
Moreira‑Filho et al.
Journal of Cheminformatics (2024) 16:101
https://doi.org/10.1186/s13321‑024‑00894‑1

SOFTWARE

Democratizing cheminformatics:
interpretable chemical grouping using
an automated KNIME workflow
José T. Moreira‑Filho1*, Dhruv Ranganath2, Mike Conway3, Charles Schmitt4, Nicole Kleinstreuer1 and
Kamel Mansouri1*

Abstract

With the increased availability of chemical data in public databases, innovative techniques and algorithms have
emerged for the analysis, exploration, visualization, and extraction of information from these data. One such tech‑
nique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups
based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical
grouping often require specialized programming skills or the use of commercial software packages. To address these
challenges, we developed a user‑friendly chemical grouping workflow implemented in KNIME, a free, open‑source,
low/no‑code, data analytics platform. The workflow serves as an all‑encompassing tool, expertly incorporating
a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperpa‑
rameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping
and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descrip‑
tors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings.
The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal
as a web application. It incorporates interactive interfaces and guides to assist users in a step‑by‑step manner. We
demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.

Scientific contributions
This work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by inte‑
grating a user‑friendly graphical interface that eliminates the need for extensive programming skills. This workflow
uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimen‑
sionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter
optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step
and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing
the usability of the tool and interpretability of the results.

Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. Open
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit‑
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecom‑
mons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

*Correspondence:
José T. Moreira‑Filho
teofilo.moreirafilho@nih.gov
Kamel Mansouri
kamel.mansouri@nih.gov
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00894-1&domain=pdf

Page 2 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Introduction
Over recent decades, advances in experimental
methodologies have generated substantial bioactivity
data for chemicals. Several data-sharing initiatives
made a significant portion of this data publicly
accessible through digital databases [1–5]. Additionally,
databases of computationally generated chemical
structures and extensive catalogs were offered by
chemical vendors [6–8]. This surge in data availability
has spurred the development of methods and tools for
processing, analyzing, and modeling chemical data,
aiding drug discovery and toxicity assessment [9–11].

Chemical grouping, including clustering and
classification, categorizes compounds based on shared
characteristics into distinct groups. This process relies
on the concept of similarity, where compounds within
a group are more alike than those in different groups.
Compounds can be grouped based on molecular
descriptors, substructures, physicochemical properties,
use categories, or biological activities. The rationale
is that high similarity indicates similar properties or
activities [12–14]. Chemical grouping serves various
purposes, including assessing diversity, understanding
mechanisms of action, extracting structure–activity
relationships (SARs), conducting safety and risk
assessments through read-across approaches, and
prioritizing chemicals for testing [15–20].

Chemical grouping utilizes advanced clustering
and classification algorithms to uncover underlying
patterns in datasets [21]. However, interpreting how
these algorithms group data points can be challenging
[22, 23]. Explainable artificial intelligence (XAI)
strategies, [24] such as SHapley Additive exPlanations
(SHAP) [25], aim to enhance interpretability. SHAP
can identify influential features in grouping decisions,
providing transparency to machine learning (ML)
models [26–28].

Enhancing openness and sharing of chemical data and
modeling methods is crucial to broaden accessibility [29–
31]. However, open-source cheminformatics tools often
lack documentation and require significant programming
skills for setup and use [32, 33]. Democratizing these
tools to all levels of expertise demands easy-to-install,
intuitive user-friendly graphical user interfaces (GUIs)
with well-documented guidance [34–37]. Yet, creating
such interfaces also requires proficiency in multiple
programming languages such as Python, R, Java, HTML,
and JavaScript.

Low-code or no-code platforms offer a solution to
the demand for advanced programming skills, allowing
for the development and deployment of applications
with little to no coding. Users select, arrange, configure
and connect components from standard libraries and
third-party plugins to develop applications through
a visual programming paradigm within a GUI. These
platforms empower domain experts, including those
without programming backgrounds, to collaborate in
the development process, enhancing application quality
[38–43]. Besides improving efficiency and reducing
costs, they accelerate development rates by five to ten
times compared to traditional hand coding, potentially
leading to 70% of enterprise applications being created
using low-code solutions by 2025 [40, 42].

Konstanz Information Miner (KNIME) is a free and
open-source low/no-code data analytics platform
with a broad range of capabilities and a thriving
cheminformatics and bioinformatics community. Its
modular setup enables users to visually assemble and
modify analysis flows using standardized building
blocks called nodes. Nodes are connected by pipes
that transfer data and instructions, forming the data
processing workflows [44, 45].

Introducing the Modeling and Visualization Pipeline
(MoVIZ), a user-friendly tool developed on the KNIME
platform to democratize cheminformatics methods
for non-experts and simplify their application for the
community. MoVIZ includes GUI-guided workflows
covering data access, storage, mining, curation,
analysis, visualization, modeling, and prediction. This
pipeline of workflows is characterized by intuitive
prompts, step-by-step instructions, and visual feedback
mechanisms. Moreover, MoVIZ incorporates both
automated and manual parameter selection options,
catering to cheminformatics experts and beginners
alike. This flexibility enables users to customize
workflows to their needs, ensuring accessibility for all
expertise levels.

In this work, we present MoVIZ’s chemical grouping
workflow, using supervised and unsupervised machine
learning methods. This user-friendly workflow, along
with different machine learning approaches and data
visualization tools, is made available for download from
GitHub (https:// github. com/ NIEHS/ Chemi cal- group
ing- workfl ow) and KNIME Community Hub (https://
hub. knime. com/-/ space s/-/ latest/ ~AnmyN gAW4J MJ_
gq4/). It can be deployed on local desktops or network

Keywords Chemical grouping, KNIME workflow, Machine learning, Explainable artificial intelligence, SHapley additive
exPlanations, Feature selection, Data visualization, Unsupervised clustering, Supervised classification

https://github.com/NIEHS/Chemical-grouping-workflow
https://github.com/NIEHS/Chemical-grouping-workflow
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/

Page 3 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

servers. Additionally, the workflow is accessible via the
National Institute of Environmental Health Sciences
(NIEHS) KNIME Server WebPortal, serving all
National Institutes of Health (NIH) users (within the
NIH network) as web-application (at https:// knime.
niehs. nih. gov/ knime/ webpo rtal/) that also links to
other cheminformatics tools and workflows as part of
the NIEHS cyber-infrastructure.

In the next sections, we detail the materials
and methods used, including data input formats,
molecular descriptors, dimensionality reduction,
and feature selection techniques. We also describe
the implementation of unsupervised clustering and
supervised classification methods, supported by
hyperparameter tuning for improved performance. The
interpretation section showcases the use of SHAP values
to provide insights into the importance of molecular
descriptors for predicting chemical groupings. Then,
we demonstrate the workflow’s capabilities using a large
toxicological dataset for eye irritation and corrosion.

Materials and methods
Overview of the chemical grouping workflow
There are many motivations for applying chemical
groupings, e.g., the chemical groupings can be used
to prioritize compounds for inclusion in experimental
screening campaigns based on similarity or diversity [46].
In toxicology, chemical groupings are employed to bridge
data gaps for compounds with limited information. These
compounds are grouped based on their similarity to
others with known toxicological properties, suggesting
they may exhibit similar toxicological properties. In
the same sense, the biological mechanism of action of
compounds can be hypothesized [10, 12, 17]. Another
application is prior to development of Quantitative
Structure–Activity Relationship (QSAR) models, in
which the diversity of the compounds in a dataset can
be assessed to guarantee that the model will be trained
with adequate chemical information and provide reliable
predictions for untested compounds [16].

Despite the value of chemical groupings, the
literature lacks comprehensive, user-friendly, free
and open-source tools for such application. Many
available tools are part of paid programs [47], while free
options often lack versatility, automation, and guidance
[47–50]. This work introduces a comprehensive
KNIME workflow designed for chemical grouping.
The KNIME analytics platform, being a low-code and
no-code platform, facilitates visual programming
through the assembly of connected nodes, enhancing
understanding and adaptability. All interactive steps
and result visualizations are developed using KNIME
components, which encapsulate functionality with their

own dialog and interactive views. When uploaded to
KNIME Server and executed via KNIME WebPortal,
the workflow functions as a web application, with each
interactive page corresponding to a component in
the workflow. Alternatively, the same workflow pages
from KNIME components can be accessed locally on
the desktop version of the KNIME Analytics platform.
KNIME nodes offer configuration options governed
by parameters called “flow variables” ensuring
dynamic workflow execution. These variables store
configurations, parameters, and results, enabling their
reuse in future analyses via export to a configuration
file.

The main advantages of the chemical grouping
workflow described in this work are its versatility,
automation, interactive nature, guidance, the number
of options it offers at each stage, and ability to support
various data formats and a wide range of methods. The
workflow provides three different running modes: “New
Analysis”, “New Analysis with Prior Configuration”,
and “View Past Results”, which satisfy various research
requirements.

