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Abstract 

Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. 
Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks 
with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are 
available for most of the training samples. Since datasets were generated for different purposes with distinct chemi‑
cal spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask 
learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical 
space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, 
where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness 
of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks 
are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, 
MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior 
performance over compared single‑task and multitask methods. The overall toxicity derived from the developed 
models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the out‑
puts from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of develop‑
mental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet 
is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.

Scieific contribution
A novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models 
using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish 
toxicity prediction models were developed using the proposed MTForestNet which provide superior performance 
over conventional single‑task and multitask learning methods. In addition, the developed zebrafish toxicity prediction 
models can reduce animal testing.
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Introduction
The development of prediction models for chemical bio-
activity and toxicity using small data faces great chal-
lenges. While machine learning algorithms have been 
successfully applied to develop prediction models for 
various endpoints, the use of incomprehensive training 
data can lead to issues of limited applicability and over-
fitting. In contrast to the traditional single-task methods 
that learn a task at a time, multitask learning algorithms 
simultaneously learning multiple tasks are more relevant 
to the human learning process for leveraging cross-
domain knowledge. Data from relevant learning tasks 
can augment the learning and avoid overfitting issues. 
Shared knowledge learned from multitasks can improve 
model generalization and performance [1, 2].

Several cheminformatics studies have developed mul-
titask learning approaches to improve model perfor-
mance. Since multitask learning using neural networks 
with shared layers is intuitive, most of the cheminfor-
matics studies used deep neural network-based imple-
mentation [3]. For example, a multitask model based on 
graph convolutional neural networks (GCN) can deal 
with data imbalance issues for Tox21 data (Li et al. 2023). 
GCN was also found to be useful for predicting bioactiv-
ity data for tasks of several hundred kinases [4]. Datasets 
of Ames test results for five strains were simultaneously 
learned using a multitask deep neural network with supe-
rior performance compared to single-task models [5]. 
In addition to the mechanism of shared layers, Siamese 
networks were proposed for learning shared parameters 
of neural networks to facilitate data-poor learning tasks 
[6]. In contrast to the neural network methods requiring 
extensive hyperparameter tuning, an ExtraTree-based 
multitask method has been implemented for predicting 
skin sensitizers [7].

While successful applications have been shown, cur-
rent multitask applications in this field mainly focus on 
learning from datasets with many shared training sam-
ples among the tasks. For example, each of the exten-
sively studied datasets of QM9, ClinTox, Sider and Tox21 
in the previous multitask learning studies contains a set 
of chemicals with multiple labels [8–13]. For multitask 
learning based on multiple data sources, the chemical 
spaces of datasets are usually distinct. The applicability 
of the abovementioned multitask learning algorithms for 
tasks with distinct chemical space is largely unknown. In 
addition, hyperparameter tuning for multitask deep neu-
ral networks could be tedious and complicated [14]. The 
performance of conventional multitask deep neural net-
works varies in different applications [8]. In this regard, 
the development and assessment of multitask learning 
algorithms for tasks with distinct chemical spaces are 
therefore desirable.

This study took zebrafish toxicity prediction as an 
example. Zebrafish (Danio rerio) as an important model 
organism has been widely used for phenotype-based 
drug discovery and toxicity screening [15, 16]. A few 
studies have conducted large-scale toxicity screening 
for several thousands of chemicals based on zebrafish 
[17–22]. However, the application of the experimental 
methods for a large number of chemicals is still time- 
and resource-consuming. The development of prediction 
models for zebrafish toxicity based on available experi-
mental data can be useful for prioritizing chemicals of 
concern for further experimental validation. Multitask 
learning is expected to further improve the prediction 
performance leveraging all available datasets. However, 
among the data sources [17–22], one data source repre-
sents a distinct chemical space sharing only 1.3% com-
mon chemicals with other data sources. The development 
of prediction models for zebrafish toxicity could be there-
fore challenging.

