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Abstract 
Despite recent advancement in 3D molecule conformation generation driven by diffusion models, its high computa-
tional cost in iterative diffusion/denoising process limits its application. Here, an equivariant consistency model (EC-Conf ) 
was proposed as a fast diffusion method for low-energy conformation generation. In EC-Conf, a modified SE (3)-equivari-
ant transformer model was directly used to encode the Cartesian molecular conformations and a highly efficient consist-
ency diffusion process was carried out to generate molecular conformations. It was demonstrated that, with only one 
sampling step, it can already achieve comparable quality to other diffusion-based models running with thousands 
denoising steps. Its performance can be further improved with a few more sampling iterations. The performance of EC-
Conf is evaluated on both GEOM-QM9 and GEOM-Drugs sets. Our results demonstrate that the efficiency of EC-Conf 
for learning the distribution of low energy molecular conformation is at least two magnitudes higher than current SOTA 
diffusion models and could potentially become a useful tool for conformation generation and sampling.

Scientific Contributions 
In this work, we proposed an equivariant consistency model that significantly improves the efficiency of conforma-
tion generation in diffusion-based models while maintaining high structural quality. This method serves as a general 
framework and can be further extended to more complex structure generation and prediction tasks, including those 
involving proteins, in future steps.

Key points 

• A novel ultra-fast equivariant diffusion model, EC-Conf, was proposed for low-energy conformation generation 
by construction of a consistency process.

• Compared with other SOTA diffusion models running with thousands denoising steps, EC-Conf can achieve com-
parable quality with only one sampling step and keep improving with a few more sampling iterations.

• The efficiency of EC-Conf is at least two magnitudes higher than current SOTA diffusion models.
• The EC-Conf is universal and can be easily extended to various conformation generation tasks such as protein–

ligand docking pose.
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Introduction
Three dimensional conformations of a molecule can 
largely influence its biological and physical properties 
and biological active conformations are usually low-
energy conformers [1]. Thus, many drug design strat-
egies, including structure-based [2] or ligand-based 
virtual screening [3–5], three-dimensional quantitative 
structure–activity relationships (QSARs) [6], and phar-
macophore modeling [7], require a fast 3D conforma-
tion generation and elaboration protocol for sampling 
biologically relevant conformations. For the former task, 
programs such as CONCORD [8], CORINA [9], and 
OMEGA [10] are the most popular applications. These 
approaches make use of known optimal geometries of 
molecular fragments that are used as templates for con-
structing reasonable, low energy 3D models of small mol-
ecules. These methods usually utilize fallback strategies 
for structure generation when novel structures appear 
and belong to rule based approaches. However, because 
producing a single 3D structure of a flexible molecule is 
almost invariably followed by conformational elabora-
tion, it is the latter process that is both the time and qual-
ity bottleneck.

With the advancement of deep learning technologies, 
deep learning methods have been used to learn the dis-
tribution of 3D bioactive conformation and generate 3D 
conformer directly. For a given molecules, one of the 
most valuable applications of conformation generative 
model is to generate the conformation ensembles sat-
isfied Boltzmann distributions, which is critical for 
fast-estimating the free-energy. The biggest difference 
between the above-mentioned traditional 3D conforma-
tion generators and deep learning-based conformation 
generative models is that those generative models don’t 
rely on explicit rules to construct 3D conformation but 
learn implicitly the distribution of conformation data. 
Mansimov and coworkers reported the early attempt 
CVGAE to generate 3D conformations in Cartesian 
coordinates using the variational autoencoder (VAE) 
architecture in one-shot [11]. However, its performance 
is not comparable with traditional rule-based methods. 
Simm et  al. proposed a conformation generative model 
based on distance geometry instead of directly mod-
eling the distributions on Cartesian coordinates, named 
Graph-DG [12], while ConfVAE take the distribution of 
distances as intermediate variables to generate conforma-
tions [13]. Ganea et al. proposed GeoMol [14], which, at 
the first step, constructs the local structure (LS) by pre-
dicting the coordinates of non-terminal atoms, and then 
refines the LS by the predicted distances and dihedral 
angles. The quality of generated conformation in these 
one-shot methods has reached the level of traditional 

methods on fragments, while there are still improving 
rooms for drug-like molecules.