The default “New Analysis” mode (Fig. 1) allows for
chemical data input with or without labels (e.g., bio-
logical activity), and supports various file formats like
SDF, SMILES, CSV, and Excel (.xls,.xlsx). The workflow
standardizes the chemical structures and then calculates
molecular descriptors. It offers binary fingerprints or
continuous descriptors, and filters low variant and highly
correlated descriptors. For unlabeled data running unsu-
pervised clustering, users can manually select features
and choose from algorithms like K-means, K-medoids,
Hierarchical Clustering, Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN), and Hierar-
chical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN), complemented by visualization
techniques including Principal Components Analysis
(PCA), Uniform Manifold Approximation and Projection
(UMAP), and t-distributed Stochastic Neighbor Embed-
ding (t-SNE). For labeled data, supervised classification
offers manual and automated feature selection using
methods like Genetic Algorithm (GA), Recursive Fea-
ture Elimination (RFE), and Simulated Annealing (SA),
followed by visualization. A novel option employs SHAP
values for finding groups based on endpoint-specific sim-
ilarity. The workflow further enhances analysis precision
by hyperparameter tuning via Bayesian optimization.
Results are visualized and interpreted using SHAP plots
for feature importance and a large language model (GPT
3.5) for natural language summaries. The final stage pro-
duces a comprehensive report with options for detailed
downloads, ensuring throughout presentation and uti-
lization of grouping outcomes. Interactive views and

https://knime.niehs.nih.gov/knime/webportal/
https://knime.niehs.nih.gov/knime/webportal/

Page 4 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Fig. 1 General overview of the chemical grouping process

Page 5 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

guides are available at each step, enhancing user-centric
design and accessibility.

After a workflow execution, the system stores all
selected options, parameters, and results as “flow
variables”, exportable as a configuration file. This
file serves as input for the “New Analysis with Prior
Configuration” running mode to replicate previous
settings for new datasets analyses, ensuring consistency
and efficiency. Additionally, the “View Past Results”
option leverages this configuration file, enabling users
to effortlessly revisit previous outcomes without
the re-running the workflow, facilitating in-depth
examination of results over time.

Workflow input
The chemical grouping workflow begins with selecting a
running mode: “New Analysis”, “New Analysis with Prior
Configuration”, or “View Past Results”, and inputting
appropriate files. Each mode accepts different file
formats. “New Analysis” initiates a complete new analysis
using SDF, SMILES, CSV, or XLS/XLSX files, with CSV
and XLS/XLSX requiring a SMILES structures column.
For supervised methods, the input file should contain
chemical activities encoded in binary, multiclass, or
continuous formats. Results, options, and parameters are
stored as “flow variables” and exported as a configuration
file (.variables) after execution, [51] which can be used as
input for other running modes [51].

The “New Analysis with Prior Configuration” is
the running mode that uses all the configurations,
algorithms, and hyperparameters of a past analysis with
a new dataset. This option requires the input of a file
with the chemical structures in one of the supported
formats (SDF, SMILES, CSV, XLS, or XLSX) and the
configuration file (.variables) previously generated.
The configuration file is read with the “Read Variables”
[52] node. If supervised methods are to be used, it is
also required in the file a column with the compounds’
activities in the binary, multiclass or in the continuous
format. The analysis’ results are also exported as a
configuration file.

The “View Past Results” running mode is used to
revisit the results generated in a past workflow execution
leveraging the interactive visualizations without the
need to execute the analysis again. In this option, the
only required input is a configuration file previously
generated, which will contain all the results.

After inputting of a file containing chemical structures
and labels (for supervised analysis), an initial integrity
check ensures readability and identifies missing values.
Rows with unreadable chemical structures or missing
values are removed. A summary table of removed rows
is presented and exported as a CSV file. An exploratory

analysis follows, displaying the remaining compounds,
missing values, and unreadable structures. For labeled
data, histograms show continuous data distribution, and
class balancing is depicted using bar plots for binary and
multiclass data.

Molecular descriptors
A vital aspect of chemical data analysis and modeling
lies in how chemical structures are represented.
Although many computer-readable formats for chemical
structures exist, the most commonly used format for
cheminformatics analysis are molecular descriptors
[53, 54]. The molecular descriptors can be calculated
from a symbolic representation of a compound or the
result of an experimental measurement [55, 56]. In this
workflow, we implemented binary and continuous types
of molecular descriptors.

Binary molecular descriptors rely on representations in
a bit string format where each bit encodes the presence
and absence (1 and 0, respectively) of a particular
substructure. Here, three different binary molecular
descriptors called molecular fingerprints are available
through the “RDKit Fingerprint” [57] node: Morgan,
FeatMorgan, and Molecular ACCess System (MACCS).
The implemented molecular fingerprints are described in
the Additional file 1: Table S1.

Continuous molecular descriptors available in the
workflow include RDKit descriptors (119 descriptors
calculated with the “RDKit Descriptor Calculation”
KNIME node [58]), Mordred descriptors (1613
descriptors implemented with the Mordred Python
library [59]), and PaDEL-Descriptors (1444 descriptors
implemented with the PaDELPy Python library [60–62]).
After descriptor calculation, the workflow provides three
options for scaling, implemented using the “Normalizer”
[63] KNIME node. Min–max scaling linearly transforms
descriptor values to a range between 0 and 1. Z-score
normalization ensures Gaussian-distribution (i.e., mean
is 0 and standard deviation is 1). Normalization by
decimal scaling, divides maximum descriptor values
(both positive and negative) j-times by 10 until their
absolute value is lower or equal to 1. All values are then
divided by 10 to the power of j [63].

Another important step of cheminformatics analysis
is the data curation and chemical structure standardiza-
tion. Before the calculation of the molecular descriptors,
we implemented the option to apply the QSAR-ready
workflow. This performs a standardization procedure
on the chemical structures, which includes the removal
of salt counterions, stereochemistry, and duplicated
entries; standardization of tautomers and nitro groups;

Page 6 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

correction of valences; and neutralization of structures
when possible [64].

Dimensionality reduction
Implemented dimensionality reduction methods include
filtering low variance and highly correlated descriptors,
offering manual and automated options. For the low
variance filter, descriptors with variance below a set
threshold are removed as they lack relevance. In the
manual option, the “Low Variance Filter” [65] node
removes descriptors based on user defined thresholds.
However, selecting an appropriate threshold value can be
challenging, particularly for inexperienced users or when
numerous descriptors are involved. Hence, an automated
threshold search was implemented for labeled data. This
involves splitting the dataset into training (80%) and
testing (20%) sets, applying variance thresholds ranging
from 0 to 0.1, in steps of 0.01 to filter descriptors and
generating unique datasets, where machine learning
models are trained on the training set and tested for
accuracy (for binary and multiclass) or the coefficient of
determination [(R2), (for continuous data and regression
analysis)] on the test set [66, 67]. The threshold yielding
the best model accuracy or R2 is applied to the original
dataset to reduce descriptors. Alternatively, fivefold
cross-validation can be employed, dividing the dataset
into five distinct splits for comprehensive evaluation of
the model’s performance. The final performance metric is
calculated as the average across these splits.

To filter highly correlated molecular descriptors,
the manual option calculates correlation using the
“Linear Correlation” [68] node and applies filtering
with the “Correlation Filter” [69] node using a user-
defined threshold. The automated option follows a
similar approach to the low variance filter, splitting the
labeled dataset into training (80%) and testing (20%)
sets. Correlation thresholds ranging from 0 to 0.1, with
increments of 0.01, are applied to both sets using the
“corr” method of the pandas Python library [70]. Machine
learning models are trained on each dataset, and the
threshold yielding the highest accuracy (for binary and
multiclass data) or R2 (for continuous data) is applied to
the original dataset. Both options calculate correlation
using the Pearson correlation coefficient [71]. Optionally,
a fivefold cross-validation process is available, applying
each correlation threshold across five dataset splits, with
accuracy or R2 is then calculated as an average across
these splits.

Supervised feature selection
After the removing low variance and/or highly correlated
descriptors, feature selection becomes available. It
aims to pinpoint a subset closely related to a target

physiochemical or biological property while eliminating
redundant, noisy, or irrelevant descriptors. Feature
selection benefits ML by enhancing model performance
and interpretability, reducing overfitting risk, and
decreasing training time [72–75]. For unlabeled data,
only manual feature selection is available via the “Data
Explorer” KNIME node [75]. When data is labeled and
supervised classification is selected, feature selection can
be manual or automated. Three automated supervised
feature selection methods were implemented: Recursive
Feature Elimination [76], Genetic Algorithm [77, 78], and
Simulated Annealing [79].

In RFE, a machine learning algorithm is trained
iteratively starting with all molecular descriptors, then
ranks and removes the least important ones until a
set number remain [76]. Here, the Recursive Feature
Elimination with Cross-Validation method from the
scikit-learn [66, 67] Python library was used. At each
iteration, the 20% least important molecular descriptors
are removed. The final subset is selected based on the
highest Area under the ROC Curve (AUC) value for
binary and multiclass classification, and the highest R2
for continuous and regression analysis.

