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Abstract 

With the increased availability of chemical data in public databases, innovative techniques and algorithms have 
emerged for the analysis, exploration, visualization, and extraction of information from these data. One such tech‑
nique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups 
based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical 
grouping often require specialized programming skills or the use of commercial software packages. To address these 
challenges, we developed a user‑friendly chemical grouping workflow implemented in KNIME, a free, open‑source, 
low/no‑code, data analytics platform. The workflow serves as an all‑encompassing tool, expertly incorporating 
a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperpa‑
rameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping 
and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descrip‑
tors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. 
The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal 
as a web application. It incorporates interactive interfaces and guides to assist users in a step‑by‑step manner. We 
demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.

Scientific contributions
This work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by inte‑
grating a user‑friendly graphical interface that eliminates the need for extensive programming skills. This workflow 
uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimen‑
sionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter 
optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step 
and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing 
the usability of the tool and interpretability of the results.
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Introduction
Over recent decades, advances in experimental 
methodologies have generated substantial bioactivity 
data for chemicals. Several data-sharing initiatives 
made a significant portion of this data publicly 
accessible through digital databases [1–5]. Additionally, 
databases of computationally generated chemical 
structures and extensive catalogs were offered by 
chemical vendors [6–8]. This surge in data availability 
has spurred the development of methods and tools for 
processing, analyzing, and modeling chemical data, 
aiding drug discovery and toxicity assessment [9–11].

Chemical grouping, including clustering and 
classification, categorizes compounds based on shared 
characteristics into distinct groups. This process relies 
on the concept of similarity, where compounds within 
a group are more alike than those in different groups. 
Compounds can be grouped based on molecular 
descriptors, substructures, physicochemical properties, 
use categories, or biological activities. The rationale 
is that high similarity indicates similar properties or 
activities [12–14]. Chemical grouping serves various 
purposes, including assessing diversity, understanding 
mechanisms of action, extracting structure–activity 
relationships (SARs), conducting safety and risk 
assessments through read-across approaches, and 
prioritizing chemicals for testing [15–20].

Chemical grouping utilizes advanced clustering 
and classification algorithms to uncover underlying 
patterns in datasets [21]. However, interpreting how 
these algorithms group data points can be challenging 
[22, 23]. Explainable artificial intelligence (XAI) 
strategies, [24] such as SHapley Additive exPlanations 
(SHAP) [25], aim to enhance interpretability. SHAP 
can identify influential features in grouping decisions, 
providing transparency to machine learning (ML) 
models [26–28].

Enhancing openness and sharing of chemical data and 
modeling methods is crucial to broaden accessibility [29–
31]. However, open-source cheminformatics tools often 
lack documentation and require significant programming 
skills for setup and use [32, 33]. Democratizing these 
tools to all levels of expertise demands easy-to-install, 
intuitive user-friendly graphical user interfaces (GUIs) 
with well-documented guidance [34–37]. Yet, creating 
such interfaces also requires proficiency in multiple 
programming languages such as Python, R, Java, HTML, 
and JavaScript.

Low-code or no-code platforms offer a solution to 
the demand for advanced programming skills, allowing 
for the development and deployment of applications 
with little to no coding. Users select, arrange, configure 
and connect components from standard libraries and 
third-party plugins to develop applications through 
a visual programming paradigm within a GUI. These 
platforms empower domain experts, including those 
without programming backgrounds, to collaborate in 
the development process, enhancing application quality 
[38–43]. Besides improving efficiency and reducing 
costs, they accelerate development rates by five to ten 
times compared to traditional hand coding, potentially 
leading to 70% of enterprise applications being created 
using low-code solutions by 2025 [40, 42].

Konstanz Information Miner (KNIME) is a free and 
open-source low/no-code data analytics platform 
with a broad range of capabilities and a thriving 
cheminformatics and bioinformatics community. Its 
modular setup enables users to visually assemble and 
modify analysis flows using standardized building 
blocks called nodes. Nodes are connected by pipes 
that transfer data and instructions, forming the data 
processing workflows [44, 45].

Introducing the Modeling and Visualization Pipeline 
(MoVIZ), a user-friendly tool developed on the KNIME 
platform to democratize cheminformatics methods 
for non-experts and simplify their application for the 
community. MoVIZ includes GUI-guided workflows 
covering data access, storage, mining, curation, 
analysis, visualization, modeling, and prediction. This 
pipeline of workflows is characterized by intuitive 
prompts, step-by-step instructions, and visual feedback 
mechanisms. Moreover, MoVIZ incorporates both 
automated and manual parameter selection options, 
catering to cheminformatics experts and beginners 
alike. This flexibility enables users to customize 
workflows to their needs, ensuring accessibility for all 
expertise levels.

In this work, we present MoVIZ’s chemical grouping 
workflow, using supervised and unsupervised machine 
learning methods. This user-friendly workflow, along 
with different machine learning approaches and data 
visualization tools, is made available for download from 
GitHub (https:// github. com/ NIEHS/ Chemi cal- group 
ing- workfl ow) and KNIME Community Hub (https:// 
hub. knime. com/-/ space s/-/ latest/ ~AnmyN gAW4J MJ_ 
gq4/). It can be deployed on local desktops or network 
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servers. Additionally, the workflow is accessible via the 
National Institute of Environmental Health Sciences 
(NIEHS) KNIME Server WebPortal, serving all 
National Institutes of Health (NIH) users (within the 
NIH network) as web-application (at https:// knime. 
niehs. nih. gov/ knime/ webpo rtal/) that also links to 
other cheminformatics tools and workflows as part of 
the NIEHS cyber-infrastructure.

In the next sections, we detail the materials 
and methods used, including data input formats, 
molecular descriptors, dimensionality reduction, 
and feature selection techniques. We also describe 
the implementation of unsupervised clustering and 
supervised classification methods, supported by 
hyperparameter tuning for improved performance. The 
interpretation section showcases the use of SHAP values 
to provide insights into the importance of molecular 
descriptors for predicting chemical groupings. Then, 
we demonstrate the workflow’s capabilities using a large 
toxicological dataset for eye irritation and corrosion.

Materials and methods
Overview of the chemical grouping workflow
There are many motivations for applying chemical 
groupings, e.g., the chemical groupings can be used 
to prioritize compounds for inclusion in experimental 
screening campaigns based on similarity or diversity [46]. 
In toxicology, chemical groupings are employed to bridge 
data gaps for compounds with limited information. These 
compounds are grouped based on their similarity to 
others with known toxicological properties, suggesting 
they may exhibit similar toxicological properties. In 
the same sense, the biological mechanism of action of 
compounds can be hypothesized [10, 12, 17]. Another 
application is prior to development of Quantitative 
Structure–Activity Relationship (QSAR) models, in 
which the diversity of the compounds in a dataset can 
be assessed to guarantee that the model will be trained 
with adequate chemical information and provide reliable 
predictions for untested compounds [16].