Another type of attempt explores the construction of 
conformation via a set of sequential samplings instead 
of one-shot generation. Xu et  al. proposed CGCF 
method combining the advantages of normalizing flows 
and energy-based approaches to improve the predic-
tion of multimodal conformation distribution [15]. 
Then, Xu et  al. proposed another score-based method 
ConfGF by learning the pseudo-force on each atom via 
force matching and obtaining new conformations via 
Langevin Markov chain Monte Carlo (MCMC) sam-
pling on the distance geometry [16]. Its performance 
on the GEOM-Drugs dataset is comparable to that of a 
rule-based method called experimental-torsion-knowl-
edge distance geometry (ETKDG), which is a confor-
mation generation model implemented in RDKit [17, 
18]. Xia and Liu et al. proposed DMCG trained with a 
dedicated loss function [19]. GeoDiff [20]and SDEGen 
[21] employed diffusion model for conformation gener-
ation and can directly predict the coordinates without 
using intermediate distances. Similarly, models based 
on torsion diffusion was also proposed to generate con-
formations in torsion space instead of Cartesian coor-
dinates [22]. Although these diffusion methods based 
on DDPM [23], SGMs [24, 25] or stochastic differential 
equations (Score SDEs) [26] improve the quality of gen-
erated conformations of drug-like molecules, the slow 
sampling speed, which due to large number of diffu-
sion/denoising iteration, still limit their application.

More recently, Song et  al. proposed consistency 
model, a new diffusion model which can generate 
high quality samples by directly mapping noise to data 
instead of through the reverse-time SDE [27]. Their 
results show that consistency models only require a 
few steps (2 ~ 5) of refinement for high quality image 
generation, which inspired us to incorporate the con-
sistency diffusion process into molecular conformation 
generation. Here, we proposed an equivariant consist-
ency model (EC-Conf ) for fast diffusion of molecular 
conformation, largely achieving a balance between the 
conformation quality and computational efficiency. EC-
Conf is inspired from the consistency model based on 
the probability flow with ordinary differential equation 
(ODE) and can smoothly transform the conformation 
distribution into a noise distribution with a tracta-
ble trajectory satisfied SE (3)-equivariance. Instead of 
solving the reverse-time stochastic differential equa-
tion (SDE) in diffusion models, EC-Conf can either 
directly map noise vector of prior Gaussian distribu-
tion to low-energy conformation in Cartesian coordi-
nates or the solutions in the same diffusion trajectory 
to molecular conformation. These characteristics are 
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critical for decreasing the number of iterations while 
still keeping its high capacity to approximate the com-
plex distribution of conformations. The performance of 
EC-Conf is evaluated in both GEOM-QM9 and GEOM-
Drugs datasets. Our model out-performs non-diffusion 
models and is comparable with SOTA diffusion mod-
els, but with at least two magnitudes higher denoising 
efficiency.

Theory and methods
Problem definition
Molecular conformer generation is defined as a condi-
tional generative problem, which generating low-energy 
conformations C with a given 2D molecular graph G . 
For given multiple molecular graphs G , we aim to learn 
a transferable generative model pθ (C|G) mapping the 
Boltzmann distribution of C under condition of G ∈ G to 
a prior Gaussian distribution.

Diffusion process for conformation generations
As mentioned above, high quality conformation genera-
tions are still challenging for drug-like molecules and big 
bio-molecules. Among commonly used generative mod-
els, GAN models are suffering from the unstable training 
and less diversity in generation due to their adversarial 
training nature [28]. VAE models rely on a surrogate loss, 
limits its performance on high quality generation [29]. 
Similarly, Flow-based models have to employ a special-
ized architectures to construct reversible transform [30]. 
Compared with GAN, VAE and Flow-based models, dif-
fusion-based methods are generally more stable, robust 
for training, can capture the underlying data distribution 
more comprehensively and produce high-quality, high-
fidelity conformations but suffering from the sampling 
efficiency in conformation generations [31].

In DDPM-based diffusion process like GeoDiff, 
noise from fixed posterior distributions q(Ct |Ct−1) 
is gradually added until the ground truth conforma-
tion C0 is completely destroyed with T  steps. During 
generation process, an initial state CT is sampled from 
standard Gaussian distribution, the conformation is 
progressively refined via the model learned Markov ker-
nels pθ (Ct−1|G,Ct) for a given molecular graph G . Song 
et  al. have demonstrated that this diffusion process can 
be described as a discretization process on the time and 
noise in form of SDE as defined in Eq. (2). [32]

This process can be reversed by solving the following 
reverse-time SDE:

(1)dC = f (C , t)dt + g(t)dw

(2)dC =
[

f (C , t)− g(t)2∇C log pt(C)
]

dt + g(t)dw

where, f (C , t) and g(t) are diffusion and drift functions 
of the SDE, w and w are the standard Brownian motion 
when time flows forward and backwards respectively, and 
∇Clogqt(C) is the gradient of the log probability density 
∇Clogp(C). The rough propagation path for between tar-
get distributions and prior gaussian distributions largely 
limits the efficiency of sampling.

