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Abstract 

One challenge that current de novo drug design models face is a disparity between the user’s expectations 
and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit 
knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-
based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists 
that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-
source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feed-
back on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly 
interface for annotating preferences and specifying desired or undesired structural features. By providing chemists 
the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit 
knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. 
The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform 
where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining 
de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop 
system where human expertise can continuously inform and refine the generative models.

Scientific contribution
We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on sub-
structures and properties of small molecules. This tool can be used to learn the preferences of chemists in order 
to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs 
and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the dis-
cussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking 
or disliking a molecule.
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Introduction
De novo drug design, a process of creating novel molecu-
lar structures with desired biological properties, stands 
as a cornerstone in the automation of the drug discovery 
process [1]. It often makes use of reinforcement learning 
to iteratively optimize molecules to achieve predefined 
objectives, such as efficacy and safety profiles [2, 3]. Rein-
forcement learning (RL) is a paradigm in machine learn-
ing that involves training agents to make sequences of 
decisions in an environment to maximize a cumulative 
reward. RL has demonstrated remarkable success across 
a wide range of applications outside of chemistry, ena-
bling agents to learn highly complex behaviors [4–6]. A 
key to the successful training of an RL agent lies in the 
design of a well-defined reward function, which serves 
as a guide for the agent to achieve desirable behaviors. 
Without a carefully crafted reward function, the agents 
might not converge to desired behaviors. Additionally, 
there is a risk of reward exploitation and hacking, where 
the agent may find unintended shortcuts to maximize its 
rewards, leading to an agent maximizing the reward in an 
undesirable fashion [7, 8].

Creating a well-specified reward function is not only 
difficult as it requires a deep understanding of the task 
at hand, but the translation of that domain expertise into 
a parametric function used to compute the reward can 
pose a challenge. In many cases, domain experts struggle 
with the translation part, as they have a good idea of what 
an acceptable solution looks like, but they are not able to 
translate this into an explicit function [9]. This leads to 
the researcher having to spend extensive time on reward 
engineering, to create a reward function that enables the 
agent to learn the desired behavior.

One solution to the problem can be found in Human-
in-the-loop (HITL) Reinforcement Learning.[10] Here 
somewhere in the training loop, human behavior or 
feedback is used to better align the agent’s behavior with 
the human’s expectations. An effective solution to that 
problem involves learning the policy implicitly through 
methodologies such as imitation learning and behavioral 
cloning [11, 12]. In these approaches, the agent learns by 
imitating the actions of an expert, allowing it to grasp the 
nuances of the task without explicitly defining a reward 
function. An alternative strategy is inverse reinforce-
ment learning, by inferring the underlying reward struc-
ture from observed expert behavior, the system learns 
a reward model that should match more closely with 
the expectation [13]. Lastly, preference learning can be 
used to actively incorporate human feedback into the RL 
training loop [9]. This integration can occur directly, as 
demonstrated by methods like Deep Preference Optimi-
zation (DPO) [14], or indirectly through the creation of 
a reward model based on human feedback [15]. In most 

applications, the user ranks two or more outputs by their 
preferences and iteratively the model aligns with the 
expectations of the user

In many popular de novo drug design frameworks, the 
chemist must also express his preferences in the form of 
a parametric reward function, that describes the prop-
erties that chemists expect the generated molecules to 
have [16]. Chemists can struggle in defining well-speci-
fied reward functions. Organic and medicinal chemists 
are often not overly familiar with potential molecular 
descriptors that can be used to create a reward function. 
Additionally, they are not trained to think about mol-
ecules as a sum of individual properties. Rather they eval-
uate the quality of molecules more holistically by looking 
at the structural formula. This leads to a situation in 
which the reward functions produce molecules that are 
not aligned with the ideas of the chemists, and as a result, 
extensive manual cleaning and filtering of the generated 
molecules is necessary.

In generative chemistry, preference learning has been 
applied to mitigate the underspecification of reward func-
tions. For instance, projects like MolSkill leverage human 
preferences to guide the generation of molecules [17]. A 
different study uses the liking or disliking of molecules to 
extract which property ranges are acceptable to chemists 
[18]. However, chemists often possess nuanced opinions 
about molecules, extending beyond the binary decisions 
of liking or disliking. They can provide valuable and spe-
cific feedback on properties and substructures, enabling 
a more nuanced understanding of the desired molecular 
characteristics. Collecting such specific feedback cannot 
only align the de novo design agent with human prefer-
ences, but in the long-term one can elucidate the implicit 
knowledge and experience of the chemist.