Despite the value of chemical groupings, the 
literature lacks comprehensive, user-friendly, free 
and open-source tools for such application. Many 
available tools are part of paid programs [47], while free 
options often lack versatility, automation, and guidance 
[47–50]. This work introduces a comprehensive 
KNIME workflow designed for chemical grouping. 
The KNIME analytics platform, being a low-code and 
no-code platform, facilitates visual programming 
through the assembly of connected nodes, enhancing 
understanding and adaptability. All interactive steps 
and result visualizations are developed using KNIME 
components, which encapsulate functionality with their 

own dialog and interactive views. When uploaded to 
KNIME Server and executed via KNIME WebPortal, 
the workflow functions as a web application, with each 
interactive page corresponding to a component in 
the workflow. Alternatively, the same workflow pages 
from KNIME components can be accessed locally on 
the desktop version of the KNIME Analytics platform. 
KNIME nodes offer configuration options governed 
by parameters called “flow variables” ensuring 
dynamic workflow execution. These variables store 
configurations, parameters, and results, enabling their 
reuse in future analyses via export to a configuration 
file.

The main advantages of the chemical grouping 
workflow described in this work are its versatility, 
automation, interactive nature, guidance, the number 
of options it offers at each stage, and ability to support 
various data formats and a wide range of methods. The 
workflow provides three different running modes: “New 
Analysis”, “New Analysis with Prior Configuration”, 
and “View Past Results”, which satisfy various research 
requirements.

The default “New Analysis” mode (Fig.  1) allows for 
chemical data input with or without labels (e.g., bio-
logical activity), and supports various file formats like 
SDF, SMILES, CSV, and Excel (.xls,.xlsx). The workflow 
standardizes the chemical structures and then calculates 
molecular descriptors. It offers binary fingerprints or 
continuous descriptors, and filters low variant and highly 
correlated descriptors. For unlabeled data running unsu-
pervised clustering, users can manually select features 
and choose from algorithms like K-means, K-medoids, 
Hierarchical Clustering, Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN), and Hierar-
chical Density-Based Spatial Clustering of Applications 
with Noise (HDBSCAN), complemented by visualization 
techniques including Principal Components Analysis 
(PCA), Uniform Manifold Approximation and Projection 
(UMAP), and t-distributed Stochastic Neighbor Embed-
ding (t-SNE). For labeled data, supervised classification 
offers manual and automated feature selection using 
methods like Genetic Algorithm (GA), Recursive Fea-
ture Elimination (RFE), and Simulated Annealing (SA), 
followed by visualization. A novel option employs SHAP 
values for finding groups based on endpoint-specific sim-
ilarity. The workflow further enhances analysis precision 
by hyperparameter tuning via Bayesian optimization. 
Results are visualized and interpreted using SHAP plots 
for feature importance and a large language model (GPT 
3.5) for natural language summaries. The final stage pro-
duces a comprehensive report with options for detailed 
downloads, ensuring throughout presentation and uti-
lization of grouping outcomes. Interactive views and 
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Fig. 1 General overview of the chemical grouping process
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guides are available at each step, enhancing user-centric 
design and accessibility.

After a workflow execution, the system stores all 
selected options, parameters, and results as “flow 
variables”, exportable as a configuration file. This 
file serves as input for the “New Analysis with Prior 
Configuration” running mode to replicate previous 
settings for new datasets analyses, ensuring consistency 
and efficiency. Additionally, the “View Past Results” 
option leverages this configuration file, enabling users 
to effortlessly revisit previous outcomes without 
the re-running the workflow, facilitating in-depth 
examination of results over time.

Workflow input
The chemical grouping workflow begins with selecting a 
running mode: “New Analysis”, “New Analysis with Prior 
Configuration”, or “View Past Results”, and inputting 
appropriate files. Each mode accepts different file 
formats. “New Analysis” initiates a complete new analysis 
using SDF, SMILES, CSV, or XLS/XLSX files, with CSV 
and XLS/XLSX requiring a SMILES structures column. 
For supervised methods, the input file should contain 
chemical activities encoded in binary, multiclass, or 
continuous formats. Results, options, and parameters are 
stored as “flow variables” and exported as a configuration 
file (.variables) after execution, [51] which can be used as 
input for other running modes [51].

The “New Analysis with Prior Configuration” is 
the running mode that uses all the configurations, 
algorithms, and hyperparameters of a past analysis with 
a new dataset. This option requires the input of a file 
with the chemical structures in one of the supported 
formats (SDF, SMILES, CSV, XLS, or XLSX) and the 
configuration file (.variables) previously generated. 
The configuration file is read with the “Read Variables” 
[52] node. If supervised methods are to be used, it is 
also required in the file a column with the compounds’ 
activities in the binary, multiclass or in the continuous 
format. The analysis’ results are also exported as a 
configuration file.

The “View Past Results” running mode is used to 
revisit the results generated in a past workflow execution 
leveraging the interactive visualizations without the 
need to execute the analysis again. In this option, the 
only required input is a configuration file previously 
generated, which will contain all the results.

After inputting of a file containing chemical structures 
and labels (for supervised analysis), an initial integrity 
check ensures readability and identifies missing values. 
Rows with unreadable chemical structures or missing 
values are removed. A summary table of removed rows 
is presented and exported as a CSV file. An exploratory 

analysis follows, displaying the remaining compounds, 
missing values, and unreadable structures. For labeled 
data, histograms show continuous data distribution, and 
class balancing is depicted using bar plots for binary and 
multiclass data.

Molecular descriptors
A vital aspect of chemical data analysis and modeling 
lies in how chemical structures are represented. 
Although many computer-readable formats for chemical 
structures exist, the most commonly used format for 
cheminformatics analysis are molecular descriptors 
[53, 54]. The molecular descriptors can be calculated 
from a symbolic representation of a compound or the 
result of an experimental measurement [55, 56]. In this 
workflow, we implemented binary and continuous types 
of molecular descriptors.

Binary molecular descriptors rely on representations in 
a bit string format where each bit encodes the presence 
and absence (1 and 0, respectively) of a particular 
substructure. Here, three different binary molecular 
descriptors called molecular fingerprints are available 
through the “RDKit Fingerprint” [57] node: Morgan, 
FeatMorgan, and Molecular ACCess System (MACCS). 
The implemented molecular fingerprints are described in 
the Additional file 1: Table S1.

Continuous molecular descriptors available in the 
workflow include RDKit descriptors (119 descriptors 
calculated with the “RDKit Descriptor Calculation” 
KNIME node [58]), Mordred descriptors (1613 
descriptors implemented with the Mordred Python 
library [59]), and PaDEL-Descriptors (1444 descriptors 
implemented with the PaDELPy Python library [60–62]). 
After descriptor calculation, the workflow provides three 
options for scaling, implemented using the “Normalizer” 
[63] KNIME node. Min–max scaling linearly transforms 
descriptor values to a range between 0 and 1. Z-score 
normalization ensures Gaussian-distribution (i.e., mean 
is 0 and standard deviation is 1). Normalization by 
decimal scaling, divides maximum descriptor values 
(both positive and negative) j-times by 10 until their 
absolute value is lower or equal to 1. All values are then 
divided by 10 to the power of j [63].

Another important step of cheminformatics analysis 
is the data curation and chemical structure standardiza-
tion. Before the calculation of the molecular descriptors, 
we implemented the option to apply the QSAR-ready 
workflow. This performs a standardization procedure 
on the chemical structures, which includes the removal 
of salt counterions, stereochemistry, and duplicated 
entries; standardization of tautomers and nitro groups; 
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correction of valences; and neutralization of structures 
when possible [64].