GA is a method that simulates natural evolution and
selection for solving complex optimization problems
[75, 77, 78], particularly feature selection [73, 80–83].
Employing the sklearn-genetic Python library [84] via
the GeneticSelectionCV method, an initial population
of molecular descriptors subsets is randomly generated.
Each member’s score is determined by training a cross-
validated supervised machine learning model, using
accuracy or R2 depending on data type. Tournament
selection determines members for to the next generation.
Crossover combines selected members to form a new
population controlled by “crossover_proba”. Random
mutation, controlled by the parameter “mutation_prob”,
swaps molecular descriptors. This iterative process
continues until the stop criterion, “n_generations”, is
met. Users can customize GeneticSelectionCV method
parameters, with default values and comprehensive
guides provided for ease of use.

SA is also a feature selection method inspired by a
natural process [73, 79, 81, 85–88]. This work uses an
adaptation from Leung’s implementation [89]. A random
selection of 50% of molecular descriptors remaining
after dimensionality reduction forms the initial subset.
A supervised machine learning model is trained using
this subset, evaluating performance via threefold cross-
validation using AUC or R2 scoring. The subset is then
iteratively modified by adding, replacing, or removing
descriptors, with model performance compared at
each step. If a new subset improves performance, it
becomes the new current state; otherwise, an acceptance

Page 7 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

probability is calculated. If the random number is lower
than the acceptance probability, the new subset is
adopted; otherwise, the original subset is retained. The
algorithm’s ‘temperature’ is gradually lowered using a
geometric reduction strategy, decreasing by a factor
of 0.95 after each iteration. This process continues
until reaching a maximum number of 50 iterations or a
temperature value below 0.01.

Chemical grouping
The chemical grouping approach applied in this work
is subdivided into two main strategies: unsupervised
clustering and supervised classification. The process of
grouping chemicals involves the organization of chemical
compounds into clusters or classes/categories based
on their structural, functional, or property similarities
[90]. Unsupervised clustering involves the automatic
identification of patterns or similarities among chemicals
without any prior knowledge or supervision [90]. It
allows us to uncover hidden structures within chemical
datasets, revealing inherent relationships between
compounds. Supervised classification, on the other
hand, utilizes prior knowledge to categorize chemicals
[90]. To optimize the performance of both strategies,
we employ a rigorous hyperparameter tuning strategy,
ensuring that our chemical grouping approach is both
robust and effective in capturing the underlying chemical
relationships.

Hyperparameter tuning
Most machine learning algorithms have tunable
hyperparameters that control their behavior and directly
affect their performance. Here, we use Optuna [91,
92], a framework-agnostic Python library, to perform
automated search for optimal hyperparameters of the
machine learning and visualization algorithms for both
unsupervised clustering and supervised classification
methods. Optuna requires the definition of an objective
function containing the entire logic of a standard model’s
definition, training, and testing procedure. The objective
function returns an evaluation metric. Then, the objective
function is optimized to find the best hyperparameters’
combination using the TPESampler (Tree-Structured
Parzen Estimator) [93]. The TPESampler is a Bayesian
optimization algorithm that run trials iteratively until a
user-defined maximum number of trials or time.

The Silhouette coefficient is used as a metric for
evaluating the quality of grouping results and selection
of the best hyperparameters for the grouping and
visualization algorithms. It is implemented using the
scikit-learn [66, 67] Python library. It provides a measure
of how well data points within a group are separated from
points in other groups. It is calculated using the mean

intra-group distance (a) and the mean nearest-cluster
distance (b) for each sample, as follows:

This coefficient ranges from − 1 to 1, where a value
close to 1 indicates that the instance is well-grouped and
far from other groups, a value close to 0 indicates that the
data points is on or very close to the decision boundary
between groups, and a value close to -1 indicates that the
data point may have been assigned to the wrong group.
Finally, the average Silhouette coefficient across all data
points is computed to obtain the overall Silhouette score
for the grouping result [94].

The various clustering algorithms and visualization
methods have distinct hyperparameters. Therefore, for
each algorithm selected by the user, a dedicated page
will display the corresponding hyperparameter values for
tuning. In the case of Bayesian optimization implemented
with Optuna, the user can specify a range of values for
each hyperparameter using a slider, and combinations
will be tested until reaching a user-defined maximum
number of trials. All the hyperparameters available for
tuning in the workflow and their respective algorithms
are described in Additional file 1: Table S2.

The hyperparameter search process varies based on
whether projected clustering is used. Projected clustering
involves using a lower-dimensional (typically 2D)
subspace generated by visualization methods (described
below) as input for the unsupervised clustering and
supervised classification algorithms [95–98]. When
projected clustering is chosen, both clustering algorithm
and the visualization method hyperparameters are
tuned simultaneously within a single Optuna run.
The 2D projected data output from the visualization
method is fed into the clustering algorithm, and the
best hyperparameter combination is selected based
on the silhouette score. Conversely, without projected
clustering, the hyperparameters are tuned first using the
entire set of selected molecular descriptors. Subsequently,
visualization method hyperparameters are optimized
separately. Different combinations of visualization
methods hyperparameters are tested, and the resulting
2D projected data from each trial is used as input for
the clustering algorithm, while keeping previously tuned
hyperparameters fixed. The combination yielding the
best silhouette score is selected by default, but users can
manually choose a different combination.

Unsupervised clustering
Unsupervised clustering in machine learning and
data analysis identifies hidden patterns within data by
grouping data points based on similarity or density,

(1)SI =
b− a

max(a, b)

Page 8 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

without using explicit labels (e.g., biological activity). This
task relies solely on the data’s intrinsic characteristics,
assuming that objects within a group share greater
similarity than those in separate groups [12–14, 90]. In
our grouping workflow, unsupervised clustering employs
selected molecular descriptors as input for algorithms
such as K-means, K-medoids, Hierarchical clustering,
DBSCAN, and HDBSCAN.

K-means [99, 100] is a widely used clustering
algorithms that begins by randomly assigning k centroids
and then reallocates data points (chemicals) to the closest
centroid. It iteratively optimizes centroids by adjusting
assignments and selecting new centroids until stability
or the maximum iterations are reached [16, 101, 102].
Our workflow implements the K-means algorithm using
a combination of the scikit-learn [66, 67] Python library
in the hyperparameter optimization and the “k-Means”
[103] KNIME node for the final calculation of the
grouping.

K-medoids [104] is a modification of the K-means
algorithm, where instead of using an artificial data point
generated averaging all molecules in the group as the
centroid, K-medoids uses the actual middle compound
in the group as the center (medoid). Medoids are defined
as compounds with the smallest average dissimilarity to
all objects within a group [105–107]. This workflow uses
the K-medoids implementation of scikit-learn-extra [108]
Python library.

Hierarchical clustering algorithm builds groups of
molecular compounds using a binary merge tree [109].
Initially, all data points are treated as independent groups
(leaves). Then, the closest data points are connected to
form pairs, gradually merging into larger groups until
reaching the root where all compounds are in a single
cluster [21]. The distance between the data points, called
“linkage distance”, is computed using single, complete,
or average linkage methods. These methods calculate
pairwise similarities using Euclidean or Manhattan
distance metrics but merge groups differently [110, 111].
The scikit-learn [66, 67] Python library was used for
hyperparameter tuning and the “Hierarchical Clustering
(DistMatrix)” KNIME node for grouping [111]. The
“Hierarchical Cluster Assigner” [112] KNIME node
facilitated clustering threshold selection and dendrogram
creation.

DBSCAN [113] is an algorithm that groups dense data
points, accommodating various shapes and sizes, while
identifying outliers. It begins by randomly selecting a
data point and measuring the number of nearby points
within a limited distance ε (epsilon). If the number of
data points inside the ε satisfies a specified minimum
(min_samples), the initial point becomes a core instance,
and all neighboring points are assigned to the same

group. This process repeats until all suitable points have
been assigned to a group. Data points unassigned to a
group are deemed outliers [114, 115].

HDBSCAN [116] extends DBSCAN by introducing
groups representation and “robust single linkage”. It
calculates point density using a distance metric and
constructs a minimum spanning tree for hierarchical
clustering. Outliers are handled effectively by labeling
them as noise and assigning them to singleton clusters.
The algorithm condenses the hierarchy by cutting the
tree at a density level determined by the "minimum
cluster size" hyperparameter, considering clusters below
this size as noise [117, 118]. HDBSCAN is implemented
using the hdbscan [119, 120] Python Library.

Supervised classification
The unsupervised clustering methods rely on a general
concept of chemical similarity. As a result, they might
not detect molecular features that most contribute to the
target physiochemical or biological property. However,
when the data labels are available, e.g., measured toxicity
for an endpoint, this information can be used in the
grouping process, producing results based on how
informative the features are in relation to the target
variable [17, 90, 121, 122].