The denoising process can also be described in the 
form of ordinary differential equation (ODE), represent-
ing the probability flow to the same marginals as the 
reverse-time SDE, i.e. the PF ODE method:

It allows a smoother propagation between distributions 
to accelerate the sampling phase. However, ODE trajec-
tory still follows the chain rules, limiting the efficiency.

Karras et  al. further simplified the Eq.  (3) by set-
ting f (C , t) = 0 and g(t) =

√
2t . In this case, the 

pt(C) = pdata(C)⊗N
(

0,T 2I
)

 and a empirical PF ODE 
was obtained as shown in Eq. (4) [33]:

which allows us to sample ̂CT from π = N
(

0,T 2I
)

 to ini-
tialize the empirical PF ODE and solve it backwards in 
time with any numerical ODE solver including Euler and 
Heun solvers. From there, we then get a solution trajec-
tory {Ct}t∈[0,T ] and the ̂C0 is an approximate sample from 
the conformation distribution.

Based on the ODE trajectory {Ct}t∈[0,T ] , Song et  al. 
proposed the consistency model by directly mapping the 
points on the same trajectory to the same initial point in 
diffusions, greatly improving the sample efficiency [27].

Equivariant consistency models for conformation 
generations
Inspired from the consistency model, we proposed a 
novel equivariant diffusion model, named EC-Conf, for 
ultra-fast diffusion of molecular conformation in carte-
sian system, largely achieving a balance between the con-
formation quality and computational efficiency.

Basic Concepts. Given a solution trajectory {Ct}t∈[ǫ,T ] 
of the ODE in Eq. (4), where ǫ → 0 , we desire an equivar-
iant consistency function f : (Ct , t|G) → Cǫ which satis-
fies both the boundary condition and the self-consistency 
as shown in Eqs. (5) and (6), respectively.

(3)dC = [f (C , t)− 1/2g(t)2∇C log pt(C)]dt

(4)
dCt

dt
= −tsφ(Ct , t)

(5)f (Cǫ , ǫ) = Cǫ

(6)f (Ct , t|G) = f
(

Ct ′ , t
′|G

)

∀t, t ′ ∈ [ǫ,T ]
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As proved by Song et al., all the solutions in {Ct}t∈[ǫ,T ] 
on the ODE trajectory can directly be mapped to the 
original ground truth C0 if both of these two condi-
tions are satisfied. It allows a smoother transformation 
between pdata(C|G) to π ∼ N (0,T 2I) to accelerate the 
diffusion process than DDPM and Score-SDE models.

Additionally, the consistency function should also be SE 
(3)-equivariant, which means a molecular coordinate C are 
allowed to be changed via translation and rotation in 3D 
space, while its scalar properties should still be invariant. 
Formally, a function f : X → Y is equivariant to a group 
of transformation G , thus:

where DX

(

g
)

 and DY

(

g
)

 are transformation matrices 
parameterized by g in coordinates system X  and Y.

These characteristics not only allow EC-Conf model to 
make one step generation from the prior distribution but 
also can improve the quality of generation by chaining the 
outputs of consistency models at multiple time steps as 
shown in Fig. 1b.

Here, we parameterize the equivariant consistency 
model with a learnable function fθ using skip connections 
as shown in Eqs. (8 ~ 10):

(7)f
(

DX

(

g
)

C|G
)

= DY

(

g
)

f (C|G), g ∈ G

(8)fθ (C , t|G) = cskip(t)C + cout(t)Fθ (C , t|G)

where Fθ is an (G, t) related noise model fulfilling the SE 
(3) equivariance. It ensures the SE (3) equivariance of fθ . 
It is evident that as ǫ → 0, cskip(ǫ) → 1 and cout(ǫ) → 0 
for t = ǫ , making fθ (C , ǫ|G) = Cǫ , thus satisfying the 
boundary conditions. Due to cskip, cout , andF θ are both 
differentiable functions, we can train the fθ by minimiz-
ing the prediction difference between time steps t and t ′ 
to satisfy the self-consistency, as illustrated in Eq. (11).