Dimensionality reduction
Implemented dimensionality reduction methods include 
filtering low variance and highly correlated descriptors, 
offering manual and automated options. For the low 
variance filter, descriptors with variance below a set 
threshold are removed as they lack relevance. In the 
manual option, the “Low Variance Filter” [65] node 
removes descriptors based on user defined thresholds. 
However, selecting an appropriate threshold value can be 
challenging, particularly for inexperienced users or when 
numerous descriptors are involved. Hence, an automated 
threshold search was implemented for labeled data. This 
involves splitting the dataset into training (80%) and 
testing (20%) sets, applying variance thresholds ranging 
from 0 to 0.1, in steps of 0.01 to filter descriptors and 
generating unique datasets, where machine learning 
models are trained on the training set and tested for 
accuracy (for binary and multiclass) or the coefficient of 
determination [(R2  ), (for continuous data and regression 
analysis)] on the test set [66, 67]. The threshold yielding 
the best model accuracy or R2 is applied to the original 
dataset to reduce descriptors. Alternatively, fivefold 
cross-validation can be employed, dividing the dataset 
into five distinct splits for comprehensive evaluation of 
the model’s performance. The final performance metric is 
calculated as the average across these splits.

To filter highly correlated molecular descriptors, 
the manual option calculates correlation using the 
“Linear Correlation” [68] node and applies filtering 
with the “Correlation Filter” [69] node using a user-
defined threshold. The automated option follows a 
similar approach to the low variance filter, splitting the 
labeled dataset into training (80%) and testing (20%) 
sets. Correlation thresholds ranging from 0 to 0.1, with 
increments of 0.01, are applied to both sets using the 
“corr” method of the pandas Python library [70]. Machine 
learning models are trained on each dataset, and the 
threshold yielding the highest accuracy (for binary and 
multiclass data) or R2 (for continuous data) is applied to 
the original dataset. Both options calculate correlation 
using the Pearson correlation coefficient [71]. Optionally, 
a fivefold cross-validation process is available, applying 
each correlation threshold across five dataset splits, with 
accuracy or R2 is then calculated as an average across 
these splits.

Supervised feature selection
After the removing low variance and/or highly correlated 
descriptors, feature selection becomes available. It 
aims to pinpoint a subset closely related to a target 

physiochemical or biological property while eliminating 
redundant, noisy, or irrelevant descriptors. Feature 
selection benefits ML by enhancing model performance 
and interpretability, reducing overfitting risk, and 
decreasing training time [72–75]. For unlabeled data, 
only manual feature selection is available via the “Data 
Explorer” KNIME node [75]. When data is labeled and 
supervised classification is selected, feature selection can 
be manual or automated. Three automated supervised 
feature selection methods were implemented: Recursive 
Feature Elimination [76], Genetic Algorithm [77, 78], and 
Simulated Annealing [79].

In RFE, a machine learning algorithm is trained 
iteratively starting with all molecular descriptors, then 
ranks and removes the least important ones until a 
set number remain [76]. Here, the Recursive Feature 
Elimination with Cross-Validation method from the 
scikit-learn [66, 67] Python library was used. At each 
iteration, the 20% least important molecular descriptors 
are removed. The final subset is selected based on the 
highest Area under the ROC Curve (AUC) value for 
binary and multiclass classification, and the highest R2 
for continuous and regression analysis.

GA is a method that simulates natural evolution and 
selection for solving complex optimization problems 
[75, 77, 78], particularly feature selection [73, 80–83]. 
Employing the sklearn-genetic Python library [84] via 
the GeneticSelectionCV method, an initial population 
of molecular descriptors subsets is randomly generated. 
Each member’s score is determined by training a cross-
validated supervised machine learning model, using 
accuracy or R2 depending on data type. Tournament 
selection determines members for to the next generation. 
Crossover combines selected members to form a new 
population controlled by “crossover_proba”. Random 
mutation, controlled by the parameter “mutation_prob”, 
swaps molecular descriptors. This iterative process 
continues until the stop criterion, “n_generations”, is 
met. Users can customize GeneticSelectionCV method 
parameters, with default values and comprehensive 
guides provided for ease of use.

SA is also a feature selection method inspired by a 
natural process [73, 79, 81, 85–88]. This work uses an 
adaptation from Leung’s implementation [89]. A random 
selection of 50% of molecular descriptors remaining 
after dimensionality reduction forms the initial subset. 
A supervised machine learning model is trained using 
this subset, evaluating performance via threefold cross-
validation using AUC or R2 scoring. The subset is then 
iteratively modified by adding, replacing, or removing 
descriptors, with model performance compared at 
each step. If a new subset improves performance, it 
becomes the new current state; otherwise, an acceptance 
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probability is calculated. If the random number is lower 
than the acceptance probability, the new subset is 
adopted; otherwise, the original subset is retained. The 
algorithm’s ‘temperature’ is gradually lowered using a 
geometric reduction strategy, decreasing by a factor 
of 0.95 after each iteration. This process continues 
until reaching a maximum number of 50 iterations or a 
temperature value below 0.01.

Chemical grouping
The chemical grouping approach applied in this work 
is subdivided into two main strategies: unsupervised 
clustering and supervised classification. The process of 
grouping chemicals involves the organization of chemical 
compounds into clusters or classes/categories based 
on their structural, functional, or property similarities 
[90]. Unsupervised clustering involves the automatic 
identification of patterns or similarities among chemicals 
without any prior knowledge or supervision [90]. It 
allows us to uncover hidden structures within chemical 
datasets, revealing inherent relationships between 
compounds. Supervised classification, on the other 
hand, utilizes prior knowledge to categorize chemicals 
[90]. To optimize the performance of both strategies, 
we employ a rigorous hyperparameter tuning strategy, 
ensuring that our chemical grouping approach is both 
robust and effective in capturing the underlying chemical 
relationships.

Hyperparameter tuning
Most machine learning algorithms have tunable 
hyperparameters that control their behavior and directly 
affect their performance. Here, we use Optuna [91, 
92], a framework-agnostic Python library, to perform 
automated search for optimal hyperparameters of the 
machine learning and visualization algorithms for both 
unsupervised clustering and supervised classification 
methods. Optuna requires the definition of an objective 
function containing the entire logic of a standard model’s 
definition, training, and testing procedure. The objective 
function returns an evaluation metric. Then, the objective 
function is optimized to find the best hyperparameters’ 
combination using the TPESampler (Tree-Structured 
Parzen Estimator) [93]. The TPESampler is a Bayesian 
optimization algorithm that run trials iteratively until a 
user-defined maximum number of trials or time.

The Silhouette coefficient is used as a metric for 
evaluating the quality of grouping results and selection 
of the best hyperparameters for the grouping and 
visualization algorithms. It is implemented using the 
scikit-learn [66, 67] Python library. It provides a measure 
of how well data points within a group are separated from 
points in other groups. It is calculated using the mean 

intra-group distance (a) and the mean nearest-cluster 
distance (b) for each sample, as follows:

This coefficient ranges from −  1 to 1, where a value 
close to 1 indicates that the instance is well-grouped and 
far from other groups, a value close to 0 indicates that the 
data points is on or very close to the decision boundary 
between groups, and a value close to -1 indicates that the 
data point may have been assigned to the wrong group. 
Finally, the average Silhouette coefficient across all data 
points is computed to obtain the overall Silhouette score 
for the grouping result [94].

The various clustering algorithms and visualization 
methods have distinct hyperparameters. Therefore, for 
each algorithm selected by the user, a dedicated page 
will display the corresponding hyperparameter values for 
tuning. In the case of Bayesian optimization implemented 
with Optuna, the user can specify a range of values for 
each hyperparameter using a slider, and combinations 
will be tested until reaching a user-defined maximum 
number of trials. All the hyperparameters available for 
tuning in the workflow and their respective algorithms 
are described in Additional file 1: Table S2.