Here, we implemented two methods for supervised
classification. The first method starts with the use of one
of the supervised feature selection approaches (described
above) to find the most relevant molecular descriptors
for an endpoint. Then, one of the visualization methods
available (described below) are used to project the data
into 2D dimensions for visualization. Here, the groups are
the data classes (binary or multiclass) or its continuous
distributions.

The second supervised classification method uses
the SHAP methodology, developed by Scott Lundberg
and Su-In Lee [25], based on cooperative game theory
and Shapley values [123]. In SHAP, features are treated
as "players" contributing to model predictions. It
assigns importance values to features by considering
all possible combinations, calculating their average
marginal contribution to predictions across coalitions
[124]. The SHAP Python library computes SHAP values
of each molecular descriptor in a trained supervised
ML model [25, 125]. These values are then inputted into
unsupervised clustering algorithms to group descriptors
based on their similarity in influencing the model’s
output [97, 121]. SHAP is adapted to data with binary,
multiclass, or continuous labels, making it versatile for
identifying data groups and subgroups based on labels.

In this work, when data labels are available, the
supervised ML methods are used in the automation of
the dimensionality reduction and feature selection, and in

Page 9 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

the supervised classification approach. They are also used
in the interpretation of both supervised and unsupervised
clustering results (described below). The implemented
methods for both classification and regression tasks
include Random Forest (RF), Light Gradient Boosting
Machine (LightGBM), Support Vector Machines (SVM),
k-nearest neighbors (KNN). The Naïve Bayesian (NB)
and Logistic regression (LR) were implemented only for
binary and multiclass classification.

Random Forest is a powerful ensemble learning
technique that operates by creating a collection of
decision trees, each trained on a random subset of the
training data and input features. For classification tasks,
it uses majority voting to make predictions, where the
class with the most votes from the decision trees is
selected. In multiclass classification, this principle is
extended to handle multiple classes. For regression tasks,
RF calculates the average prediction of the individual
decision trees to obtain a continuous numeric output
[126–128].

Light Gradient Boosting Machine employs a gradient
boosting framework, a popular ensemble method that
combines multiple decision trees to create a robust
predictive model. It iteratively builds an ensemble of
models, each focusing on reducing the errors made
by previous models. Final predictions are obtained by
summing all models. In multiclass classification tasks,
LightGBM extends its boosting capabilities to handle
multiple classes effectively. For regression tasks, it
provides a continuous numeric output by summing
predictions from all models [129, 130].

Support Vector Machines algorithm transforms input
data into a higher-dimensional feature space using a
kernel function to find a nonlinear decision boundary. It
seeks the hyperplane separating transformed data points
with the largest margin, traced using nearest data points
of each class (support vectors). SVM is effective for
multiclass classification tasks and regression problems,
where it finds a hyperplane fitting the data points [131,
132].

k-nearest neighbors is a ML algorithm that determines
the class membership of the new data by considering its
proximity to the existing data points in the feature space.
For multiclass classification, KNN extends its nearest
neighbor search to find the K nearest neighbors among
all classes, and the class with the majority of neighbors is
assigned. In regression tasks, KNN calculates the average
output of the k-nearest neighbors to provide a continuous
numeric prediction [133].

The Naïve Bayesian classifier is a probabilistic
classification algorithm based on Bayes’ theorem. It
assumes features independence given the class label and
calculates class probabilities by multiplying individual

feature probabilities. For multiclass classification, NB
extends this calculation to estimate class likelihoods,
selecting the class with the highest probability. In
regression, NB can be adapted to predict continuous
numeric values by modifying its probability calculations
[134, 135].

Logistic regression is a ML algorithm used for binary
and multiclass classification tasks. It is based on the
logistic function, also known as the sigmoid function,
which maps the input features to a value between 0 and
1, representing the likelihood of the input belonging
to the positive class in binary classification. In the case
of multiclass classification, LR use its logistic model to
handle multiple classes, employing techniques such as
one-vs-rest to make predictions across multiple classes
[136, 137].

Data visualization
Data visualization techniques simplify complex
multidimensional phenomena by projecting high-
dimensional spaces onto lower dimensions. This enables
researchers to explore and analyze large datasets
effectively, leading to deeper insights [138–140]. To
visualize the grouping results into two-dimensional
(2D) space, we implemented PCA, UMAP, and t-SNE
algorithms. The 2D projected data are plotted using
the “Scatter Plot” [141] KNIME node for interactive
visualization and the seaborn [142] Python library for
static visualization.

PCA reduces the dimensionality of the original dataset
while capturing the maximum variance. It creates
principal components, which are linear combinations of
the original variables. The first component explains the
largest variance, with subsequent components explaining
the remaining variance while being orthogonal (i.e., no
correlation) to each other [143]. We used the “PCA” [144]
KNIME node implementation.

UMAP constructs a high-dimensional graph
representation of the data and embeds it into a lower-
dimensional space using Riemannian geometry. It starts
by creating a k-nearest neighbors graph based on a
distance metric, then optimizing the embedding process
[145]. UMAP was implemented using the umap-learn
[145, 146] Python library.

t-SNE calculates pairwise similarities of high-
dimensional data, converting them into a probability
distribution. It constructs a lower-dimensional space
and minimizes the difference between the pairwise
similarities of the high-dimensional data and the low-
dimensional representation by minimizing the Kullback–
Leibler divergence [147]. t-SNE was implemented using
the scikit-learn [66, 67] Python Library.

Page 10 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Interpretation
The interpretation of grouping results is a significant
element of our workflow, offering deeper insights and
explanation of the grouping rationale. To interpret the
grouping results, we train a supervised ML algorithm
(classification or multiclass) using molecular descriptors
as independent variables and cluster labels as dependent
variables. We use the shap [25, 125] Python library to
compute SHAP values for each molecular descriptor,
indicating their contribution to predicted cluster
membership [26–28]. Positive SHAP values denote a
positive contribution, while negative values suggest the
opposite.

To enhance workflow accessibility and results
comprehension, we utilize a large language model (LLM)
GPT-3.5 Turbo to distill SHAP value interpretation into
concise, coherent summaries. This approach ensures
clear and easily digestible explanations for readers across
varying levels of expertise.

For Morgan or MACCS fingerprints, we enhance
interpretation by generating figures representing
molecular substructures linked to individual using the
rdkit Python library [148]. We also convert fingerprints
bits to corresponding functional groups using the exmol
[149, 150] Python library, enriching the input prompt for
the LLM. The resulting narrative from the LLM provides
a detailed and accessible summary of the grouping
results.

For continuous molecular descriptors, two LLM
interpretation methods are available. The first method,
suited for labeled data, requires a concise description of
the endpoint being studied to generate natural language
explanations directly linking descriptors’ values to
experimental outcomes. The second method, applicable
to both labeled and unlabeled data, explanations relating
the descriptors’ values to the grouping results without
requiring user input on the endpoint.

Report and download of results
At the end of the workflow a report page is available. In
this page, a summary of all results obtained during the
workflow execution is shown. Also, options to download
the results are provided. These options include:

1. Configuration file (.variables): This file captures
parameters and configurations set during the
workflow execution, facilitating replication or
revisitation of the process. It enables visualization
of previous results and ensures consistency for new
executions.

2. Workflow parameters and configurations: a CSV file
containing execution details such as input file name

and extension, data type (labeled or unlabeled),
molecular descriptors type (binary or continuous),
specific descriptors selected, dimensionality
reduction method and the thresholds (low variance,
correlation, or all descriptors), grouping analysis
type (unsupervised or supervised), feature selection
type (manual or automated) with applied algorithm,
selected clustering algorithm and visualization
algorithms, and hyperparameters after Bayesian
optimization or manual selection.

3. Grouping Results: a CSV file that compiles the
grouping results (cluster labels, SMILES, and the
generated 2D projection of the data for visualization).

4. Grouping results report: a PDF file with the 2D
projected data color-coded based on the cluster
number, the SHAP summary plot of the grouping
interpretation, and the LLM interpretation, when
this option is selected.

5. Molecular descriptors: a CSV file with the calculated
molecular descriptors that can be used in other
applications. If dimensionality reduction and feature
selection methods are applied, the CSV file will
contain the molecular descriptors remained after
those analysis.

6. Figures: all the figures generated during the workflow
execution including the static scatter plot and the
SHAP summary plots in high resolution (SVG
format).

7. Data failed during the input: a CSV file that includes
data which was either unreadable or had missing
values during the input process.

Documentation and guides
The utility of a scientific application is significantly
enhanced by comprehensive documentation, a critical
aspect that extends beyond mere technical robustness.
Such documentation ensures that the application is not
only reproducible but also user-friendly, making complex
processes approachable and comprehensible. This clarity
and ease of use are vital in breaking down barriers to
entry, allowing researchers from various backgrounds
to use the tool effectively. Furthermore, comprehensive
documentation and guides are a cornerstone in the
democratization of scientific tools and methods to ensure
that these resources are not only used by experts in the
field but are accessible to a broader community. This
inclusive approach promotes collaborative research,
encourages a diversity of perspectives, and accelerates
scientific discoveries [35, 151, 152].