To capture this nuanced feedback from chemists, we 
have developed Metis, a user interface that facilitates 
the integration of specific and detailed human feedback 
into the RL process. Metis enables chemists to commu-
nicate their preferences, concerns, and insights, thereby 
enhancing the RL agent’s ability to generate molecules 
that align more closely with the desired properties and 
characteristics. Through Metis, we aim to provide an 
interface that enables practical Human-in-the-loop de 
novo drug design, ensuring a more effective and collabo-
rative approach to molecular generation. To our knowl-
edge Metis is the first GUI that allows the collection of 
such detailed feedback. MolSkill uses a Javascript-based 
UI in which two molecules are shown, the only input that 
can be given by the user is which of the molecules they 
prefer. In the work by Sundin and colleagues [18], a web 
application built with Streamlit was built called MolWall. 
Here multiple molecules are shown to the user, each 
of which they can rank on a Likert scale. Both of these 
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GUIs do not allow feedback on specific properties or 
substructures.

With Metis, our objective is to provide a first-of-its-
kind interface that enables practical Human-in-the-loop 
(HITL) de novo drug design. Additionally, it should serve 
as an initial step for research surrounding the method-
ology of HITL drug design, ultimately ensuring a more 
effective and interactive approach to molecular genera-
tion and closing the gap between the chemist’s expecta-
tion and the generative model.

Application overview
Metis is designed to allow (medicinal) chemists to 
provide feedback on small molecular structures. In 
particular, it is focused on collecting feedback on De 
novo-generated molecules. While chemists have gen-
eral pre-disposition towards specific substructures, 
in practice the molecules are not evaluated in a vac-
uum. Rather, the chemists work in the context of a 
specific project. Typically, these projects involve tar-
geting a specific protein for which an active molecule 
needs to be developed. Additional constraints such 
as solubility, selectivity, and toxicity may be speci-
fied. Given the dynamic nature of projects, a chemist’s 
preferences may vary significantly from one project to 
another. Hence, it is essential to collect and interpret 
feedback within the context of the project. To account 

for this Metis, does not only allow the Chemist to 
give feedback but can also provide project-relevant 
information to the chemists. However, Metis can not 
only be used to collect feedback but can also directly 
integrate this feedback into a de novo drug design run, 
which, if done in an iterative manner should align the 
generated molecules with the preferences of the user 
(Figs. 1, 2 and 3).

In the following the different components of Metis 
will be introduced in more detail.

Fig. 1 View of the Metis GUI

Fig. 2 Overview of iteratively aligning the de novo model 
with the vision of the chemist using Metis 
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Feedback to de novo design
Metis can seamlessly re-integrate feedback back into a de 
novo design loop. The newly generated molecules using the 
feedback will then automatically be loaded into Metis and 
further feedback can be given. This loop allows the chemist 
to iteratively fine-tune their feedback as well as the molecu-
lar generator. Over multiple feedback rounds, the de novo 
design model should more closely align with the prefer-
ences of the chemist. Currently, Metis offers two meth-
ods for integrating user feedback into the de novo design 
model. One approach involves utilizing a Reward Model, a 
machine learning algorithm trained on the chemist’s feed-
back in the form of binary decision (like vs. dislike).. This 
model predicts whether a given molecule will be favored or 
disfavored by the chemist, thus contributing to the refine-
ment of the de novo model. Presently, Metis supports 
all scikit-learn models utilizing an RDKit Morgan 
fingerprint.

An alternative method is to directly build a reward func-
tion from the feedback of the user. This reward function 
constitutes a sum of multiple equally weighted proper-
ties. At its core, it tries to minimize the presence of sub-
structures flagged by the chemist as liabilities and tries to 
maximize the presence of favorable substructures. Addi-
tionally, it seeks to enhance similarity to liked molecules 
up to a specified threshold while minimizing similarity to 
disliked ones. In comparison to the reward model, the use 
of a reward function enables the integration of more fine-
grained feedback that goes beyond liking versus disliking a 
molecule.