The hyperparameter search process varies based on 
whether projected clustering is used. Projected clustering 
involves using a lower-dimensional (typically 2D) 
subspace generated by visualization methods (described 
below) as input for the unsupervised clustering and 
supervised classification algorithms [95–98]. When 
projected clustering is chosen, both clustering algorithm 
and the visualization method hyperparameters are 
tuned simultaneously within a single Optuna run. 
The 2D projected data output from the visualization 
method is fed into the clustering algorithm, and the 
best hyperparameter combination is selected based 
on the silhouette score. Conversely, without projected 
clustering, the hyperparameters are tuned first using the 
entire set of selected molecular descriptors. Subsequently, 
visualization method hyperparameters are optimized 
separately. Different combinations of visualization 
methods hyperparameters are tested, and the resulting 
2D projected data from each trial is used as input for 
the clustering algorithm, while keeping previously tuned 
hyperparameters fixed. The combination yielding the 
best silhouette score is selected by default, but users can 
manually choose a different combination.

Unsupervised clustering
Unsupervised clustering in machine learning and 
data analysis identifies hidden patterns within data by 
grouping data points based on similarity or density, 

(1)SI =
b− a

max(a, b)
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without using explicit labels (e.g., biological activity). This 
task relies solely on the data’s intrinsic characteristics, 
assuming that objects within a group share greater 
similarity than those in separate groups [12–14, 90]. In 
our grouping workflow, unsupervised clustering employs 
selected molecular descriptors as input for algorithms 
such as K-means, K-medoids, Hierarchical clustering, 
DBSCAN, and HDBSCAN.

K-means [99, 100] is a widely used clustering 
algorithms that begins by randomly assigning k centroids 
and then reallocates data points (chemicals) to the closest 
centroid. It iteratively optimizes centroids by adjusting 
assignments and selecting new centroids until stability 
or the maximum iterations are reached [16, 101, 102]. 
Our workflow implements the K-means algorithm using 
a combination of the scikit-learn [66, 67] Python library 
in the hyperparameter optimization and the “k-Means” 
[103] KNIME node for the final calculation of the 
grouping.

K-medoids [104] is a modification of the K-means 
algorithm, where instead of using an artificial data point 
generated averaging all molecules in the group as the 
centroid, K-medoids uses the actual middle compound 
in the group as the center (medoid). Medoids are defined 
as compounds with the smallest average dissimilarity to 
all objects within a group [105–107]. This workflow uses 
the K-medoids implementation of scikit-learn-extra [108] 
Python library.

Hierarchical clustering algorithm builds groups of 
molecular compounds using a binary merge tree [109]. 
Initially, all data points are treated as independent groups 
(leaves). Then, the closest data points are connected to 
form pairs, gradually merging into larger groups until 
reaching the root where all compounds are in a single 
cluster [21]. The distance between the data points, called 
“linkage distance”, is computed using single, complete, 
or average linkage methods. These methods calculate 
pairwise similarities using Euclidean or Manhattan 
distance metrics but merge groups differently [110, 111]. 
The scikit-learn [66, 67] Python library was used for 
hyperparameter tuning and the “Hierarchical Clustering 
(DistMatrix)” KNIME node for grouping [111]. The 
“Hierarchical Cluster Assigner” [112] KNIME node 
facilitated clustering threshold selection and dendrogram 
creation.

DBSCAN [113] is an algorithm that groups dense data 
points, accommodating various shapes and sizes, while 
identifying outliers. It begins by randomly selecting a 
data point and measuring the number of nearby points 
within a limited distance ε (epsilon). If the number of 
data points inside the ε satisfies a specified minimum 
(min_samples), the initial point becomes a core instance, 
and all neighboring points are assigned to the same 

group. This process repeats until all suitable points have 
been assigned to a group. Data points unassigned to a 
group are deemed outliers [114, 115].

HDBSCAN [116] extends DBSCAN by introducing 
groups representation and “robust single linkage”. It 
calculates point density using a distance metric and 
constructs a minimum spanning tree for hierarchical 
clustering. Outliers are handled effectively by labeling 
them as noise and assigning them to singleton clusters. 
The algorithm condenses the hierarchy by cutting the 
tree at a density level determined by the "minimum 
cluster size" hyperparameter, considering clusters below 
this size as noise [117, 118]. HDBSCAN is implemented 
using the hdbscan [119, 120] Python Library.

Supervised classification
The unsupervised clustering methods rely on a general 
concept of chemical similarity. As a result, they might 
not detect molecular features that most contribute to the 
target physiochemical or biological property. However, 
when the data labels are available, e.g., measured toxicity 
for an endpoint, this information can be used in the 
grouping process, producing results based on how 
informative the features are in relation to the target 
variable [17, 90, 121, 122].

Here, we implemented two methods for supervised 
classification. The first method starts with the use of one 
of the supervised feature selection approaches (described 
above) to find the most relevant molecular descriptors 
for an endpoint. Then, one of the visualization methods 
available (described below) are used to project the data 
into 2D dimensions for visualization. Here, the groups are 
the data classes (binary or multiclass) or its continuous 
distributions.

The second supervised classification method uses 
the SHAP methodology, developed by Scott Lundberg 
and Su-In Lee [25], based on cooperative game theory 
and Shapley values [123]. In SHAP, features are treated 
as "players" contributing to model predictions. It 
assigns importance values to features by considering 
all possible combinations, calculating their average 
marginal contribution to predictions across coalitions 
[124]. The SHAP Python library computes SHAP values 
of each molecular descriptor in a trained supervised 
ML model [25, 125]. These values are then inputted into 
unsupervised clustering algorithms to group descriptors 
based on their similarity in influencing the model’s 
output [97, 121]. SHAP is adapted to data with binary, 
multiclass, or continuous labels, making it versatile for 
identifying data groups and subgroups based on labels.

In this work, when data labels are available, the 
supervised ML methods are used in the automation of 
the dimensionality reduction and feature selection, and in 
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the supervised classification approach. They are also used 
in the interpretation of both supervised and unsupervised 
clustering results (described below). The implemented 
methods for both classification and regression tasks 
include Random Forest (RF), Light Gradient Boosting 
Machine (LightGBM), Support Vector Machines (SVM), 
k-nearest neighbors (KNN). The Naïve Bayesian (NB) 
and Logistic regression (LR) were implemented only for 
binary and multiclass classification.

Random Forest is a powerful ensemble learning 
technique that operates by creating a collection of 
decision trees, each trained on a random subset of the 
training data and input features. For classification tasks, 
it uses majority voting to make predictions, where the 
class with the most votes from the decision trees is 
selected. In multiclass classification, this principle is 
extended to handle multiple classes. For regression tasks, 
RF calculates the average prediction of the individual 
decision trees to obtain a continuous numeric output 
[126–128].

Light Gradient Boosting Machine employs a gradient 
boosting framework, a popular ensemble method that 
combines multiple decision trees to create a robust 
predictive model. It iteratively builds an ensemble of 
models, each focusing on reducing the errors made 
by previous models. Final predictions are obtained by 
summing all models. In multiclass classification tasks, 
LightGBM extends its boosting capabilities to handle 
multiple classes effectively. For regression tasks, it 
provides a continuous numeric output by summing 
predictions from all models [129, 130].