In this study, documentation was embedded
directly within the KNIME workflow to facilitate
this comprehension and reproducibility. Each node,

Page 11 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

metanode, component, or Python script within the
workflow was annotated with detailed comments.
These comments encompassed a description of the
function, and any specific methods or algorithms
being employed within. In cases where sequences of
nodes worked together to accomplish a specific task,
metanodes were employed, and comments were added
to these to describe the collective functionality.

All the steps of the workflow execution possess
interactive pages designed to enhance user guidance
and accessibility. At each step of the workflow,
informative text boxes serve as guides to provide users
with clear and concise instructions, leading them
through the various stages of the chemical grouping
process with step-by-step guidance.

Computational tools
The workflow was developed using the open-source
software KNIME version 4.6.4 (freely available at
https:// www. knime. com/ downl oad). The KNIME
free extensions used were: “KNIME Base Chemistry
Types & Nodes” [153], “Indigo KNIME Integration”
[154], “RDKit Nodes Feature” [155], “KNIME Python
Integration” [156], “KNIME JavaScript Views (Labs)”
[157], “Vernalis KNIME Nodes” [158], and “KNIME
HTML/PDF Writer” [159]. Some parts of the workflow
were implemented in “Python Script (legacy)” nodes
and Python 3.10.13 using the following libraries:
pandas (v. 1.5.2) [70], numpy (v. 1.25.3) [160], mordred
(v. 1.2.0) [59, 161], PaDELPy (v. 0.1.14) [61], scikit-
learn (v. 1.0.2) [66, 67], LightGBM [129, 162], sklearn-
genetic (v. 0.6.0) [84], shap (v. 0.41.0) [25, 125],
hdbscan (v. 0.8.28) [119, 120], optuna (v. 3.0.2) [91,
92], rdkit (v. 2022.3.5) [148], umap-learn (v. 0.5.3)
[145, 146], cairosvg (v. 2.7.0) [163], scikit-learn-extra
(v. 0.2.0) [108], seaborn (v. 0.11.2) [142], ipython (v.
7.34.0) [164], pillow (v. 9.4.0) [165], openai (v. 1.10.0)
[166], exmol (v. 3.0.3) [149, 150], and matplotlib (v.
3.6.3) [167].

The workflow is deployed on the NIEHS KNIME
Server (v. 4.15.3, running on CentOS Linux v. 3.10.0)
and made available via the KNIME WebPortal to be
executed as a web application in a guided step-by-step
way, without the need to install the KNIME analytics
platform. Currently, the NIEHS KNIME server is
only available within the NIH network at https://
knime. niehs. nih. gov/ knime/ webpo rtal/. But the same
workflow can be downloaded from GitHub (https://
github. com/ NIEHS/ Chemi cal- group ing- workf low)
or KNIME Hub (https:// hub. knime. com/-/ space s/-/
latest/ ~AnmyN gAW4J MJ_ gq4/) and executed locally or
deployed to any other KNIME Server.

Case study
To demonstrate the functionalities and outputs of
the chemical grouping workflow, we performed two
separate analyses: a supervised classification and an
unsupervised clustering. The toxicological eye irritation
and corrosion dataset retrieved from the work of Borba
et al. [168] was used for both analyses. This dataset was
downloaded from the supplementary material of the
original publication, containing a total of 2273 chemicals,
comprising 1140 irritants and 1133 non-irritants.

Results and discussion
Workflow overview and execution
The chemical grouping workflow described above
comprises nine major steps: (1) data input; (2) molecular
descriptors calculation; (3) dimensionality reduction; (4)
feature selection; (5) hyperparameter tuning; (6) chemical
grouping; (7) results visualization; (8) interpretation of
the results; and (9) reporting.

The in-workflow documentation ensures intuitive
understanding of the logic and methodology being
employed at each stage, without the need for external
documentation or guesswork, and supports future modi-
fications and extensions to the workflow. Each interac-
tive page view of the workflow presents a text box on the
right side for guidance (Fig. 2). It provides instructions
for executing the workflow (including any required user
input or potential parameter adjustments), and guidance
for interpreting the output results. Where necessary,
the interactive view documentation also provides links
to more detailed external resources, such as academic
papers and technical documentation for the methods.
This dual-pronged approach to documentation, i.e., com-
bining in-workflow comments with a step-by-step guide
in the interactive page view, was designed to make the
chemical grouping workflow as understandable and user-
friendly as possible, while still providing the depth of
information required for full reproducibility and poten-
tial future development.

Input and exploratory analysis
In our case study, the “New Analysis” mode was selected
(Fig. 2). The input file (Additional file 2) was in the SDF
format, containing the chemical structures of the eye
irritation and corrosion dataset. We first performed an
unsupervised clustering analysis with this dataset, using
the “Unlabeled" option under the “Select dataset type”
configuration field.

We also used the same dataset for a supervised
classification analysis, on a second workflow run using an
SDF file containing the chemical structures and the labels
for the eye irritation and corrosion dataset, encoded as

https://www.knime.com/download
https://knime.niehs.nih.gov/knime/webportal/
https://knime.niehs.nih.gov/knime/webportal/
https://github.com/NIEHS/Chemical-grouping-workflow
https://github.com/NIEHS/Chemical-grouping-workflow
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/
https://hub.knime.com/-/spaces/-/latest/~AnmyNgAW4JMJ_gq4/

Page 12 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Fig. 2 Input and initial configuration page of the chemical grouping workflow, with detailed user guides

Page 13 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

zero for nonirritant chemicals and one for irritants. To
unlock the supervised methods in the workflow, the
“Labeled” option under the “Select the dataset type” field
was chosen (Fig. 2). Then, we selected the SDF column
“Outcome” containing the labels and the data type
“Binary” in the “select column” page (Additional file 1:
Figure S1). Next, the exploratory data analysis revealed
that four chemicals could not be read by the workflow,
resulting in a final dataset of 2269 chemicals, with 1137
classified as class zero and 1132 as class one (Additional
file 1: Figure S2).

Chemical grouping
Unsupervised clustering
In the unsupervised clustering analysis of our case study
using the eye irritation and corrosion dataset, the binary
Morgan fingerprints was selected (Fig. 3). The Mor-
gan parameters set were the “radius” = 3 and “number
of bits = 2048 (Additional file 1: Figure S3). The "QSAR-
ready standardization" option was set to "Yes" by default

to apply the chemical structure standardization steps of
the QSAR-ready workflow [64].

Upon the calculation of the molecular descriptors, the
next step is the dimensionality reduction. In the unsu-
pervised clustering analysis, we applied the low vari-
ance filter and manually selected the threshold using
a slider (Fig. 4). The selected threshold was 0.05 and 92
bits from 2048 remained after the filtering. For the fea-
ture selection step, when the input data are unlabeled
or the user selects the unsupervised clustering method,
only a manual option is shown (Additional file 1: Figure
S4). The user can manually select in a table the binary fin-
gerprints or molecular descriptors that will be removed
from the dataset. Also, the univariate statistical measures
Mean, Variance, Skewness, and Kurtosis are calculated
and displayed in the table for each fingerprint or molec-
ular descriptor to guide the user in the selection. In our
unsupervised clustering case study, no additional feature
selection was performed after the dimensionality reduc-
tion and the 92 bits were used in the subsequent analysis.

Fig. 3 Page for the molecular descriptor selection and chemical structure standardization

Page 14 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

After the feature selection, the next page is the chem-
ical grouping configuration. In this page, the selec-
tion of the clustering algorithm (K-means, K-medoids,
Hierarchical clustering, DBSCAN, and HDBSCAN),
the visualization method (UMAP, PCA, and t-SNE)
and the use of projected clustering are available (Addi-
tional file 1: Figure S5). The default configurations are
K-means, UMAP and “Yes” for the use of projected
clustering. The projected clustering methods act as a
preprocessing step for the clustering algorithm to over-
come the “curse of dimensionality” problem, i.e., when
the algorithm have a poor performance due to the high-
dimensional space of the feature set. Thus, the group-
ing performance is increased [96, 97, 169, 170]. For the
unsupervised clustering analysis of our case study, the
default configurations were used.

After the chemical grouping configuration page, the
next step is the hyperparameter tuning. The configura-
tion page for the K-means clustering algorithm’s hyper-
parameters, along with the selected range values for
tuning, is displayed in Fig. 5. The combination of hyper-
parameters that resulted in the highest Silhouette score
(0.63) was selected: n_clusters = 3 for K-means, and

min_dist = 0.02 and n_neighbors = 17 for UMAP (Addi-
tional file 1: Figure S6).