In this study, a dataset of chemical toxicity for zebrafish 
consisting of 48 toxicity endpoints was compiled from 
multiple data sources and divided into training, valida-
tion, and test datasets for model training, parameter 
tuning, and independent testing, respectively. A novel 
multitask learning algorithm named MTForestNet using 
random forest [23] as base learners with a stacking 
mechanism was developed to progressively improve the 
prediction performance of all learning tasks. The stack-
ing mechanism is to iteratively train new models by using 
a concatenated feature vector consisting of original fea-
tures with outputs from task-specific models of the previ-
ous layer. In terms of area under the receiver operating 
characteristic curve (AUC) value, the proposed algorithm 
achieved a high independent test performance of 0.911 
representing a 26.3% improvement over the conventional 
single-task learning models. Also, the MTForestNet 
showed superior performance over conventional multi-
task learning methods. The proposed multitask learning 
method MTForestNet is expected to be useful for tasks 
with distinct chemical space and the developed model 
can be applied to the screening of chemicals with poten-
tial toxicity concerns for further experimental validation.

Materials and method
Data preprocessing
To develop multitask learning models for zebrafish tox-
icity, a total of four datasets consisting of 48 toxicity 
endpoints and 6,885 chemicals were collected from 6 
experimental studies of zebrafish and zebrafish embryo 
toxicity [17–22]. The four tasks were named larva, 
embryo development, lipid metabolism, and embryo 
morphology. The tasks represent diverse endpoints of 
mortality, morphology, behavior, and development. 
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This study focused on binary classification, therefore 
toxicity thresholds adopted from the reference stud-
ies were utilized to classify chemicals as toxic com-
pounds. The other chemicals not fit the threshold are 
considered nontoxic compounds. Duplicates, mixtures, 
and chemicals without explicit structure informa-
tion were excluded from the following analysis. Sum-
mary and details of the four datasets and 48 tasks are 
shown in Table  1 and Table  S1, respectively. Among 
the tasks, 15 tasks are class imbalanced with less than 
or equal to 10% active/inactive ratio. In contrast, the 
task of developmental toxicity score (TOX_SCO) is 
with a high active/inactive ratio of 74.0%. Each chemi-
cal was then converted to a 1024-bit feature vector 
using the extended connectivity fingerprints of diam-
eter 6 (ECFP). After the preprocessing, a total of 4854 

non-duplicate chemicals and 48 tasks were included in 
the final datasets.

MTForestNet
As shown in Table  1, the datasets can be very differ-
ent with distinct chemical spaces. To enable multitask 
learning for datasets with distinct chemical spaces, a 
progressive multitask learning strategy (MTForestNet) 
concatenating chemical fingerprint features and outputs 
of individual classifiers from the previous layer for accu-
racy improvement was proposed.  The system flow of the 
proposed method is shown in Fig. 1. The architecture of 
the MTForestNet is shown in Fig. 2. The classifier imple-
mented in this study is the random forest [23] which can 
provide robust prediction performance in many studies 
[24–29]. In this study, the implementation of random for-
est was based on scikit-learn [30].

Table 1 Summary of the datasets used in this study

Dataset No. of chemicals (initial/ 
processed dataset)

Endpoints Toxicity threshold

Larva [20] 1060/1040 BMD10 (benchmark dose for 10% effect) for
(1) 2 mortality endpoints (24 hpf and 120 hpf )
(2) 3 morphology endpoints (24 hpf )
(3) 17 morphology endpoints (120 hpf )
(4) 2 behavioral endpoints (120 hpf )

BMD10 ≤ 1 mM

Embryo development [22] 1060/1040 LEL (Lowest Effect Level) for
(1) 1 mortality endpoint (120 hpf )
(2) 17 morphology endpoints (120 hpf )

LEL ≤ 64 uM

Lipid metabolism [18] 3806/3801 Overnight larva lipid metabolism inhibition
(1) MIC (minimum inhibition concentration)
(2) Score