Support Vector Machines algorithm transforms input 
data into a higher-dimensional feature space using a 
kernel function to find a nonlinear decision boundary. It 
seeks the hyperplane separating transformed data points 
with the largest margin, traced using nearest data points 
of each class (support vectors). SVM is effective for 
multiclass classification tasks and regression problems, 
where it finds a hyperplane fitting the data points [131, 
132].

k-nearest neighbors is a ML algorithm that determines 
the class membership of the new data by considering its 
proximity to the existing data points in the feature space. 
For multiclass classification, KNN extends its nearest 
neighbor search to find the K nearest neighbors among 
all classes, and the class with the majority of neighbors is 
assigned. In regression tasks, KNN calculates the average 
output of the k-nearest neighbors to provide a continuous 
numeric prediction [133].

The Naïve Bayesian classifier is a probabilistic 
classification algorithm based on Bayes’ theorem. It 
assumes features independence given the class label and 
calculates class probabilities by multiplying individual 

feature probabilities. For multiclass classification, NB 
extends this calculation to estimate class likelihoods, 
selecting the class with the highest probability. In 
regression, NB can be adapted to predict continuous 
numeric values by modifying its probability calculations 
[134, 135].

Logistic regression is a ML algorithm used for binary 
and multiclass classification tasks. It is based on the 
logistic function, also known as the sigmoid function, 
which maps the input features to a value between 0 and 
1, representing the likelihood of the input belonging 
to the positive class in binary classification. In the case 
of multiclass classification, LR use its logistic model to 
handle multiple classes, employing techniques such as 
one-vs-rest to make predictions across multiple classes 
[136, 137].

Data visualization
Data visualization techniques simplify complex 
multidimensional phenomena by projecting high-
dimensional spaces onto lower dimensions. This enables 
researchers to explore and analyze large datasets 
effectively, leading to deeper insights [138–140]. To 
visualize the grouping results into two-dimensional 
(2D) space, we implemented PCA, UMAP, and t-SNE 
algorithms. The 2D projected data are plotted using 
the “Scatter Plot” [141] KNIME node for interactive 
visualization and the seaborn [142] Python library for 
static visualization.

PCA reduces the dimensionality of the original dataset 
while capturing the maximum variance. It creates 
principal components, which are linear combinations of 
the original variables. The first component explains the 
largest variance, with subsequent components explaining 
the remaining variance while being orthogonal (i.e., no 
correlation) to each other [143]. We used the “PCA” [144] 
KNIME node implementation.

UMAP constructs a high-dimensional graph 
representation of the data and embeds it into a lower-
dimensional space using Riemannian geometry. It starts 
by creating a k-nearest neighbors graph based on a 
distance metric, then optimizing the embedding process 
[145]. UMAP was implemented using the umap-learn 
[145, 146] Python library.

t-SNE calculates pairwise similarities of high-
dimensional data, converting them into a probability 
distribution. It constructs a lower-dimensional space 
and minimizes the difference between the pairwise 
similarities of the high-dimensional data and the low-
dimensional representation by minimizing the Kullback–
Leibler divergence [147]. t-SNE was implemented using 
the scikit-learn [66, 67] Python Library.
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Interpretation
The interpretation of grouping results is a significant 
element of our workflow, offering deeper insights and 
explanation of the grouping rationale. To interpret the 
grouping results, we train a supervised ML algorithm 
(classification or multiclass) using molecular descriptors 
as independent variables and cluster labels as dependent 
variables. We use the shap [25, 125] Python library to 
compute SHAP values for each molecular descriptor, 
indicating their contribution to predicted cluster 
membership [26–28]. Positive SHAP values denote a 
positive contribution, while negative values suggest the 
opposite.

To enhance workflow accessibility and results 
comprehension, we utilize a large language model (LLM) 
GPT-3.5 Turbo to distill SHAP value interpretation into 
concise, coherent summaries. This approach ensures 
clear and easily digestible explanations for readers across 
varying levels of expertise.

For Morgan or MACCS fingerprints, we enhance 
interpretation by generating figures representing 
molecular substructures linked to individual using the 
rdkit Python library [148]. We also convert fingerprints 
bits to corresponding functional groups using the exmol 
[149, 150] Python library, enriching the input prompt for 
the LLM. The resulting narrative from the LLM provides 
a detailed and accessible summary of the grouping 
results.

For continuous molecular descriptors, two LLM 
interpretation methods are available. The first method, 
suited for labeled data, requires a concise description of 
the endpoint being studied to generate natural language 
explanations directly linking descriptors’ values to 
experimental outcomes. The second method, applicable 
to both labeled and unlabeled data, explanations relating 
the descriptors’ values to the grouping results without 
requiring user input on the endpoint.

Report and download of results
At the end of the workflow a report page is available. In 
this page, a summary of all results obtained during the 
workflow execution is shown. Also, options to download 
the results are provided. These options include:

1. Configuration file (.variables): This file captures 
parameters and configurations set during the 
workflow execution, facilitating replication or 
revisitation of the process. It enables visualization 
of previous results and ensures consistency for new 
executions.

2. Workflow parameters and configurations: a CSV file 
containing execution details such as input file name 

and extension, data type (labeled or unlabeled), 
molecular descriptors type (binary or continuous), 
specific descriptors selected, dimensionality 
reduction method and the thresholds (low variance, 
correlation, or all descriptors), grouping analysis 
type (unsupervised or supervised), feature selection 
type (manual or automated) with applied algorithm, 
selected clustering algorithm and visualization 
algorithms, and hyperparameters after Bayesian 
optimization or manual selection.

3. Grouping Results: a CSV file that compiles the 
grouping results (cluster labels, SMILES, and the 
generated 2D projection of the data for visualization).

4. Grouping results report: a PDF file with the 2D 
projected data color-coded based on the cluster 
number, the SHAP summary plot of the grouping 
interpretation, and the LLM interpretation, when 
this option is selected.

5. Molecular descriptors: a CSV file with the calculated 
molecular descriptors that can be used in other 
applications. If dimensionality reduction and feature 
selection methods are applied, the CSV file will 
contain the molecular descriptors remained after 
those analysis.

6. Figures: all the figures generated during the workflow 
execution including the static scatter plot and the 
SHAP summary plots in high resolution (SVG 
format).

7. Data failed during the input: a CSV file that includes 
data which was either unreadable or had missing 
values during the input process.

Documentation and guides
The utility of a scientific application is significantly 
enhanced by comprehensive documentation, a critical 
aspect that extends beyond mere technical robustness. 
Such documentation ensures that the application is not 
only reproducible but also user-friendly, making complex 
processes approachable and comprehensible. This clarity 
and ease of use are vital in breaking down barriers to 
entry, allowing researchers from various backgrounds 
to use the tool effectively. Furthermore, comprehensive 
documentation and guides are a cornerstone in the 
democratization of scientific tools and methods to ensure 
that these resources are not only used by experts in the 
field but are accessible to a broader community. This 
inclusive approach promotes collaborative research, 
encourages a diversity of perspectives, and accelerates 
scientific discoveries [35, 151, 152].

In this study, documentation was embedded 
directly within the KNIME workflow to facilitate 
this comprehension and reproducibility. Each node, 
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metanode, component, or Python script within the 
workflow was annotated with detailed comments. 
These comments encompassed a description of the 
function, and any specific methods or algorithms 
being employed within. In cases where sequences of 
nodes worked together to accomplish a specific task, 
metanodes were employed, and comments were added 
to these to describe the collective functionality.