The visualization of the grouping results is performed
using an interactive scatter plot of the 2D projected data
where the data points (chemicals) are color-coded based
on the group (cluster) number (Fig. 6). In the interactive
scatter plot, the user can select data points and visualize
their chemical structures. As we can observe in the high-
lighted chemicals within cluster number 2 in Fig. 6, unsu-
pervised clustering algorithms group molecules based on
structural similarities since they utilize unlabeled data.
The applications of unsupervised analysis are diverse; for
example, they can be used to analyze the similarity and
chemical space of a dataset or database, to select and pri-
oritize chemicals for experimental testing, or to generate
cluster-based splits for training predictive machine learn-
ing models.

It is important to note that the selection of a chemical
grouping approach depends on the objectives and
context of the study, which, consequently, will influence
the choice of the type of analysis (unsupervised or
supervised), the selection of molecular descriptors,
grouping algorithm, and hyperparameters. Therefore,
there is no single approach or method that can

Fig. 4 Configuration page of the manual option for the dimensionality reduction

Page 15 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Fig. 5 Configuration page displaying the hyperparameters’ options for the K‑means clustering algorithm and the UMAP visualization method
of the unsupervised clustering analysis. The page features sliders to specify ranges for each hyperparameter when using Bayesian optimization
with Optuna. The displayed hyperparameters’ ranges were used in the case study

Page 16 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

definitively determine the "optimal" groups universally.
Consequently, researchers frequently analyze outcomes
from various approaches [90, 171]. In this sense, the
in-workflow guides, the options for automated variable
selection and hyperparameter searches, the interactive
visualization and interpretation of the results, and the
different options for results downloads and exportation
aim to help the user in the grouping process.

Following the visualization of the grouping results,
the next step is the interpretation using SHAP

summary plots and the natural language explanation
generated by the LLM (GPT 3.5 Turbo). The use of
GPT-3.5 Turbo is optional; to utilize it, the user must
input an OpenAI API key, as described in the in-work-
flow guide (Additional file 1: Figure S7). In the SHAP
summary plot, the most important molecular descrip-
tors are ranked from top to bottom in the y-axis. On
the x-axis, for each molecular descriptor, every com-
pound on the respective group appears as a data point

Fig. 6 Unsupervised clustering results. The interactive scatter plot of the 2D projection is shown. Each cluster is identified by a different color
in the chart. The user can interactively select data points in the scatter plot and visualize the respective chemical structures

Page 17 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

horizontally distributed according to their SHAP val-
ues. These plots additionally display the influence of
the bits on the model prediction by color (red for pres-
ence of a substructure and blue for the absence). In the
interpretation of the unsupervised clustering results
depicted in Fig. 7, we identify the most important bits
that group chemicals in cluster number 2 (the interpre-
tation of the results for all clusters is shown in Addi-
tional file 1: Figure S8). Taking bit 1179 as an example,
which possesses an ester group, we observe that all the
highlighted chemicals in Fig. 6 present this functional
group. This information is instrumental in interpreting
the chemical diversity of the dataset and identifying if
the dataset is biased to specific chemical scaffolds. This
analysis can be further augmented by incorporating
other available information, such as chemical labels, to
assist in inferring structure–activity relationships.

Supervised classification
In the supervised classification of our case study using
the eye irritation and corrosion dataset (1137 non-
irritants and 1132 irritants), the continuous molecular
descriptors option and the Mordred descriptors was
selected (Additional file 1: Figure S9). Subsequently, we
filtered out the low variance descriptors using the auto-
mated option (Fig. 8). The LightGBM algorithm was used
to find best variance threshold (0.03). The selection of a
supervised ML algorithm appears only in the first step
requiring this method. All later steps use this same algo-
rithm. After the application of the filter, 747 descriptors
from the initial number of 1051 remained.

Following the removal of low variance descriptors, the
automated feature selection using the Genetic Algorithm
method was employed (Fig. 9). This method automatically
selects the best subset of molecular descriptors related
to the endpoint for chemical grouping. From the 747
descriptors remained after the automated dimensionality

Fig. 7 Interpretation of the cluster number 2 identified using the unsupervised clustering method

Page 18 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

reduction, 74 descriptors were selected and used as the
molecular descriptors for chemical grouping.

In addition to the automated feature selection, for our
supervised classification we applied the SHAP method to
calculate the weight of each molecular descriptor (SHAP
values) based on the labels of irritant or nonirritant.
Then, we used the projected clustering method with
UMAP as the visualization algorithm to project the
SHAP values in a 2D space, which was used as input
for the unsupervised clustering algorithm. Here, we
selected K-medoids to demonstrate the capabilities of
the chemical grouping workflow. Additional file 1: Figure
S10 displays the configuration page for the K-medoids
clustering algorithm, including the hyperparameters and
their selected range values for tuning. By default, a broad
range is chosen for the hyperparameters to accommodate
various purposes, but users can modify these values and

the number of combinations to be tested by the Bayesian
search. We limited the search of n_clusters from 2 to 25
for K-medoids, and for UMAP the min_dist of 0.01–
0.25 and n_neighbors of 2–50. The number of trials for
the Bayesian search was 50. After the hyperparameter
tuning, the following combination of hyperparameters
was selected: n_clusters = 9 for K-medoids, and min_
dist = 0.02 and n_neighbors = 32 for UMAP, resulting in
Silhouette score of 0.42 (Additional file 1: Figure S11).

The grouping results are visualized using scatter
plots of the 2D projected data with two options: inter-
active and static (Fig. 10). In both options, the data
points (chemicals) are color-coded based on the group
(cluster) number. In the interactive option, the user
can select data points in the scatter plot and visualize
their chemical structures and outcomes (1 = irritant
and 0 = nonirritant), and also perform zoom in and

Fig. 8 Configuration page of the automated option for the dimensionality reduction step

Page 19 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

out in the scatter plot. In the static option, in addi-
tion to color-coding of the groups, the data points are
also shape-coded based on the outcomes (here, eye
irritation and corrosion). As we can see in the Fig. 10,
using the data labels and supervised algorithms, the

supervised classification method implemented was able
to group chemicals based on endpoint-specific similar-
ity. Clusters 0, 4, 7, and 8 have a high proportion of irri-
tants. Conversely, clusters 1, 2, 5, and 6 have a higher

Fig. 9 Configuration page for automated feature selection

Page 20 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Fig. 10 Supervised classification results. The interactive and static scatter plots of the 2D projected are shown. Each cluster is identified
by a different color in the charts. The user can interactively select data points in the interactive scatter plot and visualize the respective chemical
structures. In the static plot, the nonirritant data points are dot‑shaped and irritants are x‑shaped

Page 21 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

proportion of non-irritants. Cluster 3 shows a mix,
with a higher prevalence of irritants than non-irritants.

In the interpretation of the supervised classification
results, we show only the interpretation of the clus-
ters number 0 and 1 (Fig. 11). The complete results are
shown in the Additional file 1: Figure S12. SHAP val-
ues were utilized to identify the top 5 most important
molecular descriptors for each group identified. The
SHAP summary plot also display the influence of the
molecular descriptors’ values on the model prediction
through the use of color. For the cluster number 0, the

most important descriptors to group the chemicals
were ATSC5v (centered Moreau-Broto autocorrela-
tion of lag 5 weighted by van der Waals (vdw) volume),
CIC1 (1-ordered complementary information content),
ATSC3se (centered Moreau-Broto autocorrelation
of lag 3 weighted by Sanderson EN), AATS0s (aver-
aged Moreau-Broto autocorrelation of lag 0 weighted
by intrinsic state), and ATSC8pe (centered Moreau-
Broto autocorrelation of lag 8 weighted by Pauling EN)
(see Fig. 11). Since the cluster number 0 is predomi-
nantly formed by irritants or corrosive chemicals, this

Fig. 11 Interpretation of the clusters number 0 and 1 identified using the supervised classification method

Page 22 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

suggests that the molecular descriptors identified as
important in this cluster may be associated with eye
irritant/corrosive properties. On the other hand, the
cluster number 1 is predominantly formed by non-
irritants/noncorrosive chemicals (see Fig. 10), indicat-
ing that the distinguishing molecular descriptors in this
cluster [MIC1 (1-ordered modified information con-
tent), AATSC1i (averaged and centered Moreau-Broto
autocorrelation of lag 1 weighted by ionization poten-
tial), MIC0 (0-ordered modified information content),
ATSC1se (centered Moreau-Broto autocorrelation
of lag 1 weighted by sanderson EN), CIC4 (4-ordered
complementary information content)] might be linked
to properties that reduce the likelihood of being an irri-
tant or corrosive (see Fig. 11). This information can be
valuable for researchers in several applications regard-
ing this endpoint, e.g., in the development of new
chemicals with ocular exposure potential.