(1) MIC ≤ 100 uM
(1) score > 0

Embryo morphology [17, 19, 21] 959/934 LEL (Lowest Effect Level) for
(1) The lowest LEL value of 18 cognition and behavior 
endpoints (120 hpf )
(2) The lowest LEL of 17 sublethal endpoints (120 hpf )
(3) Mortality (120 hpf )

LEL ≤ 64 uM

Development toxicity score (120 hpf ) Score > 2.24

Fig. 1 System flow of the proposed method
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The training process started with the model training 
for each of the 48 learning tasks using random forest. The 
parameters of the number of trees (n_estimators), num-
ber of features (max_features) for building a tree, and 
random seed (random_state) for random forest training 
were set to 500, log2(feature number), and 8, respec-
tively. To avoid overfitting issues and provide a reason-
able estimation of prediction performance, each of the 
datasets was randomly split into a training set (70%), a 
validation set (10%), and a test set (20%). The training set 
was utilized for training models, while the validation set 
was utilized for parameter tuning. The remaining test set 
not involved in model training and tuning was utilized 
for estimating the prediction performance for unseen 
samples. The above-mentioned first step constitutes the 
first layer of MTForestNet and its prediction perfor-
mance is considered the baseline of the traditional single-
task learning approach where no information is shared 
between tasks.

To leverage the information learned from other learn-
ing tasks for model improvement, the original feature 
vectors (m = 1024) were concatenated with 48 score out-
puts (n = 48) predicted from the models of the first layer 
and utilized for training 48 models constituting the sec-
ond layer. The validation set was utilized for calculating 
the prediction performance of the area under the receiver 
operating characteristic curve (AUC) of 48 models for 
each layer. The average AUC of the 48 models was taken 
as the overall performance for each layer. The procedure 
was conducted iteratively for building subsequent layers 
until no improvement in average AUC on the validation 
set was observed.

Overall toxicity measurement for Zebrafish
Embryonic zebrafish metric (EZ Metric) is an over-
all measure of morbidity and mortality in embryonic 
zebrafish that has been utilized to prioritize the toxic-
ity of diverse nanomaterials [31–33]. The metric is a 
weighted sum of 4 endpoints at 24 hpf (hours post ferti-
lization) for mortality, delayed development, absence of 
spontaneous movement, and notochord malformation, 
and 17 endpoints at 120 hpf for mortality, organ malfor-
mation, and dysfunction. The weights defined in the pre-
vious study [33] and endpoints are shown in Table S3.

Developmental toxicity prediction
To assess the performance improvement by incorporat-
ing the predicted features obtained from the developed 
multitask model, two published developmental toxicity 
datasets of DART and PDT representing developmental 
and reproductive toxicity [34] and prenatal developmen-
tal toxicity [35] in humans, respectively, were utilized for 
performance comparison. The DART dataset consists 
of 201 toxic and 91 nontoxic chemicals, while the PDT 
dataset comprises 660 toxic and 584 nontoxic chemicals. 
To avoid sampling bias, 100 runs of experiments were 
conducted in this study. For each run, the two datasets 
were randomly split into 80% training and 20% test sets.

The 48 binary prediction results were appended to 
the original 1024-bit ECFP feature vector to form a new 
1072-bit feature vector. For each of the two datasets, two 
random forest-based models were trained using the cor-
responding training set and the 1024-bit and 1072-bit 
feature vectors. The parameters of the number of trees 
(n_estimators), number of features (max_features) for 

Fig. 2 Schematic diagram of MTForestNet
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building a tree, and random seed (random_state) were set 
to 500, log2 (feature number), and 8, respectively.

Since the features of 48 zebrafish tasks can be redun-
dant, the identification of task-relevant features can 
potentially improve the prediction performance. We 
implemented a sequential backward feature selection 
algorithm with conditional feature inclusion using the 
MLxtend package [36]. The feature set giving the highest 
area under the curve (AUC) value in tenfold cross-valida-
tion (10-CV) on the respective training set was selected 
for building the final model for the independent test. The 
average AUCs of the 100 runs were then calculated to 
represent the model performance.