Model Architecture In principle, EC-Conf could utilize 
any type of graph conditioned equivariant neural net-
work for modelling Fθ . Here, we employed a customized 
EquiFormer [34] neural network, which is a transformer 
model based on the irreducible representation and 
depth-wise tensor production (DTP) based equivariant 
attention mechanism. This model incorporates embed-
ding of time step factor tn . The overall architecture of EC-
Conf is shown in Fig. 2a. The time factor tn and the atom 

(9)cskip(t) =
σ 2
data

(t − ǫ)2 + σ 2
data

(10)cout(t) =
σdata(t − ǫ)
√

σ 2
data + t2

(11)L = MSE(fθ (Ct , t|G), fθ (Ct ′ , t
′|G))

Fig. 1 a The diffusion process and the generative phase in normal diffusion models. b The equivariant consistency model smoothly transforms 
the conformation data to the noise among a tractable probability flow (equivariant consistency process), and maps any solution on this trajectory 
to its origin for fast generation
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type Zi are embedded with a linear layer respectively and 
added together as the input of EquiFormer. By repeated 
stacking equivariant graph attention (EGA) modules and 
feed-forward modules, Equiformer integrates the content 
and geometric information to predict the coordinates 
changes δCtn from time step tn . The coordinates Ctn+1

 
are then computed by combining Ctn and δCtn using skip 
connections.

The architecture of EGA module is illustrated in 
Fig. 2b. For a pair of neighboring nodes {i, j} in graph G , 
their embeddings xi , xj are added after a linear transfor-
mation and updated through an equivariant DTP, incor-
porating their distance rij . The updated embeddings are 
reshaped into scalar features f 0ij  and irreps features f Lij  , 
which are sent to scalar and irreps feature blocks, respec-
tively. Finally, the updated scalar features aij and irreps 
features vij are multiplicated to update xi. By summing 
over all neighbors of node i as message passing neural 
network, both the content and geometric information 
are incorporated into its embedding xi . A more detailed 
description of EGA can be found from reference 34.

As the time factor tn and atom type are independent to 
the coordinates, thus, this modification won’t affect the 
SE (3)-equivariance of EquiFormer.

Model Training and Conformer Generation For a 
conformation C sampled from the dataset, we use 
C + tn+1 · z and C + tn · z to replace Cn+1,Cn on the ODE 

trajectory {Ct}t∈[ǫ,T ] , thus the fθ can be trained with the 
following loss function:

To make the training process more stable and improve 
the final performance of fθ , exponential moving average 
(EMA) technique are adopted as mentioned in Ref 27. 
Here, we create another function fθ− with the EMA of 
original parameter θ during training process, and mini-
mize the difference between fθ (C + tn+1 · z, tn+1|G) and 
fθ−(C + tn · z, tn|G) as Song et  al.’s work [27]. Here, we 
refer fθ as “online network” and fθ− as the “target net-
work” for clarity. The loss function is reformulated as 
following:

Parameter θ is updated with stochastic gradient 
descent, wile θ− is updated with exponential moving 
average as shown in Eq.  (14), where µ is the decay rate 
predefined by EMA schedule.

By doing in this way, we could perform the equivariant 
consistency training to get the approximate function fθ to 
f  as shown in Fig. 3a and Algorithm S1.

(12)
L(θ) = MSE(fθ (C + tn+1 · z, tn+1|G), fθ (C + tn, tn|G))

(13)
L
(

θ , θ−
)

= MSE(fθ (C + tn+1 · z, tn+1|G), fθ−(C + tn · z, tn|G))

(14)θ− = µθ− + (1− µ)θ

Fig. 2 a The model architecture in EC-Conf. b The mechanism of equivariant graph attention
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In the conformer generation phase, samples are 
drawn from the initial distribution ̂CT ∼ N

(

0,T 2I
)

 and 
the consistency model is used to generate conformers: 
̂Cǫ = fθ (CT ,T ) . The conformers are refined with greedy 
algorithm by alternating denoising and noise injection 
steps with a set of time points {τ1, τ2 · · · τN−1} as shown 
in Fig. 3b and Algorithm S2.

Computational details
Following previous work, we also used GEOM-QM9 
[35] and GEOM-Drugs datasets [36] for evaluation. To 
make a fair benchmark study, we used the same train-
ing, validation and test sets produced by Shi et  al. for 

both datasets [13]. Specifically, the GEOM-QM9 is 
split into training, validation and test set of 39,860, 
4979, 200 unique molecules, corresponding to 199,300, 
24,895 and 797 conformations; The GEOM-Drugs 
set contains 39,852, 4983 and 200 molecules in train-
ing, validation and test set, corresponding to 199,260, 
24,915 and 15,864 conformations, respectively. We 
examined model performance on the same test set 
used by GeoDiff model. [20] In current study, follow-
ing hyperparameters σdata = 0.5, ǫ = 10−8,T = 80 were 
used. For a given molecule, in case there are K ground 
truth conformations in test set, 2 K conformations are 
sampled for evaluation.