The extact reward function g(x) is defined as such:

g(x) =
1

6
γ+(x)− γ−(x)+ δ+(x)− δ−(x)+ 0.5δ±(x)+ φMS(x)

where γ+(x) and γ−(x) calculate the number of liked/
disliked substructures in molecule x. δ+(x) , δ−(x) , and 
δ±(x) calculate the Tanimoto similarity to liked, disliked 
and sort of liked molecules using the ECFP4. The similar-
ity must be greater than 0.5 otherwise the resulting score 
will be 0. Finally, MS(x) returns the molecular size, the 
number of heavy atoms, φ is a double sigmoid function, 
that defines the acceptable range of the molecular size. 
The parameters are initialized to cover a wide range, but 
as feedback is given  on the molecular cutoff values are 
iteratively updated in the direction of the feedback. The 
reward function is then added to the regular user-defined 
scoring function (f(x)) that is used in the current REIN-
VENT run, thus the final scoring function S(x) amounts 
to:

This is a rather simple form to translate feedback from 
the human into a parametric function, but custom, more 
advanced approaches can also be integrated into Metis.

For now, only REINVENT [19] is supported. In order 
to make use of that feature, a working REINVENT Instal-
lation needs to be present on a remote machine, to which 
the users have access through an SSH key.

Molecular display
The molecular display provides an image of the generated 
molecule, for which feedback should be collected. Users 
can click on atoms to highlight substructures within the 
molecule. Additional tabs offer users more detailed infor-
mation about the molecule. The “Most Similar Active” tab 
allows users to see known active molecules most similar 
to the generated one, allowing chemists to judge whether 

S(x) = f (x)+ g(x)

Fig. 3 Showcase of the three windows the user can cycle through. a is the default window in which the user can select atoms to highlight. b the 
explanation window shows the per atom contribution to the prediction of an ML model and c is the window that shows the most similar active 
compounds from the training set
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the generated molecule is a sensible extension based on 
already known information. Additionally, the “Explain-
ability” tab provides insights into why a scikit-learn [20] 
QSAR model suggests a generated molecule as poten-
tially active, empowering chemists to make informed 
decisions based on the model’s reasoning. Currently, only 
the RDKits [21] native explainibility function developed 
by Riniker and Landrum [22] is available. But an exten-
sion to other methods should be easy to implement.

Target product profile
The Target Product Profile window can be used to pre-
sent information on the project at hand. Here are rel-
evant properties and their relevancy can be explained. 
Descriptors that relate to these properties can also be 
shown for each molecule displayed.

Global liabilities
The Global Liability window collects feedback on the 
overarching properties of a molecule. These global liabili-
ties encompass characteristics not tied to specific sub-
structures but rather arise from the molecule’s overall 
structure. For instance, the molecule’s size falls under 
this category. Additionally, it accommodates liabilities 
challenging to assign to specific atoms, such as synthetic 
accessibility, which can be easier to evaluate globally. 
Chemists can assess each property showcased and deter-
mine if the molecule aligns with their conceptualization 
of it or not. Crucially, within this window, chemists can 
provide feedback on their overall preference, whether 
they like or how much they like this molecule.Currently, 
most of the feedback on specific liabilities can not be 
integrated into the de novo design loop, as there is no 
straightforward way to computationally assess this liabil-
ity. For example, permeability is difficult to predict. For, 
easier properties, like the size of the molecule, the ini-
tial range of “allowed sizes” of molecules is very wide. As 
feedback regarding size is given, the range is shifted. Even 
if the feedback is not usable in a de novo design run, the 
recording of it is very crucial, as given enough data one 
can create rule-based or machine learning-based model 
to predict these liabilities

Local Liabilities
Local Liabilities refer to liabilities of molecules that 
can be directly mapped to specific local substructures. 
Users have the flexibility to toggle between different 
liabilities they wish to highlight within the molecule. 
By selecting atoms in the molecular display, these sub-
structures can be associated with the corresponding 
liability, each distinguished by a unique color. Addi-
tionally, users can create new labels, not predefined, 