Results and discussion
Distinct chemical space of the Zebrafish datasets
The chemical space of the four datasets collected from 
different sources was analyzed to characterize the learn-
ing problem. Two measurements of the highest percent-
age of common chemicals and average similarity were 
calculated for each pair of the four datasets. Since one 
dataset contains multiple subsets of endpoints, the per-
centage of common chemicals was calculated in a subset-
wise manner. Given n subsets in dataset A and m subsets 
in dataset B, n × m percentage values of common chemi-
cals were obtained by dividing the number of common 
chemicals by the number of unique chemicals in both 
subsets. The highest percentage value from subset-wise 
comparison was taken as the percentage of common 
chemicals between the two datasets. For calculating the 
average similarity, an average of Tanimoto similarities for 
n × m subset pairs was utilized to represent the overall 
similarity between the two datasets.

Figure  3 shows the highest percentage of common 
chemicals and average similarity for each pair of the four 
datasets. The larva and embryo development datasets 
were tested against the same chemical list; therefore, the 
percentage of common chemicals is 100%. The embryo 
morphology shares 87.1% chemicals with datasets of 
larva and embryo, and the average similarity is 99.8%. 
The chemical space of the three datasets is considered 
highly overlapped. As for the lipid metabolism data-
set, only 2 out of the 3801 chemicals were found in the 
other three datasets giving 0.04% of common chemicals. 
The average similarities of the lipid metabolism dataset 
to larva, embryo development, and embryo morphology 
datasets are 24.6%, 24.6%, and 24.2%, respectively. For the 
most distinct task of MIC, there are two chemicals in the 
MIC task associated with a similarity greater than 0.35 
with the other tasks. As for the METAB task, 443 chemi-
cals are associated with a similarity greater than 0.35 to 
larva and embryo development dataset. Those chemi-
cals may contribute to the transfer learning among tasks. 

Altogether, the lipid metabolism represents a dataset 
with distinct chemical space compared to the other three 
datasets. Conventional machine learning algorithms may 
not be readily applicable to building multitask learning 
models from datasets with distinct chemical spaces.

To further investigate the difference of the chemical 
spaces of the four datasets, principal component analy-
sis was applied to visualize the chemical spaces of the 
datasets along with the ChEML 34 dataset consisting 
of 2409,270 compounds [37]. At first, ECFP fingerprint 
was utilized and the first two principal components 
were utilized for plotting. As shown in the Fig.  4A, the 
plot based on ECFP shows some difference between the 
datasets with a certain degree of overlapped chemical 
space. However, the variance explained by the first two 
principal components based on ECFP is only 12.3% indi-
cating insufficient power for showing the distribution of 
chemicals. To properly capture the variance of the data-
sets, visualization based on MACCS fingerprint was con-
ducted with a total explained variance of 86.6% using the 
first two principal components. Figure 4B shows very dif-
ferent chemical spaces occupied by the studied datasets 
using MACCS-based principal component analysis.

In addition, the absolute correlation coefficients (r) of 
shared chemicals between pairs of the 48 tasks were sum-
marized into four categories of low (|r|< 0.3), medium 
(0.3 ≤|r|< 0.5), high (0.5 ≤|r|< 0.7), and very high (0.7 ≤|r|) 
consisting of 430, 328, 240, and 37 pairs, respectively. 
Two tasks of METAB and MIC shared only two or no 
chemicals with other datasets leading to 93 pairs not cat-
egorized. The results indicate that some degree of task 
similarity existed that could facilitate the knowledge 
transfer between tasks except for METAB and MIC with-
out sufficient shared chemicals for assessment.

Multitask learning using MTForestNet
To evaluate the baseline performance of conventional 
single-task learning algorithms, the popular random 
forest algorithm was applied to the model development 
for each of the 48 learning tasks. As shown in Fig. 5, the 
single-task models (first layer) yielded low average AUCs 
of 0.642 and 0.638 for validation and independent test, 
respectively. Considering the complexity of the end-
points, the dataset size may be insufficient for developing 
robust models with low performance.