Fig. 3 The training (a) and sampling (b) workflow of EC-Conf
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In our benchmark, 8 recent or established SOTA mod-
els including GraphDG [12], ConfVAE [13], GeoMol [14], 
CGCF [15], ConfGF [16], GeoDiff [20], SDEGen [21], and 
ETKDG [18] in RDKit. The results of GraphDG, CGCF, 
ConfVAE, ConfGF were taken from previous study [20], 
while the performance of ETKDG, GeoMol, SDE-Gen 
and GeoDiff were evaluated by ourselves on the same test 
set using the provided models with various settings.

Model performance was evaluated by measuring the 
quality and diversity of conformations generated by dif-
ferent models. Here, we mainly compared four metrics 
built on the root mean square deviation (RMSD) pro-
posed by Ganea et al., defined as the normalized Frobe-
nius norm of two atomic coordinate matrices after 
Kabsch alignment [14]. Formally, let Sg and Sr denote 
the set of generated conformations and the set of refer-
ence conformations, respectively. Then, the coverage and 
matching measures following the traditional Recall meas-
ure can be defined as follows:

where δ is a predefined threshold. The other two Preci-
sion based metrics, COV-P and MAT-P can be defined 
similarly, but with the generated and referenced set 
exchanged as shown in Eqs. (17 , 18).

In practice, the Sg of each molecule is set as two times 
of the size of Sr . Intuitively, the COV score measures the 

(15)

COV − R
(

Sg , Sr
)

=
1

|Sr |
|C ∈ Sr |RMSD(C , ̂C ≤ σ , ̂C ∈ Sg )|

(16)

MAT − R
(

Sg , Sr
)

=
1

|Sr |
∑

C∈Sr
min
̂C∈Sg

(RMSD(C , ̂C))

(17)

COV − P
(

Sg , Sr
)

=
1

∣

∣Sg
∣

∣

|C ∈ Sg |RMSD(C , ̂C ≤ σ , ̂C ∈ Sr)|

(18)

MAT − P
(

Sg , Sr
)

=
1

∣

∣Sg
∣

∣

∑

C∈Sg
min
̂C∈Sr

(RMSD(C , ̂C))

percentage of structures in one set covered by another 
set, where covering means that the RMSD between two 
conformations is within a certain threshold δ. In con-
trast, the MAT score measures the average RMSD in 
one set with its closest neighbor in the other set. In gen-
eral, a higher COV score or a lower MAT score indicates 
generating more realistic conformations. Moreover, the 
Precision metric measures the proportion of the true 
low-energy conformation among all generated confor-
mations by the model. Here, high precision means that 
most generated conformation coming from the target 
low-energy conformation distributions within the error 
threshold of σ . The Recall measures the proportion of 
low-energy conformation generated by models among 
the true conformations in datasets. High recall means the 
model can generate a wide variety of low-energy confor-
mations that cover the entire target distribution. Briefly, 
the Precision reflects more on quality while Recall met-
ric reflects on diversity. Following previous works, δ is set 
as 0.5 Å and 1.25 Å for GEOM-QM9 and GEOM-Drugs 
dataset respectively.

Results and discussions
The performance of EC‑Conf with different diffusion steps
The first thing to investigate is how diffusion step influ-
ences the model performance. Various models were 
trained by using different diffusion time steps and evalu-
ated on a random test set. For EC-Conf, user can set the 
maximal diffusion steps in both forward diffusion steps 
and reverse iteration process, corresponding to the train-
ing and generation phase. We first evaluated the perfor-
mance of EC-Conf trained with different maximal time 
steps of 2, 5, 10, 15, 20, 25, 50, 150 in forward ODE pro-
cess, the iteration steps during generation are the same 
as training phase and the results are as shown in Table 1. 
It seems that both COV-R and MAT-R metrics reached 
best level when the diffusion step was set to 25. The per-
formance on COV-R and MAT-R got improved when the 

Table 1 Results of EC-Conf with different iteration steps on the GEMO-QM9 dataset

Bold values refer to the best value

Training Diffusion Steps Sampling Iteration Steps COV-R (%)↑ MAT-R (Å)↓ COV-P (%)↑ MAT-P (Å)↓

2 2 0.335 0.565 0.468 0.532

5 5 0.459 0.522 0.857 0.356

10 10 0.759 0.361 0.868 0.340

15 15 0.763 0.342 0.895 0.310
20 20 0.792 0.354 0.873 0.352

25 25 0.824 0.322 0.863 0.337

50 50 0.805 0.339 0.828 0.354

150 150 0.503 0.514 0.413 0.566
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diffusion step increased from 2 to 25, while it got worse 
for 50 and 150. There are two possible reasons for the 
performance decreasing with the increase of diffusion 
steps. First, EC-Conf are trained by minimizing the error 
between adjacent steps during the forward diffusion 
process. During sampling, the error between adjacent 
iteration steps accumulates with the increase in sam-
pling iterations, causing the final results to deviate from 
the ground truth structure. Second, since Ec-Conf learns 
the evolution relationship between diffusion time and 
structure, instead of only learning the relation between 
structure and its noise as in DDPM. Thus, an exces-
sive number of diffusion steps increases the difficulty of 
learning, decreasing the overall effectiveness.