by specifying their concerns for a particular substruc-
ture in a text field. Not technically a liability, but by 
default Metis also provides the chemist the option 
to highlight substructures that they like. The chemist 
can also make a distinction of whether the feedback 
he provides is feedback that is relevant only to the cur-
rent project, or whether the feedback is generally valid 
across many projects. The highlighted substructures 
are stored and saved by recording the atom indices 
of highlighted atoms, additionally, the substructures 
are directly mapped to a SMARTS pattern that is also 
saved. Next to the atom and bond type, the SMARTS 
pattern also recorded ring membership and the num-
ber of attached hydrogens for each atom. To ensure that 
adequate information is recorded, the SMARTS pattern 
is expanded to also include all atoms that are directly 
connected to the highlighted substructure. This way 
the feedback of the chemist can more adequately be 
saved. The significance of this approach becomes evi-
dent when considering examples such as distinguishing 
between amides and ketones. If a chemist is dissatis-
fied with a ketone, they are likely to flag the atom and 
the double-bonded carbon but may overlook the two 
additional carbons. Further down the line, this can 
lead to desirable amides being flagged as liabilities. By 
recording the expanded environment of a highlighted 
substructure, such oversight is mitigated, ensuring that 
chemists’ feedback is accurately represented.

Like with the global liabilities, we can currently not 
distinguish in an de novo run between different kinds 
of substructures “critiques”. Liked substructures will 
increase the rewards and disliked substructures will 
decrease the reward of a given model, independently of 
why the substructure was disliked.

Additional features
In the navigation bar at the bottom of the GUI, multiple 
additional helpful buttons are provided. Most impor-
tantly, the “Next” and “Back” buttons allow the users to 
switch between molecules that are supposed to be eval-
uated. The “Edit” button will open a molecular editor in 
a separate window. The editor can be used by the user 
to suggest an alternative molecule to the one that is 
currently to be evaluated. The editor will open with the 
current molecule already loaded. The molecular editor 
that is used is the rdEditor[23] Changes made to the 
molecule in the editor will then be stored separately in 
the backend. The “History” button will also open a sep-
arate window, in which the chemist can scroll through 
the already evaluated molecules. Lastly, the “Send” but-
ton, will start a new de novo run on a remote machine 
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using the feedback provided by the Chemist. A more 
detailed description is found in the following section.

Customizability
Metis is designed to be customizable through a yaml 
file, in which the users can specify which informa-
tion to show to the chemist, and what kind of feedback 
can be given by the chemist. The exact liabilities can 
be changed, but also complete GUI elements can be 
removed if needed. A complete list of all settings and 
their use, together with some examples are provided 
with the GitHub Repository. The examples are designed 
around a fictitious drug design project around designing 
a MAPK10 (JNK3) kinase inhibitor. For this, initial mol-
ecules were generated with REINVENT. The generated 
molecules as well as the models are provided with exam-
ples. The examples provided three different setup files to 
cover different use cases and complexities in setting up 
the GUI. 

1. UI Only Example In this example, Metis is only 
used to collect feedback for generated structures. 
No models are re-trained and no de novo run can be 
started.

2. Reward Model Example In addition to setting up 
the GUI, here the feedback is used to directly train 
the reward model. However, still, no de novo run can 
automatically be started. This setup can be useful, in 
scenarios where one is only interested in building a 

reward model or the reward model shall be used in a 
different de novo environment.

3. De Novo Loop Example This example showcases all 
the functionalities of Metis. The user feedback is 
collected, a reward model is trained and subsequently 
used to start a de novo run using REINVENT on a 
remote machine. The newly generated structures are 
then copied and loaded into Metis. While the other 
two examples can be started immediately. This exam-
ple requires REINVENT installation on a remote 
machine and some files need to be transferred.

As Metis is written in Python changes to modules 
not “exposed” through the yaml settings file, can also 
be changed by adding additional classes that follow the 
design of already implemented classes. Examples of such 
are classes that take care of the sampling of molecules, or 
how the reward models are trained.

For the iterative re-training of the de novo models, 
one could in theory use any de novo model. However, 
Metis does soft-lock users to use REINVENT. The lim-
iting factor is that no unified standard for de novo design 
tools has been proposed or adopted. Thus, most models 
require different setups with different configuration files, 
which then return their results in different file formats. 
This makes it difficult to ensure operability between dif-
ferent models. While it is possible to use an alternative to 
REINVENT, it would require significant modifications by 
the user to the existing code of Metis.

Fig. 4 Schematic overview of Metis. Yellow squares indicate modules that are only optional and only needed if Reward Models should be trained 
and/or de novo model run should be started
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Implementation
Metis is written in Python and relies at its core on three 
libraries. PySide2 [24] is a Python implementation of the Qt 
Framework and is used to create the Graphical User Inter-
face (GUI) a user can interact with. The molecular drawing, 
highlighting and editing capabilities are provided by rdEd-
itor [23]. Additionally, RDKit is used to manipulate, and 
save molecular structures and information. Further core 
libraries in use are pandas, numpy, and scikit-learn.