To leverage multiple datasets for improving model 
performance, the MTForestNet was developed for pre-
dicting the chemical toxicity of zebrafish toxicity. The 
proposed framework aimed to improve the prediction 
by incorporating an additional data dimension of bioac-
tivity obtained from prediction models. The concept is 
similar to the chemical-biological read-across [38–40] 
that relevant biological information can facilitate the 
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prediction of endpoints without data. In our experiments 
with MTForestNet (Fig.  5), the average of validation 
AUCs for the 48 tasks had a large improvement at the 
second layer. It converged at the third layer where adding 
one more layer does not improve the performance. For 
the validation performance, the MTForestNet achieved 
a high average AUC of 0.907 with a 26.5% improve-
ment over the single-task models, i.e. the 1st layer of the 
MTForestNet. As for the test performance, a similar high 
average AUC value of 0.911 was obtained representing a 
27.3% improvement over the single-task models. A total 
of 43 tasks (89.6%) were well-modeled with AUC values 
greater than 0.8. Detailed performance is shown in Sup-
plementary Table 2. In contrast, only 1 task with an AUC 
greater than 0.8 was obtained from single-task models. 
Please note that the inclusion of the model output from 
the same task of the previous layer for the model training 

of the current layer provided 0.3% and 0.7% improvement 
on AUC over the exclusion of the output. Also, while the 
convergence rule mentioned in the methodology was uti-
lized to identify the third layer with highest performance, 
models of the second layer with only slightly worse per-
formance can be useful in resource-limited environ-
ments. The proposed MTForestNet multitask learning 
framework is useful for dealing with multiple datasets 
with distinct chemical spaces by introducing biologi-
cal dimensions for improving the prediction of zebrafish 
toxicity.

Since the lipid metabolism dataset is most dissimilar 
to the other datasets, it is interesting to know whether 
the exclusion of a single dataset will affect the pre-
diction performance. Four additional experiments of 
model training, validation, and testing were conducted 
by excluding one dataset for each experiment. Figure  6 

Fig. 3 Pairwise comparison of four datasets utilized in this study using A the highest percentage of common chemicals and B average similarity 
between datasets
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shows the performance comparison of models using all 
four datasets and only three of them. As expected, the 
exclusion of the lipid metabolism dataset resulted in a 
slightly increased average AUC of 0.914 on the test data-
set. In contrast, the exclusion of datasets with similar 
chemical space showed slightly decreased average AUCs 
of 0.907 and 0.883 for the exclusion of the larva dataset 
and embryo development dataset, respectively, while 
the exclusion of the embryo morphology dataset did not 
affect the average AUC on the test dataset. The analysis 
of percentages of tasks with an AUC value greater than 
0.8 showed the same trend. The percentage of tasks with 

an AUC value greater than 0.8 for the exclusion of lipid 
metabolism dataset with dissimilar chemical space was 
93.4%, while the worse performance of 87.5%, 80.0%, and 
88.6% was obtained for the exclusion of larva dataset, 
embryo development dataset, and embryo morphology 
dataset, respectively. The inclusion of the most dissimilar 
dataset of lipid metabolism only slightly affected the per-
formance. Also, its inclusion largely improved the aver-
age AUC on the lipid metabolism dataset from 0.756 to 
0.899 with a 14.3% improvement. The analysis showed 
that the proposed MTForestNet performed well even for 
the inclusion of datasets with distinct chemical space.

Comparison to other multitask learning methods
While MTForestNet achieved a high AUC performance 
in the zebrafish toxicity prediction, it is interesting to 
compare MTForestNet with existing methods. Three 
deep neural network-based multitask models from the 
DeepChem package [13] and an ExtraTrees-based mul-
titask model of MT-ExtraTrees [41] were implemented 
for comparison. The three multitask (MTL) classifica-
tion algorithms are ordinary MTL (DC MTL), progres-
sive MTL (DC ProgressiveMTL), and robust MTL (DC 
RobustMTL). A grid search was performed to identify 
the parameters giving the highest validation performance 
for developing the final model with a maximum epoch 
value of 1000. Two-layer configurations of [200, 100, 50], 
and [400, 200, 100], as well as three dropout rates of 0.25, 
0.15, and 0.1, were considered in this study.