For COV-P and MAT-P, the performance of EC-Conf 
with 5 diffusion steps has reached 0.857 and 0.356  Å, 
indicating EC-Conf have learned the main features of 
the main low-energy conformations, but its distribution 
learning ability still needs improvement. The COV-P and 
MAT-P reached the top when the time step was set to 
15, and got worse for number of iteration larger than 15. 
The COV-R increased 6% with the increase of diffusion 
step from 15 to 25, while COV-P only decreased 3%. Take 

both Recall and Precision measurement into considera-
tion, it seems that the models with diffusion step of 25 in 
the forward ODE trajectories gave best result in general 
and it was set as optimum diffusion step in training for 
the following experiments.

Performance metrics of EC‑Conf under various sampling 
iterations
Once EC-Conf is trained, it allows either one step genera-
tion from the prior Gaussian distribution or carrying out 
iterative refinement via chaining the outputs of multiple 
time steps as shown in Algorithm S2. Here, we evalu-
ate the performance of EC-Conf under various sampling 
iterations. In the meantime, rule based ETKDG method 
and 7 ML-based baselines were also compared, includ-
ing one-shot methods: Graph-DG, ConfVAE, GeoMol 
and iterative refinement methods: CGCF, Conf-GF, SDE-
Gen, and GeoDiff. Additionally, RDKit structure fast 
correction (FC) option can be introduced to correct the 
abnormal bond lengths and angles in ML-based meth-
ods by using the bond lengths and angles of MMFF force 
field [37, 38]. Here, we focus on the performance of three 

Table 2 The average benchmark results for EC-Conf under different sampling iterations with fixed (25) diffusion steps on GEMO-QM9 
test set

a SDE-Gen with sampling settings:  neuler =250,  nlangevin =2,  ndg=1000
b GeoDiff-A trained with alignment approaches
c GeoDiff-A trained with chain-rule approaches

Methods Training Diffusion 
steps

Sampling Iteration 
steps

COV-R (%)↑ MAT-R (Å)↓ COV-P (%)↑ MAT-P (Å)↓

ETKDG – 1 0.862 0.2892 0.906 0.2571

GraphDG – 1 0.733 0.425 0.439 0.581

ConfVAE – 1 0.778 0.415 0.38 0.622

Geomol – 1 0.908 0.262 0.824 0.324

CGCF 1000 1000 0.78 0.422 0.365 0.662

ConfGF 5000 5000 0.885 0.267 0.464 0.522

SDEGena 1500 1500 0.815 0.357 0.484 0.566

GeoDiff-Ab 5000 5000 0.905 0.21 0.524 0.454

GeoDiff-Cc 5000 5000 0.901 0.209 0.528 0.445

EC-Conf 25 1 0.754 0.411 0.798 0.414

2 0.759 0.409 0.799 0.413

5 0.830 0.348 0.832 0.378

10 0.831 0.331 0.851 0.357

15 0.83 0.325 0.858 0.348

20 0.825 0.344 0.849 0.345

25 0.824 0.322 0.863 0.337

30 0.813 0.324 0.861 0.333

GeoDiffb-FC 5000 5000 0.531 0.454 0.527 0.46

SDEGena-FC 1500 1500 0.559 0.484 0.473 0.525

EC-Conf-FC 25 25 0.692 0.390 0.797 0.360
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corrected diffusion models, ie. SDE-Gen-FC, Geo-Diff-
FC and EC-Conf-FC.

For QM9 dataset, the recall measurement of COV-R 
and MAT-R are as shown in Table 2 and Fig. 4a, b, rep-
resenting the diversity of generated conformations. It’s 
clear that the diffusion-based models out-performed 
most one-shot models except GeoMol, suggesting their 
superior capability in reproducing ground truth confor-
mations. Interestingly, one-shot generation of EC-Conf 
is already comparable with one-shot models, and the 
result for two iterations is almost the same as SDE-Gen 
model running 1500 iterations, i.e., sampling efficiency 
improved almost 750 times. The performance of the EC-
Conf on the diversity gradually converged with more 
than 5 iterations. Although the recall performance is 
somewhat lower than GeoDiff model, the improvement 
on sampling efficiency of 1000 times could justify that 
EC-Conf model may be a better choice in dealing with 
large number of molecules. The precision-based met-
rics of COV-P and MAT-P are also as shown in Table 2, 

where the EC-Conf out-performed all the ML baselines 
indicating its superior quality of conformation generation 
under all sampling iterations. The optimal performance 
of EC-Conf was obtained at around 25 iterations steps on 
GEOM-QM9 dataset.