All the steps of the workflow execution possess 
interactive pages designed to enhance user guidance 
and accessibility. At each step of the workflow, 
informative text boxes serve as guides to provide users 
with clear and concise instructions, leading them 
through the various stages of the chemical grouping 
process with step-by-step guidance.

Computational tools
The workflow was developed using the open-source 
software KNIME version 4.6.4 (freely available at 
https:// www. knime. com/ downl oad). The KNIME 
free extensions used were: “KNIME Base Chemistry 
Types & Nodes” [153], “Indigo KNIME Integration” 
[154], “RDKit Nodes Feature” [155], “KNIME Python 
Integration” [156], “KNIME JavaScript Views (Labs)” 
[157], “Vernalis KNIME Nodes” [158], and “KNIME 
HTML/PDF Writer” [159]. Some parts of the workflow 
were implemented in “Python Script (legacy)” nodes 
and Python 3.10.13 using the following libraries: 
pandas (v. 1.5.2) [70], numpy (v. 1.25.3) [160], mordred 
(v. 1.2.0) [59, 161], PaDELPy (v. 0.1.14) [61], scikit-
learn (v. 1.0.2) [66, 67], LightGBM [129, 162], sklearn-
genetic (v. 0.6.0) [84], shap (v. 0.41.0) [25, 125], 
hdbscan (v. 0.8.28) [119, 120], optuna (v. 3.0.2) [91, 
92], rdkit (v. 2022.3.5) [148], umap-learn (v. 0.5.3) 
[145, 146], cairosvg (v. 2.7.0) [163], scikit-learn-extra 
(v.  0.2.0) [108], seaborn (v. 0.11.2) [142], ipython (v. 
7.34.0) [164], pillow (v. 9.4.0) [165], openai (v. 1.10.0) 
[166], exmol (v. 3.0.3) [149, 150], and matplotlib (v. 
3.6.3) [167].

The workflow is deployed on the NIEHS KNIME 
Server (v. 4.15.3, running on CentOS Linux v.  3.10.0) 
and made available via the KNIME WebPortal to be 
executed as a web application in a guided step-by-step 
way, without the need to install the KNIME analytics 
platform. Currently, the NIEHS KNIME server is 
only available within the NIH network at https:// 
knime. niehs. nih. gov/ knime/ webpo rtal/. But the same 
workflow can be downloaded from GitHub (https:// 
github. com/ NIEHS/ Chemi cal- group ing- workf low) 
or KNIME Hub (https:// hub. knime. com/-/ space s/-/ 
latest/ ~AnmyN gAW4J MJ_ gq4/) and executed locally or 
deployed to any other KNIME Server.

Case study
To demonstrate the functionalities and outputs of 
the chemical grouping workflow, we performed two 
separate analyses: a supervised classification and an 
unsupervised clustering. The toxicological eye irritation 
and corrosion dataset retrieved from the work of Borba 
et al. [168] was used for both analyses. This dataset was 
downloaded from the supplementary material of the 
original publication, containing a total of 2273 chemicals, 
comprising 1140 irritants and 1133 non-irritants.

Results and discussion
Workflow overview and execution
The chemical grouping workflow described above 
comprises nine major steps: (1) data input; (2) molecular 
descriptors calculation; (3) dimensionality reduction; (4) 
feature selection; (5) hyperparameter tuning; (6) chemical 
grouping; (7) results visualization; (8) interpretation of 
the results; and (9) reporting.

The in-workflow documentation ensures intuitive 
understanding of the logic and methodology being 
employed at each stage, without the need for external 
documentation or guesswork, and supports future modi-
fications and extensions to the workflow. Each interac-
tive page view of the workflow presents a text box on the 
right side for guidance (Fig.  2). It provides instructions 
for executing the workflow (including any required user 
input or potential parameter adjustments), and guidance 
for interpreting the output results. Where necessary, 
the interactive view documentation also provides links 
to more detailed external resources, such as academic 
papers and technical documentation for the methods. 
This dual-pronged approach to documentation, i.e., com-
bining in-workflow comments with a step-by-step guide 
in the interactive page view, was designed to make the 
chemical grouping workflow as understandable and user-
friendly as possible, while still providing the depth of 
information required for full reproducibility and poten-
tial future development.

Input and exploratory analysis
In our case study, the “New Analysis” mode was selected 
(Fig. 2). The input file (Additional file 2) was in the SDF 
format, containing the chemical structures of the eye 
irritation and corrosion dataset. We first performed an 
unsupervised clustering analysis with this dataset, using 
the “Unlabeled" option under the “Select dataset type” 
configuration field.

We also used the same dataset for a supervised 
classification analysis, on a second workflow run using an 
SDF file containing the chemical structures and the labels 
for the eye irritation and corrosion dataset, encoded as 

https://www.knime.com/download
https://knime.niehs.nih.gov/knime/webportal/
https://knime.niehs.nih.gov/knime/webportal/
https://github.com/NIEHS/Chemical-grouping-workflow
https://github.com/NIEHS/Chemical-grouping-workflow
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/
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Fig. 2 Input and initial configuration page of the chemical grouping workflow, with detailed user guides
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zero for nonirritant chemicals and one for irritants. To 
unlock the supervised methods in the workflow, the 
“Labeled” option under the “Select the dataset type” field 
was chosen (Fig.  2). Then, we selected the SDF column 
“Outcome” containing the labels and the data type 
“Binary” in the “select column” page (Additional file  1: 
Figure S1). Next, the exploratory data analysis revealed 
that four chemicals could not be read by the workflow, 
resulting in a final dataset of 2269 chemicals, with 1137 
classified as class zero and 1132 as class one (Additional 
file 1: Figure S2).

Chemical grouping
Unsupervised clustering
In the unsupervised clustering analysis of our case study 
using the eye irritation and corrosion dataset, the binary 
Morgan fingerprints was selected (Fig.  3). The Mor-
gan parameters set were the “radius” = 3 and “number 
of bits = 2048 (Additional file 1: Figure S3). The "QSAR-
ready standardization" option was set to "Yes" by default 

to apply the chemical structure standardization steps of 
the QSAR-ready workflow [64].

Upon the calculation of the molecular descriptors, the 
next step is the dimensionality reduction. In the unsu-
pervised clustering analysis, we applied the low vari-
ance filter and manually selected the threshold using 
a slider (Fig. 4). The selected threshold was 0.05 and 92 
bits from 2048 remained after the filtering. For the fea-
ture selection step, when the input data are unlabeled 
or the user selects the unsupervised clustering method, 
only a manual option is shown (Additional file 1: Figure 
S4). The user can manually select in a table the binary fin-
gerprints or molecular descriptors that will be removed 
from the dataset. Also, the univariate statistical measures 
Mean, Variance, Skewness, and Kurtosis are calculated 
and displayed in the table for each fingerprint or molec-
ular descriptor to guide the user in the selection. In our 
unsupervised clustering case study, no additional feature 
selection was performed after the dimensionality reduc-
tion and the 92 bits were used in the subsequent analysis.

Fig. 3 Page for the molecular descriptor selection and chemical structure standardization
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After the feature selection, the next page is the chem-
ical grouping configuration. In this page, the selec-
tion of the clustering algorithm (K-means, K-medoids, 
Hierarchical clustering, DBSCAN, and HDBSCAN), 
the visualization method (UMAP, PCA, and t-SNE) 
and the use of projected clustering are available (Addi-
tional file  1: Figure S5). The default configurations are 
K-means, UMAP and “Yes” for the use of projected 
clustering. The projected clustering methods act as a 
preprocessing step for the clustering algorithm to over-
come the “curse of dimensionality” problem, i.e., when 
the algorithm have a poor performance due to the high-
dimensional space of the feature set. Thus, the group-
ing performance is increased [96, 97, 169, 170]. For the 
unsupervised clustering analysis of our case study, the 
default configurations were used.