One drawback of using continuous molecular
descriptors is that the computational libraries used
to compute them often only output names and val-
ues. These names are often difficult to understand,
requiring extensive literature research to identify the
molecular properties each descriptor calculates. Addi-
tionally, interpreting the SHAP summary plot may not
be straightforward for inexperienced users. To address
these issues, the large language model GPT-3.5 Turbo
was utilized to automatically generate explanations for
the most important descriptors in each cluster and pro-
vide a natural language summary of the interpretation
results. As seen in Fig. 11, the LLM starts by explaining
the key molecular descriptors. It then correlates these
descriptors’ values with the clustering results. Finally, it
provides a summary of these findings. For example, the
summary for cluster number 0 states: "In cluster 0, com-
pounds are grouped based on their spatial distribution
of atoms, topological connectivity, electronegativities,
average electronegativity of atoms, and polarizabilities.
The positive values of ATSC5v, ATSC3se, AATS0s, and
ATSC8pe indicate compounds in cluster 0 have larger
van der Waals volumes, electronegativities, surface
areas, and polarizabilities, respectively". These descrip-
tors collectively contribute to grouping the compounds
in cluster 0, highlighting their structural and chemical
similarities. This grouping is significant, considering
that cluster 0 mainly consists of irritants/corrosives,
and these properties may correlate with the endpoint,
and they are consistent with published data [172–
174]. The LLM-generated explanations for all clusters
are available in Additional file 1: Table S3. Thus, the
LLM’s automatic explanation generation significantly

contributes to the democratization and facilitation of
chemical grouping analysis.

Report and results download
The final step of the workflow is a summary showing
all results obtained during the process, with options
to download the results obtained (Additional file 1:
Figure S13). In the unsupervised clustering analysis
of the eye irritation and corrosion dataset, the binary
Morgan fingerprints were used, and bits were filtered
using a manually set variance threshold of 0.05. We
used the K-means clustering algorithm and UMAP for
visualization. The analysis identified 3 clusters with a
Silhouette score of 0.63. This information, along with
other relevant parameters, is summarized in the ‘Selected
Options’ field and is available for download in CSV
format. Additionally, the SMILES of the compounds in
the dataset, the UMAP coordinates, the cluster labels,
and the molecular descriptors are available for download
in CSV format. The complete page for report and results
download of the unsupervised clustering analysis is
shown in the Additional file 1: Figure S14.

In the supervised classification analysis of the eye
irritation and corrosion dataset, we used the Mordred
continuous descriptors, and the dimensionality
reduction (filter of low variance and high correlated
descriptors) was performed using the automated option.
Subsequently, the best subset of descriptors for the
studied endpoint was selected using GA, and the SHAP
method was applied to weigh them based on the data
labels. All supervised methods used the LightGBM
algorithm. Finally, UMAP was utilized to visualize the 2D
distribution of the nine clusters, which were identified
based on endpoint-specific similarity (Silhouette score
of 0.42). All the results and configurations were made
available for download in separate files as described in
“Report and download of results”section (Additional
file 1: Figure S15).

Conclusion
The chemical grouping workflow was designed to be
user-friendly, with a graphical interface that removes
the necessity for extensive programming skills, thereby
improving its accessibility. It serves as a valuable
resource for chemists and researchers seeking to
explore and analyze chemical datasets comprehensively.
Its ease of use makes it particularly suitable for those
new to cheminformatics. For more experienced users,
our workflow offers advanced features and flexibility
to select different configurations of the grouping
process to obtain better results. Furthermore, in-depth

Page 23 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

customization can be applied in the desktop version
of KNIME Analytics Platform, where users can fine-
tune the workflow at different stages, tailoring it to
their specific needs. This customization capability is
invaluable when addressing complex and specialized
chemical analysis requirements. The server version
of our workflow, integrated with the NIEHS KNIME
Server and WebPortal, enhances usability and
scalability, making it a powerful tool for collaborative
chemical data analysis. It allows multiple users to
access and execute the workflow in a streamlined and
controlled manner, facilitating teamwork and ensuring
reproducibility in research.

Our workflow has implemented all the needed steps
for chemical grouping, including data input, molecular
descriptor calculation, dimensionality reduction,
feature selection, unsupervised clustering, supervised
grouping, hyperparameter tuning, and visualization.
It provides a comprehensive solution that guides users
through these critical steps in the grouping analysis.
Moreover, we introduced an interpretation step
using SHAP values to identify the most important
molecular descriptors contributing to each group
and the generated natural language summaries of the
explanations aid in understanding the reasons behind
the groupings.

Overall, our approach provides a valuable tool for
chemists and researchers to explore chemical datasets,
gain insights into chemical properties, and facilitate
decision-making processes in various applications,
including drug discovery, chemical risk assessment, and
structure–activity relationship analysis.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321‑ 024‑ 00894‑1.

Additional file 1. Additional tables and figures of the user interface and
functionalities of the workflow.

Additional file 2. SDF file containing the chemical structures of the eye
irritation and corrosion dataset.

Author contributions
JTMF developed the workflow and wrote the manuscript. DR contributed to
the improvement and testing of the workflow and writing of the manuscript.
MC implemented the KNIME server for the web application. CS, NK, and KM
directed the project and contributed to the editing of the manuscript.

Funding
Open access funding provided by the National Institutes of Health. This
research was supported by the NIH, National Institute of Environmental Health
Sciences through Intramural Research Program Project ES103376‑02.

 Availability of data and materials
The data used in the case study and the chemical grouping workflow are
available for download in the KNIME Community Hub at https:// hub. knime.
com/‑/ space s/‑/ latest/~AnmyNgAW4JMJ_gq4/ and GitHub at https:// github.

com/ NIEHS/ Chemi cal‑ group ing‑ workfl ow. GitHub also provides a tutorial for
installation.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors gave consent for publication.

Competing interests
The authors declare no competing interests.

Author details
1 National Toxicology Program Interagency Center for the Evaluation
of Alternative Toxicological Methods, Division of Translational Toxicology,
National Institute of Environmental Health Sciences, Research Triangle Park,
North Carolina, USA. 2 University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina, USA. 3 National Institute of Environmental Health Sciences,
Research Triangle Park, North Carolina, USA. 4 Division of Translational
Toxicology, National Institute of Environmental Health Sciences, Research
Triangle Park, North Carolina, USA.

Received: 28 March 2024 Accepted: 6 August 2024

References
 1. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M,

Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo‑
Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez‑Lopez M,
Atkinson F, Bosc N, Radoux CJ, Segura‑Cabrera A, Hersey A, Leach AR
(2018) ChEMBL: towards direct deposition of bioassay data. Nucleic
Acids Res. https:// doi. org/ 10. 1093/ nar/ gky10 75

 2. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA,
Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2020) PubChem in
2021: new data content and improved web interfaces. Nucleic Acids
Res. https:// doi. org/ 10. 1093/ nar/ gkaa9 71

 3. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T,
Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski
A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson
M (2017) DrugBank 5.0: a major update to the DrugBank database for
2018. Nucleic Acids Res. https:// doi. org/ 10. 1093/ nar/ gkx10 37

 4. Grulke CM, Williams AJ, Thillanadarajah I, Richard AM (2019) EPA’s DSS‑
Tox database: History of development of a curated chemistry resource
supporting computational toxicology research. Comput Toxicol.
https:// doi. org/ 10. 1016/j. comtox. 2019. 100096

 5. Zhu H (2019) Big data and artificial intelligence modeling for drug
discovery. Annu Rev Pharmacol Toxicol 60:573–589. https:// doi. org/ 10.
1146/ annur ev‑ pharm tox‑ 010919‑ 023324

 6. Hoffmann T, Gastreich M (2019) The next level in chemical space navi‑
gation: going far beyond enumerable compound libraries. Drug Discov
Today 24:1148–1156. https:// doi. org/ 10. 1016/j. drudis. 2019. 02. 013

 7. Walters WP (2019) Virtual chemical libraries. J Med Chem 62:1116–1124.
https:// doi. org/ 10. 1021/ acs. jmedc hem. 8b010 48

 8. Warr WA, Nicklaus MC, Nicolaou CA, Rarey M (2022) Exploration of
ultralarge compound collections for drug discovery. J Chem Inf Model
62:2021–2034. https:// doi. org/ 10. 1021/ acs. jcim. 2c002 24

 9. Probst D, Reymond J‑L (2018) Exploring DrugBank in virtual reality
chemical space. J Chem Inf Model 58:1731–1735. https:// doi. org/ 10.
1021/ acs. jcim. 8b004 02