We also evaluate our EC-Conf models on drug-like 
molecules with maximum of 50 heavy atoms in GEOM-
Drugs set, which is more challenging for one-shot base-
lines. The recall-based metrics of COV-R and MAT-R 
are shown in Table  3 and Fig.  4c, d. Both the GeoDiff 
and EC-Conf out-perform the best one-shot generative 
model, GeoMol. Again, even the one-shot generation 
of EC-Conf greatly out-performed those one-shot base-
lines and some of the iterative methods such as CGCF, 
Conf-GF, SDE-Gen. The performance of EC-Conf gen-
eration with 5 iterations already performed better than 
that of GeoDiff with 1000 iterations, representing 200 
times better efficiency. In the concept of precision-based 
metrics on GEOM-Drugs set, although GeoMol out-per-
formed the rule-based RDKit ETKDG method generally, 

Fig. 4 The benchmarked recall and precision results of COV (a, c) and MAT (b, d) on GEOM-QM9 and GEOM-Drugs test sets, respectively
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performance of EC-Conf model is quite close. Among all 
deep learning-based models, EC-Conf with a single itera-
tion outperformed other models and achieved the best 
results with 15 sampling iterations. To intuitively dem-
onstrate the conformation generation efficiency of EC-
Conf, the conformation evolution in the sampling phase 
is shown in Fig. 5. It is evident that for EC-Conf, a single 
iteration already roughly shapes the structure, with the 
quality of the structure continuously improving over the 
next 25 steps. In contrast, for SDE-Gen and GeoDiff, the 
molecular structure only starts to take shape after 3500 

iterations. These results further demonstrate the effi-
ciency of EC-Conf in conformation generation.

Due to the FC option slightly adjust the ML gener-
ated structures, it decreases the model performance on 
both GEOM-QM9 and GEOM-Drugs test set, but it can 
optimize force field calculated molecular energy as dis-
cussed later. Among three corrected diffusion models, 
EC-Conf-FC outperforms other methods in general, only 
get slightly worse value on COV-R median as shown in 
Table S3.

Table 3 The average benchmark results for EC-Conf under different sampling iterations with fixed (25) diffusion steps on GEMO-Drugs 
test set

a SDE-Gen with sampling settings:  neuler =250,  nlangevin =2,  ndg=1000
b SDE-Gen with sampling settings:  neuler =500,  nlangevin =2,  ndg=1000
c SDE-Gen with sampling settings:  neuler =500,  nlangevin =2,  ndg=500
d SDE-Gen with sampling settings:  neuler =500,  nlangevin =2,  ndg=5000
e GeoDiff trains and samples with 1000 steps
f GeoDiff-A trained with alignment approaches
g GeoDiff-C trained with chain-rule approaches

Methods Training Diffusion 
steps

Sampling Iteration 
steps

COV-R (%)↑ MAT-R (Å)↓ COV-P (%)↑ MAT-P (Å)↓

ETKDG 1 1 0.5969 1.208 0.655 1.147

GraphDG 1 1 0.083 1.972 0.021 2.434

ConfVAE 1 1 0.552 1.238 0.230 1.829

GeoMol 1 1 0.7526 0.998 0.730 1.047

CGCF 1000 1000 0.540 1.249 0.217 1.857

ConfGF 5000 5000 0.622 1.163 0.234 1.722

SDEGena 1500 1500 0.560 1.237 0.251 1.720

SDEGenb 1500 2000 0.566 1.237 0.264 1.705

SDEGenc 1500 1500 0.263 1.601 0.117 2.008

SDEGend 1500 6000 0.673 1.126 0.323 1.679

GeoDiffe 1000 1000 0.830 0.953 0.483 1.321

GeoDiff-Af 5000 5000 0.884 0.870 0.601 1.186

GeoDiff-Cg 5000 5000 0.891 0.863 0.615 1.171

EC-Conf 25 1 0.797 1.023 0.705 1.118

2 0.796 1.016 0.706 1.118

5 0.845 0.934 0.714 1.097

10 0.858 0.909 0.712 1.093

15 0.859 0.905 0.716 1.084

20 0.863 0.903 0.716 1.091

25 0.867 0.902 0.714 1.093

30 0.864 0.902 0.701 1.108

GeoDiffg-FC 5000 5000 0.797 0.953 0.606 1.189

SDEGend-FC 1500 6000 0.776 1.017 0.567 1.237

EC-Conf-FC 25 25 0.821 0.926 0.748 1.036
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Some sample conformations generated by selected 
models are shown in Fig. 6 to provide a qualitative com-
parison, where EC-Conf is shown to nicely capture both 
local and global structures in 3D space. Additionally, 
SDEGen fails to generate reasonable structures for some 
molecules.