After the chemical grouping configuration page, the 
next step is the hyperparameter tuning. The configura-
tion page for the K-means clustering algorithm’s hyper-
parameters, along with the selected range values for 
tuning, is displayed in Fig. 5. The combination of hyper-
parameters that resulted in the highest Silhouette score 
(0.63) was selected: n_clusters = 3 for K-means, and 

min_dist = 0.02 and n_neighbors = 17 for UMAP (Addi-
tional file 1: Figure S6).

The visualization of the grouping results is performed 
using an interactive scatter plot of the 2D projected data 
where the data points (chemicals) are color-coded based 
on the group (cluster) number (Fig. 6). In the interactive 
scatter plot, the user can select data points and visualize 
their chemical structures. As we can observe in the high-
lighted chemicals within cluster number 2 in Fig. 6, unsu-
pervised clustering algorithms group molecules based on 
structural similarities since they utilize unlabeled data. 
The applications of unsupervised analysis are diverse; for 
example, they can be used to analyze the similarity and 
chemical space of a dataset or database, to select and pri-
oritize chemicals for experimental testing, or to generate 
cluster-based splits for training predictive machine learn-
ing models.

It is important to note that the selection of a chemical 
grouping approach depends on the objectives and 
context of the study, which, consequently, will influence 
the choice of the type of analysis (unsupervised or 
supervised), the selection of molecular descriptors, 
grouping algorithm, and hyperparameters. Therefore, 
there is no single approach or method that can 

Fig. 4 Configuration page of the manual option for the dimensionality reduction
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Fig. 5 Configuration page displaying the hyperparameters’ options for the K‑means clustering algorithm and the UMAP visualization method 
of the unsupervised clustering analysis. The page features sliders to specify ranges for each hyperparameter when using Bayesian optimization 
with Optuna. The displayed hyperparameters’ ranges were used in the case study
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definitively determine the "optimal" groups universally. 
Consequently, researchers frequently analyze outcomes 
from various approaches [90, 171]. In this sense, the 
in-workflow guides, the options for automated variable 
selection and hyperparameter searches, the interactive 
visualization and interpretation of the results, and the 
different options for results downloads and exportation 
aim to help the user in the grouping process.

Following the visualization of the grouping results, 
the next step is the interpretation using SHAP 

summary plots and the natural language explanation 
generated by the LLM (GPT 3.5 Turbo). The use of 
GPT-3.5 Turbo is optional; to utilize it, the user must 
input an OpenAI API key, as described in the in-work-
flow guide (Additional file  1: Figure S7). In the SHAP 
summary plot, the most important molecular descrip-
tors are ranked from top to bottom in the y-axis. On 
the x-axis, for each molecular descriptor, every com-
pound on the respective group appears as a data point 

Fig. 6 Unsupervised clustering results. The interactive scatter plot of the 2D projection is shown. Each cluster is identified by a different color 
in the chart. The user can interactively select data points in the scatter plot and visualize the respective chemical structures
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horizontally distributed according to their SHAP val-
ues. These plots additionally display the influence of 
the bits on the model prediction by color (red for pres-
ence of a substructure and blue for the absence). In the 
interpretation of the unsupervised clustering results 
depicted in Fig. 7, we identify the most important bits 
that group chemicals in cluster number 2 (the interpre-
tation of the results for all clusters is shown in Addi-
tional file 1: Figure S8). Taking bit 1179 as an example, 
which possesses an ester group, we observe that all the 
highlighted chemicals in Fig.  6 present this functional 
group. This information is instrumental in interpreting 
the chemical diversity of the dataset and identifying if 
the dataset is biased to specific chemical scaffolds. This 
analysis can be further augmented by incorporating 
other available information, such as chemical labels, to 
assist in inferring structure–activity relationships.

Supervised classification
In the supervised classification of our case study using 
the eye irritation and corrosion dataset (1137 non-
irritants and 1132 irritants), the continuous molecular 
descriptors option and the Mordred descriptors was 
selected (Additional file  1: Figure S9). Subsequently, we 
filtered out the low variance descriptors using the auto-
mated option (Fig. 8). The LightGBM algorithm was used 
to find best variance threshold (0.03). The selection of a 
supervised ML algorithm appears only in the first step 
requiring this method. All later steps use this same algo-
rithm. After the application of the filter, 747 descriptors 
from the initial number of 1051 remained.

Following the removal of low variance descriptors, the 
automated feature selection using the Genetic Algorithm 
method was employed (Fig. 9). This method automatically 
selects the best subset of molecular descriptors related 
to the endpoint for chemical grouping. From the 747 
descriptors remained after the automated dimensionality 

Fig. 7 Interpretation of the cluster number 2 identified using the unsupervised clustering method
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reduction, 74 descriptors were selected and used as the 
molecular descriptors for chemical grouping.

In addition to the automated feature selection, for our 
supervised classification we applied the SHAP method to 
calculate the weight of each molecular descriptor (SHAP 
values) based on the labels of irritant or nonirritant. 
Then, we used the projected clustering method with 
UMAP as the visualization algorithm to project the 
SHAP values in a 2D space, which was used as input 
for the unsupervised clustering algorithm. Here, we 
selected K-medoids to demonstrate the capabilities of 
the chemical grouping workflow. Additional file 1: Figure 
S10 displays the configuration page for the K-medoids 
clustering algorithm, including the hyperparameters and 
their selected range values for tuning. By default, a broad 
range is chosen for the hyperparameters to accommodate 
various purposes, but users can modify these values and 

the number of combinations to be tested by the Bayesian 
search. We limited the search of n_clusters from 2 to 25 
for K-medoids, and for UMAP the min_dist of 0.01–
0.25 and n_neighbors of 2–50. The number of trials for 
the Bayesian search was 50. After the hyperparameter 
tuning, the following combination of hyperparameters 
was selected: n_clusters = 9 for K-medoids, and min_
dist = 0.02 and n_neighbors = 32 for UMAP, resulting in 
Silhouette score of 0.42 (Additional file 1: Figure S11).

The grouping results are visualized using scatter 
plots of the 2D projected data with two options: inter-
active and static (Fig.  10). In both options, the data 
points (chemicals) are color-coded based on the group 
(cluster) number. In the interactive option, the user 
can select data points in the scatter plot and visualize 
their chemical structures and outcomes (1 = irritant 
and 0 = nonirritant), and also perform zoom in and 

Fig. 8 Configuration page of the automated option for the dimensionality reduction step
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out in the scatter plot. In the static option, in addi-
tion to color-coding of the groups, the data points are 
also shape-coded based on the outcomes (here, eye 
irritation and corrosion). As we can see in the Fig. 10, 
using the data labels and supervised algorithms, the 

supervised classification method implemented was able 
to group chemicals based on endpoint-specific similar-
ity. Clusters 0, 4, 7, and 8 have a high proportion of irri-
tants. Conversely, clusters 1, 2, 5, and 6 have a higher 

Fig. 9 Configuration page for automated feature selection
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Fig. 10 Supervised classification results. The interactive and static scatter plots of the 2D projected are shown. Each cluster is identified 
by a different color in the charts. The user can interactively select data points in the interactive scatter plot and visualize the respective chemical 
structures. In the static plot, the nonirritant data points are dot‑shaped and irritants are x‑shaped



Page 21 of 27Moreira‑Filho et al. Journal of Cheminformatics          (2024) 16:101  

proportion of non-irritants. Cluster 3 shows a mix, 
with a higher prevalence of irritants than non-irritants.