MT-ExtraTrees introduced an additional splitting cri-
terion based on tasks to learn task-specific knowledge 

Fig. 4 Visualization of chemical spaces of datasets using principal component (PC) analysis based on two fingerprints of A ECFP and B MACCS

Fig. 5 The performance of MTForestNet for each layer

Fig. 6 Detailed performance for models trained on different datasets
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and enable multitask learning which is effective in the 
prediction of chemical properties and toxicity [7, 42]. The 
best parameter of n_estimators ∈ {1000, 500, 200, and 
100} giving the best validation performance was selected 
for developing the final model for testing. The mtry was 
set to log2(total feature number) indicating the num-
ber of features for building a tree and the probability of 
evaluating a task-wise split was set to mtry/(total feature 
number).

The comparison of average AUCs for various models 
is shown in Fig.  7. Please note that single-task models 
using random forests and ExtraTrees were also imple-
mented for comparison. Detailed performance is shown 
in Table S2. The proposed MTForestNet capable of han-
dling the datasets with distinct chemical spaces per-
formed best. MT-ExtraTrees with a good AUC of 0.862 
on the test sets ranked second, which is 4.9% worse than 
the MTForestNet. Both multitask methods are superior 
to their single-task implementations with at least 25% 
improvement on the average AUC. In terms of the num-
ber of well-modeled tasks, there are 43 and 39 tasks with 
an AUC on the test sets greater than 0.8 for MTForestNet 
and MT-ExtraTree, respectively.

As for the DeepChem-based models, all the tested 
models failed to generate good models. The DC_Progres-
siveMTL is better than the others with an average AUC 
of 0.654 on the test sets but is only slightly better than 
the single-task random forest. The DeepChem-based 
models may need more parameter tuning to improve the 
performance. In contrast, MT-ExtraTree and MTForest-
Net achieved high performance with only a few tuning 
parameters. In general, MTForestNet performed best in 
the zebrafish toxicity datasets and held strong potential 
in addressing the challenge of multitask learning from 
datasets with distinct chemical spaces.

Overall toxicity assessment
The embryonic zebrafish metric (EZ Metric) is a weighted 
sum of 21 toxicity endpoints and is useful for represent-
ing the overall toxicity in embryonic zebrafish [33]. To 
assess whether the predicted results can provide good 
overall toxicity evaluation, the EZ Metric scores based 

on predicate values and experimental values were cal-
culated and compared as shown in Fig.  8. Based on the 
collected datasets of larva and embryo development, the 
EZ Metric scores can be calculated using BMD10 and 
LEL data, respectively. Please note that the data of three 
toxicity endpoints in the embryo development data are 
missing, therefore only data of the remaining 18 toxicity 
endpoints were utilized for calculating the LEL-based EZ 
Metric score.

In general, the predicted and experimental EZ Met-
ric scores correlated well with Pearson correlation coef-
ficients of 0.956 and 0.939 for BMD- and LEL-based EZ 
Metric scores, respectively. For BMD-based estimation, 
the predicted EZ Metric score tended to conclude higher 
overall toxicity, while LEL-based estimation tended 
to give a lower EZ Metric score. For the application of 
MTForestNet-derived EZ Metric scores, the BMD-based 
score is expected to be more useful for identifying most 
of the potentially toxic chemicals for further testing. In 
contrast, the LEL-based score can be utilized for scenar-
ios requiring a high precision of toxicity prediction. The 
results demonstrated the use of MTForestNet prediction 
for quick overall toxicity assessment.