C. The quality of EC‑Conf generated structures 
on GEOM‑Drugs
As discussed above, machine learning methods exhibit 
advantages in terms of generating diverse conforma-
tions and achieving precision in reproducing ground 
truth conformations. Here, we evaluated the quality 
of EC-Conf generated conformations by examining 
their deviation to the optimized conformations with 
MMFF94 force field, and the ground truth structures 
with the lowest MMFF94 energy. Here, we evaluated 
both structural deviation and conformational energy. 
Comparison with structures generated by other meth-
ods, including ETKDG, SDEGen with 6000 iterations 
and GeoDiff model with 5000 denoising iterations. 
Additionally, the results from FC corrected conforma-
tions to the original optimized structure and ground 
truth were also compared.

The average and minimum root mean square devia-
tion (RMSD) of the generated structures to the opti-
mized structures on GEOM-Drugs dataset are as 

depicted in Fig. 7 a, b, respectively. ETKDG structures 
have the smallest average deviation from their opti-
mized structures (with a median value of 0.905  Å), 
and the order of increasing average deviation is: 
ETKDG < EC-Conf < GeoDiff < EC-Conf-FC < GeoDiff-
FC < SDEGen-FC < SDEGen. The structural deviation to 
the ground truth structures also follows the same trend 
as shown in Fig. 7 c, d.

Conformational energy can also serve as an indicator 
of structure quality, as structures with abnormal bond 
lengths or ring configurations can significantly increase 
internal energy. For methods not using FC option, 
GeoDiff has the smallest energy difference between 
generated structures and their optimized counter-
parts (with a median value of 0.68 kcal/mol/atom) and 
the order is: GeoDiff < ETKDG < EC-Conf < SDEGen 
as depicted in Fig.  4e. We need to note that SDEGen 
generates many unreasonable structures difficult to 
optimize, making optimized structures energy is even 
higher than FC corrected structures. Thus, the analysis 
of energy difference between SDEGen-FC and its opti-
mized structures are meaningless. The energy differ-
ence to the ground truth follows the same trend. These 
findings highlight that GeoDiff model generates energy-
wise most favorable conformations. However, when the 
FC option was used, the energy difference between gen-
erated conformation and its optimized conformation 

Fig. 5 The conformation evolution in a EC-Conf, b Geo-Diff diffusion process and distance geometry to coordinates phase of c SDE-Gen.
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for both EC-Conf-FC and GeoDiff-FC model decrease 
dramatically, which are 0.25 and 0.29  kcal/mol/atom, 
respectively. This suggests that user can combine EC-
Conf with the structure correction functionality in 
RDKit to directly generate reasonable conformations 
without further optimization, which can save a lot of 

processing time considering the low diffusion step for 
EC-Conf. The results for GEOM-QM9 set are similar 
to those of GEOM-Drugs, as shown in Figure S1. All 
these results demonstrate that our EC-Conf model can 
achieve a good balance between conformation quality 
and sampling efficiency.

Fig. 6 Examples of generated conformations for 7 random selected molecules and their aligned RMSDs to the closest reference structures 
in GEOM-Drugs test set with different methods
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Fig. 7 Evaluation of conformation quality for various models. Average (a) and minimum (b) RMSD between generated conformations and their 
optimized ones. Average (c) and minimum (d) RMSD of generated structures to the ground truth structures with lowest MMFF94 energy. 
Minimum energy difference of generated structure to its optimized structures (e) and the ground truth structure with lowest MMFF94 energy (f). 
*SDEGen-FC/50 means scaling the result by 50 times
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Conclusions
Here, an equivariant consistency generative model (EC-
Conf ) was proposed as an ultra-fast diffusion method 
with only a few iterations for low-energy conformation 
generation. A time factor-controlled SE (3)-equivariant 
transformer was used to encode the Cartesian molec-
ular conformations and a highly efficient consistency 
diffusion process was carried out to generate molecu-
lar conformations, largely achieving a balance between 
the conformation quality and computational efficiency. 
Our results demonstrate that EC-Conf can potentially 
learn the distribution of low energy molecular confor-
mation with at least two magnitudes higher efficiency 
than conventional diffusion models and could poten-
tially become a useful tool for conformation generation 
and sampling.
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