In the interpretation of the supervised classification 
results, we show only the interpretation of the clus-
ters number 0 and 1 (Fig. 11). The complete results are 
shown in the Additional file  1: Figure S12. SHAP val-
ues were utilized to identify the top 5 most important 
molecular descriptors for each group identified. The 
SHAP summary plot also display the influence of the 
molecular descriptors’ values on the model prediction 
through the use of color. For the cluster number 0, the 

most important descriptors to group the chemicals 
were ATSC5v (centered Moreau-Broto autocorrela-
tion of lag 5 weighted by van der Waals (vdw) volume), 
CIC1 (1-ordered complementary information content), 
ATSC3se (centered Moreau-Broto autocorrelation 
of lag 3 weighted by Sanderson EN), AATS0s (aver-
aged Moreau-Broto autocorrelation of lag 0 weighted 
by intrinsic state), and ATSC8pe (centered Moreau-
Broto autocorrelation of lag 8 weighted by Pauling EN) 
(see Fig.  11). Since the cluster number 0 is predomi-
nantly formed by irritants or corrosive chemicals, this 

Fig. 11 Interpretation of the clusters number 0 and 1 identified using the supervised classification method
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suggests that the molecular descriptors identified as 
important in this cluster may be associated with eye 
irritant/corrosive properties. On the other hand, the 
cluster number 1 is predominantly formed by non-
irritants/noncorrosive chemicals (see Fig.  10), indicat-
ing that the distinguishing molecular descriptors in this 
cluster [MIC1 (1-ordered modified information con-
tent), AATSC1i (averaged and centered Moreau-Broto 
autocorrelation of lag 1 weighted by ionization poten-
tial), MIC0 (0-ordered modified information content), 
ATSC1se (centered Moreau-Broto autocorrelation 
of lag 1 weighted by sanderson EN), CIC4 (4-ordered 
complementary information content)] might be linked 
to properties that reduce the likelihood of being an irri-
tant or corrosive (see Fig. 11). This information can be 
valuable for researchers in several applications regard-
ing this endpoint, e.g., in the development of new 
chemicals with ocular exposure potential.

One drawback of using continuous molecular 
descriptors is that the computational libraries used 
to compute them often only output names and val-
ues. These names are often difficult to understand, 
requiring extensive literature research to identify the 
molecular properties each descriptor calculates. Addi-
tionally, interpreting the SHAP summary plot may not 
be straightforward for inexperienced users. To address 
these issues, the large language model GPT-3.5 Turbo 
was utilized to automatically generate explanations for 
the most important descriptors in each cluster and pro-
vide a natural language summary of the interpretation 
results. As seen in Fig. 11, the LLM starts by explaining 
the key molecular descriptors. It then correlates these 
descriptors’ values with the clustering results. Finally, it 
provides a summary of these findings. For example, the 
summary for cluster number 0 states: "In cluster 0, com-
pounds are grouped based on their spatial distribution 
of atoms, topological connectivity, electronegativities, 
average electronegativity of atoms, and polarizabilities. 
The positive values of ATSC5v, ATSC3se, AATS0s, and 
ATSC8pe indicate compounds in cluster 0 have larger 
van der Waals volumes, electronegativities, surface 
areas, and polarizabilities, respectively". These descrip-
tors collectively contribute to grouping the compounds 
in cluster 0, highlighting their structural and chemical 
similarities. This grouping is significant, considering 
that cluster 0 mainly consists of irritants/corrosives, 
and these properties may correlate with the endpoint, 
and they are consistent with published data [172–
174]. The LLM-generated explanations for all clusters 
are available in Additional file  1: Table  S3. Thus, the 
LLM’s automatic explanation generation significantly 

contributes to the democratization and facilitation of 
chemical grouping analysis.

Report and results download
The final step of the workflow is a summary showing 
all results obtained during the process, with options 
to download the results obtained (Additional file  1: 
Figure S13). In the unsupervised clustering analysis 
of the eye irritation and corrosion dataset, the binary 
Morgan fingerprints were used, and bits were filtered 
using a manually set variance threshold of 0.05. We 
used the K-means clustering algorithm and UMAP for 
visualization. The analysis identified 3 clusters with a 
Silhouette score of 0.63. This information, along with 
other relevant parameters, is summarized in the ‘Selected 
Options’ field and is available for download in CSV 
format. Additionally, the SMILES of the compounds in 
the dataset, the UMAP coordinates, the cluster labels, 
and the molecular descriptors are available for download 
in CSV format. The complete page for report and results 
download of the unsupervised clustering analysis is 
shown in the Additional file 1: Figure S14.

In the supervised classification analysis of the eye 
irritation and corrosion dataset, we used the Mordred 
continuous descriptors, and the dimensionality 
reduction (filter of low variance and high correlated 
descriptors) was performed using the automated option. 
Subsequently, the best subset of descriptors for the 
studied endpoint was selected using GA, and the SHAP 
method was applied to weigh them based on the data 
labels. All supervised methods used the LightGBM 
algorithm. Finally, UMAP was utilized to visualize the 2D 
distribution of the nine clusters, which were identified 
based on endpoint-specific similarity (Silhouette score 
of 0.42). All the results and configurations were made 
available for download in separate files as described in 
“Report and download of results”section (Additional 
file 1: Figure S15).

Conclusion
The chemical grouping workflow was designed to be 
user-friendly, with a graphical interface that removes 
the necessity for extensive programming skills, thereby 
improving its accessibility. It serves as a valuable 
resource for chemists and researchers seeking to 
explore and analyze chemical datasets comprehensively. 
Its ease of use makes it particularly suitable for those 
new to cheminformatics. For more experienced users, 
our workflow offers advanced features and flexibility 
to select different configurations of the grouping 
process to obtain better results. Furthermore, in-depth 
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customization can be applied in the desktop version 
of KNIME Analytics Platform, where users can fine-
tune the workflow at different stages, tailoring it to 
their specific needs. This customization capability is 
invaluable when addressing complex and specialized 
chemical analysis requirements. The server version 
of our workflow, integrated with the NIEHS KNIME 
Server and WebPortal, enhances usability and 
scalability, making it a powerful tool for collaborative 
chemical data analysis. It allows multiple users to 
access and execute the workflow in a streamlined and 
controlled manner, facilitating teamwork and ensuring 
reproducibility in research.

Our workflow has implemented all the needed steps 
for chemical grouping, including data input, molecular 
descriptor calculation, dimensionality reduction, 
feature selection, unsupervised clustering, supervised 
grouping, hyperparameter tuning, and visualization. 
It provides a comprehensive solution that guides users 
through these critical steps in the grouping analysis. 
Moreover, we introduced an interpretation step 
using SHAP values to identify the most important 
molecular descriptors contributing to each group 
and the generated natural language summaries of the 
explanations aid in understanding the reasons behind 
the groupings.

Overall, our approach provides a valuable tool for 
chemists and researchers to explore chemical datasets, 
gain insights into chemical properties, and facilitate 
decision-making processes in various applications, 
including drug discovery, chemical risk assessment, and 
structure–activity relationship analysis.
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