Predicted Zebrafish toxicities as informative features 
for improving developmental toxicity prediction
Since the zebrafish toxicity endpoints are impor-
tant indicators for studying developmental toxicity of 
chemicals [43]. It is therefore interesting to compare 
the model performance for predicting developmental 
toxicity in humans using conventional ECFP-based fea-
ture representation and ECFP with predicted zebrafish 

Fig. 7 Comparison of MTForestNet and other methods

Fig. 8 Comparison of predicted and experimental embryonic 
zebrafish metric (EZ Metric) scores using A benchmark dose for 10% 
effect values (BMD10) and B lowest effect level (LEL)
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toxicity values (ZF_features). Two developmental tox-
icity-relevant datasets of DART and PDT were utilized 
for evaluating the performance of the combination of 
structural and complementary ZF_features. For each 
of the two datasets, one hundred runs of random data 
partition were conducted to generate 100 training and 
100 test sets. For each run, the processes of feature 
selection, 10-CV, and model development were based 
on the corresponding training set. An independent test 
using the corresponding test dataset was conducted to 
evaluate the test performance of the developed model.

The average AUCs of the 100 runs for validation and 
test are shown in Fig.  9. For the 10-CV performance, 
the inclusion of ZF_features yielded an average AUC of 
0.812 for the DART representing a 3.8% improvement 
over the conventional ECFP-based model. The aver-
age AUC of 0.751 was obtained for the PDT dataset 
representing a slightly decreased performance (0.6%) 
compared to the ECFP-based model. In addition to 
the average AUC, the variance of 100 runs was also 
an important indicator of the robustness of the mod-
els. Figure  9A shows that the inclusion of ZF_features 
provides a more robust 10-CV performance in both 
datasets with a much smaller variance in 100 runs 
compared to ECFP-based models. The independent 
test results (Fig.  9B) showed that the incorporation of 
ZF_features provided 8.1% and 4.3% improvement over 
ECFP-based models with average AUC values of 0.851 
and 0.794 for the DART and PDT tasks, respectively. 
Similarly, a much smaller variance was obtained by 
incorporating ZF_features in both datasets showing its 
robustness.

Table  S4 compiles the most frequently selected ZF_
features based on the 100 runs for the DART and PDT 
tasks. The common ZF_features among the top 10 fea-
tures selected for DART and PDT tasks were SM24, LEL_
SWIM, and LEL_MORT representing the BMD10 for the 
absence of spontaneous movement (24 hpf), LEL for the 
failure of the swim bladder to inflate (120 hpf) and LEL 
for cumulative mortality by 120 h post fertilization (hpf), 
respectively. The utilization of ECFP along with compli-
mentary ZF_features led to a notable AUC enhancement 
over the conventional ECFP-based models for the two 
developmental toxicity-relevant datasets.

Conclusion
The sparsity of chemical toxicity data is a common issue 
in developing robust models. This study proposed a novel 
multitask learning method MTForestNet for leverag-
ing multiple datasets with distinct chemical spaces. The 
MTForestNet is a progressive learning algorithm based 
on random forest classifiers organized in a neural net-
work-like multilayer architecture. A total of 48 datasets of 
zebrafish toxicity were collected and utilized for bench-
marking the proposed MTForestNet. The experimental 
results showed that MTForestNet exhibited a high AUC 
performance of 0.911 in the test sets. It provided supe-
rior performance over the compared single-task and 
multitask learning algorithms. In addition, the devel-
oped models can be reliably utilized to assess the overall 
chemical toxicity of embryonic zebrafish based on the EZ 
Metric scoring method with a high correlation coefficient 
greater than 0.9 to the experimental results. The ZF_fea-
ture generated from the developed models can be uti-
lized in combination with conventional ECFP features to 
improve the performance and robustness for predicting 
developmental toxicity. The models are expected to be 
useful for zebrafish toxicity studies. Since chemical toxic-
ity and bioactivity data are usually sparse and associated 
with distinct chemical spaces, the proposed MTForest-
Net method can be potentially useful for learning from 
the chemical toxicity and bioactivity data.
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