusions
The outlined automated comprehensive calculation of 
intermolecular interaction energies based on molecu-
lar force-fields shows satisfactory results for small 

molecule interactions and can even be successfully 
used to estimate mesoscopic simulation parameters. 
Special care should always be taken, as individual force 
fields can lead to erroneous results. Therefore, despite 
all automation, manual checking of the results is still 
essential.

The new calculation pipeline can be easily extended to 
additional force fields (which may require their conver-
sion into the Tinker format). Therefore, calculating dif-
ferential pair interaction energies will advance with the 
progress in improving the underlying molecular force 
fields. Due to the modularized pipeline approach, alter-
native modeling packages can also be used for certain 
computational tasks if they can provide the required spe-
cific functions.

The robustness of the outlined computational pipeline 
can be seen as a crucial advance, as the estimation of 
differential pair interaction energies along alternative 
computational paths often led to ambiguous results, 
which in particular prevented the construction of con-
sistent particle–particle repulsions for larger meso-
scopic particle sets [47]. The construction of mesoscopic 
sets with dozens of particles (including hundreds or 
thousands of mutual particle repulsions) is now within 
practical reach.

Fig. 11  Me2O and MeOH particle distribution snapshots along the z-axis perpendicular to a single emerged C10E4 bilayer for the OPLS-AA (TIP5P 
Zij = 1 ) (solid lines) and COMPASS (dashed lines) particle sets. The highlighted area corresponds to the bilayer width, indicated by the double arrow
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Availability and requirements

Project name: Mesoscopic Interaction Parameter 
Estimation with Tinker for Java (MIPET4Java)
Project home page: https://​github.​com/​ziele​sny/​MIPET
Current version: v1.0.0.0
Operating system(s): Windows (× 64), Linux (× 64)
Programming language: Java
Other requirements: Java v17.0.4 or higher, Tinker 
Molecular Modeling Package v8.10.2
Licence: GPL-3.0
Any restrictions to use by non-academics: While the 
backbone code of this project is not restricted to aca-
demic use, the Tinker Molecular Modeling Package 
is subject to corresponding restrictions, see [21] for 
license details.
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AMOEBA09	� Atomic Multipole Optimized Energetics for Biomolecular Simu-

lation force field 09
BSSE	� Basis set superposition error
COMPASS	� Condensed-phase Optimized Molecular Potentials for Atomis-

tic Simulation Studies
CDK	� Chemistry Development Kit
DFT	� Density Functional Theory
DPD	� Dissipative Particle Dynamics
LMOD	� Low-mode conformational search
MD	� Molecular dynamics
MM3	� Molecular mechanics force field 3
MMFF94	� Merck molecular force field 94
OCVM	� Optimally Conditioned Variable Metric
OPLS-AA	� All-atom optimized potentials for liquid simulations force field
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