Figure 4 gives an overview of how the different parts of 
Metis come together. The interface the user can inter-
act with is created using the aforementioned PySide2 and 
rdEditor. Molecules and their associated feedback 
reside within a custom extension of a pandas data frame. 
This specialized data frame efficiently stores diverse forms 
of feedback and translates between atom indices and their 
corresponding SMARTS structure representations. The 
molecules presented to the user are sampled from an ini-
tial set of molecules stored in a separate file.

The “Reward Model Trainer” class handles both the 
training of the reward model and the creation of the 
reward function. If a QSAR Model exists that needs fine-
tuning with user feedback, the trainer loads the QSAR 
model along with its original training data and merges 
it with the obtained feedback. Subsequently, the model 
undergoes re-training using the combined dataset. In the 
absence of an initial model, training commences from 
scratch.

For a de novo run, the process involves initializing a 
“De Novo Runner” class instance on a separate core. 
This runner then generates input files for REINVENT 
and transfers them, along with the updated model in a 
“pickle” format, to the remote location via SSH. A remote 
run is then initiated using SLURM. The “De Novo Run-
ner” remains in a waiting state until the REINVENT run 
concludes, after which it retrieves the current state of the 
Agent and the newly generated molecules back to the 
local machine. From here, new molecules are selected to 
be evaluated by the user.

In each iteration, the molecules, their feedback, the 
reward models, and the de novo model are saved.

Installation
Metis is an open-source software that can be down-
loaded from https:// github. com/ Janos chMen ke/ metis. 
After setting up the environment either manually or 
through the use of the pyproject.toml file, the soft-
ware can be used. A more detailed description of the 
setup and the settings is provided on the GitHub reposi-
tory, together with examples that should let the user get 
started directly.

License
Metis is published under the permissive MIT license.

Limitations
The sole reliance on Python, Pyside2, and RDKit makes 
Metis very adaptable for all researchers in cheminfor-
matics and its adjacent fields. Most researchers code in 
Python and are able to make their desired changes. How-
ever, this choice for PySide/Python, also makes Metis 
not currently hostable on the web. This can be attributed 
to the fact that PySide2 at its core uses C++ and cur-
rently does not have WebAssembly support. The second 
limitation, previously mentioned, is that by default only 
REINVENT as a de novo model is supported. While 
it is not difficult for users to adapt the code to their 
model of choice, many small changes need to be made, 
as Metis is written with REINVENTs file formatting in 
mind. Lastly, as mentioned previously much of the very 
detailed feedback that is collected is currently used in the 
de novo design loop, as the property for which we collect 
feedback is not a property that can easily be measured 
or predicted. However, collecting and saving this feed-
back is still valuable to build models later around such 
properties.

Outlook
There are still some features not yet integrated that would 
enhance the usability of Metis. We aim to upgrade the 
support to the recently released REINVENT 4 [25] and 
in the long-term provide some interface layer, which 
makes it easier to also include non-REINVENT de novo 
design tools. We also plan to expand support to scikit-
mol [26] models, which can be used to train the reward 
model. This provides more customizability to the user with 
regard to the selection of input features and model choice. 
We further hope to extend support to the recently released 
REINVENT 4 and while we do not think any de novo 
design tool can be supported without manual editing of 
the code we want to make the interface easier to manipu-
late so other de novo tools are easier to connect to Metis.

Conclusion
Here we introduce Metis, a Graphical User Interface, 
that enables researchers to collect feedback on gener-
ated molecules that go beyond simple like or dislike. 
Chemists can assign substructures specific liabilities, 
flag concerning properties, and can suggest alternative 
molecules to the generated ones. Metis also serves as a 
platform to provide chemists with sufficient information 
on the task to make informed decisions on the generated 
compounds. As the feedback can be directly integrated 

https://github.com/JanoschMenke/metis
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within existing de novo Design loops, the GUI has its 
practical application and can help end-users to fine-tune 
and align the generative model with their ideas and pref-
erences. To our knowledge, no other application exists 
that provides such functionality and Metis can serve 
as a starting point for the community to develop and 
test ideas on how elaborate chemical knowledge and the 
feedback it gives rise to, can adequately be modeled and 
integrated into existing deep learning models.
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