 10. Ciallella HL, Zhu H (2019) Advancing computational toxicology in the
big data era by artificial intelligence: data‑driven and mechanism‑
driven modeling for chemical toxicity. Chem Res Toxicol 32:536–547.
https:// doi. org/ 10. 1021/ acs. chemr estox. 8b003 93

https://doi.org/10.1186/s13321-024-00894-1
https://doi.org/10.1186/s13321-024-00894-1
https://hub.knime.com/-/spaces/-/latest/
https://hub.knime.com/-/spaces/-/latest/
https://github.com/NIEHS/Chemical-grouping-workflow
https://github.com/NIEHS/Chemical-grouping-workflow
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gkaa971
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1016/j.comtox.2019.100096
https://doi.org/10.1146/annurev-pharmtox-010919-023324
https://doi.org/10.1146/annurev-pharmtox-010919-023324
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1021/acs.jmedchem.8b01048
https://doi.org/10.1021/acs.jcim.2c00224
https://doi.org/10.1021/acs.jcim.8b00402
https://doi.org/10.1021/acs.jcim.8b00402
https://doi.org/10.1021/acs.chemrestox.8b00393

Page 24 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

 11. Sadybekov AV, Katritch V (2023) Computational approaches stream‑
lining drug discovery. Nature 616:673–685. https:// doi. org/ 10. 1038/
s41586‑ 023‑ 05905‑z

 12. Wohlleben W, Mehling A, Landsiedel R (2023) Lessons learned from the
grouping of chemicals to assess risks to human health. Angew Chem
Int Ed. https:// doi. org/ 10. 1002/ anie. 20221 0651

 13. Rivera‑Borroto OM, Marrero‑Ponce Y, la Vega JMG, del Grau‑Ábalo R
(2011) Comparison of combinatorial clustering methods on pharma‑
cological data sets represented by machine learning‑selected real
molecular descriptors. J Chem Inf Model 51:3036–3049. https:// doi. org/
10. 1021/ ci200 0083

 14. MacCuish JD, MacCuish NE (2014) Chemoinformatics applications of
cluster analysis. Wiley Interdiscip Rev Comput Mol Sci 4:34–48. https://
doi. org/ 10. 1002/ wcms. 1152

 15. Böcker A, Derksen S, Schmidt E, Teckentrup A, Schneider G (2005) A
hierarchical clustering approach for large compound libraries. J Chem
Inf Model 45:807–815. https:// doi. org/ 10. 1021/ ci050 0029

 16. Hadipour H, Liu C, Davis R, Cardona ST, Hu P (2022) Deep clustering of
small molecules at large‑scale via variational autoencoder embedding
and K‑means. BMC Bioinformatics 23:132. https:// doi. org/ 10. 1186/
s12859‑ 022‑ 04667‑1

 17. Date MS, O’Brien D, Botelho DJ, Schultz TW, Liebler DC, Penning TM,
Salvito DT (2020) Clustering a chemical inventory for safety assessment
of fragrance ingredients: identifying read‑across analogs to address
data gaps. Chem Res Toxicol 33:1709–1718. https:// doi. org/ 10. 1021/ acs.
chemr estox. 9b005 18

 18. Martin TM, Harten P, Venkatapathy R, Das S, Young DM (2008) A hier‑
archical clustering methodology for the estimation of toxicity. Toxicol
Mech Methods 18:251–266. https:// doi. org/ 10. 1080/ 15376 51070 18573
53

 19. Ball N, Cronin MTD, Shen J, Blackburn K, Booth ED, Bouhifd M, Donley
E, Egnash L, Hastings C, Juberg DR, Kleensang A, Kleinstreuer N, Kroese
ED, Lee AC, Luechtefeld T, Maertens A, Marty S, Naciff JM, Palmer J,
Pamies D, Penman M, Richarz A‑N, Russo DP, Stuard SB, Patlewicz G, van
Ravenzwaay B, Wu S, Zhu H, Hartung T (2016) t4 report*: toward good
read‑across practice (GRAP) guidance. Altex 33:149–166. https:// doi.
org/ 10. 14573/ altex. 16012 51

 20. Yang C, Rathman JF, Mostrag A, Ribeiro JV, Hobocienski B, Magdziarz T,
Kulkarni S, Barton‑Maclaren T (2023) High throughput read‑across for
screening a large inventory of related structures by balancing artificial
intelligence/machine learning and human knowledge. Chem Res
Toxicol 36:1081–1106. https:// doi. org/ 10. 1021/ acs. chemr estox. 3c000 62

 21. Hernández‑Hernández S, Ballester PJ (2023) On the Best Way to Cluster
NCI‑60 Molecules. Biomol 13:498. https:// doi. org/ 10. 3390/ biom1 30304
98

 22. Fraiman R, Ghattas B, Svarc M (2013) Interpretable clustering using
unsupervised binary trees. Adv Data Anal Classif 7:125–145. https:// doi.
org/ 10. 1007/ s11634‑ 013‑ 0129‑3

 23. Prabhakaran K, Dridi J, Amayri M, Bouguila N (2022) Explainable
K‑means clustering for occupancy estimation. Proc Comput Sci
203:326–333. https:// doi. org/ 10. 1016/j. procs. 2022. 07. 041

 24. Rodríguez‑Pérez R, Bajorath J (2021) Explainable machine learning
for property predictions in compound optimization. J Med Chem
64:17744–17752. https:// doi. org/ 10. 1021/ acs. jmedc hem. 1c017 89

 25. Lundberg SM, Lee SI (2017) A unified approach to interpreting model
predictions. Adv Neural Inform Process Syst. https:// doi. org/ 10. 5555/
32952 22. 32952 30

 26. Louhichi M, Nesmaoui R, Mbarek M, Lazaar M (2023) Shapley values for
explaining the black box nature of machine learning model clustering.
Proc Comput Sci 220:806–811. https:// doi. org/ 10. 1016/j. procs. 2023. 03.
107

 27. Lau KY‑Y, Ng K‑S, Kwok K‑W, Tsia KK‑M, Sin C‑F, Lam C‑W, Vardhanabhuti
V (2022) An unsupervised machine learning clustering and prediction
of differential clinical phenotypes of COVID‑19 patients based on blood
tests—a Hong Kong population study. Front Med 8:764934. https:// doi.
org/ 10. 3389/ fmed. 2021. 764934

 28. Forte JC, Yeshmagambetova G, van der Grinten ML, Hiemstra B, Kauf‑
mann T, Eck RJ, Keus F, Epema AH, Wiering MA, van der Horst ICC (2021)
Identifying and characterizing high‑risk clusters in a heterogeneous
ICU population with deep embedded clustering. Sci Rep‑uk 11:12109.
https:// doi. org/ 10. 1038/ s41598‑ 021‑ 91297‑x

 29. Peng RD (2011) Reproducible research in computational science. Sci‑
ence 334:1226–1227. https:// doi. org/ 10. 1126/ scien ce. 12138 47

 30. Walters WP (2020) Code sharing in the open science era. J Chem Inf
Model 60:4417–4420. https:// doi. org/ 10. 1021/ acs. jcim. 0c010 00

 31. Hagg A, Kirschner KN (2023) Open‑source machine learning in compu‑
tational chemistry. J Chem Inf Model 63:4505–4532. https:// doi. org/ 10.
1021/ acs. jcim. 3c006 43

 32. Lawson S, Dickinson P, Morrison‑Smith S, Boucher C, Bunt A, Ruiz J
(2015) Elucidating the role and use of bioinformatics software in life
science research. Proc 2015 Br HCI Conf DOI. https:// doi. org/ 10. 1145/
27834 46. 27835 81

 33. Bray SA, Lucas X, Kumar A, Grüning BA (2020) The ChemicalTool‑
box: reproducible, user‑friendly cheminformatics analysis on the
Galaxy platform. J Cheminformatics 12:40. https:// doi. org/ 10. 1186/
s13321‑ 020‑ 00442‑7

 34. Karamanis N, Pignatelli M, Carvalho‑Silva D, Rowland F, Cham JA, Dun‑
ham I (2018) Designing an intuitive web application for drug discovery
scientists. Drug Discov Today 23:1169–1174. https:// doi. org/ 10. 1016/j.
drudis. 2018. 01. 032

 35. Taschuk M, Wilson G (2017) Ten simple rules for making research soft‑
ware more robust. PLoS Comput Biol 13:e1005412. https:// doi. org/ 10.
1371/ journ al. pcbi. 10054 12

 36. Joppich M, Zimmer R (2019) From command‑line bioinformatics to
bioGUI. PeerJ 7:e8111. https:// doi. org/ 10. 7717/ peerj. 8111

 37. Sicho M, Liu X, Svozil D, van Westen GJP (2021) GenUI: interactive and
extensible open source software platform for de novo molecular gen‑
eration and cheminformatics. J Cheminformatics 13:73. https:// doi. org/
10. 1186/ s13321‑ 021‑ 00550‑y

 38. Nazaruka Ē, Sandkuhl K, Seigerroth U (2022) Perspectives in busi‑
ness informatics research, 21st International conference on business
informatics research, BIR 2022, Rostock, Germany, september 21–23,
2022, proceedings. In: Nazaruka Ē, Sandkuhl K, Seigerroth U (eds) Busi‑
ness Informatics Research. Springer, Cham. https:// doi. org/ 10. 1007/
978‑3‑ 031‑ 16947‑2

 39. Bock AC, Frank U (2021) Low‑code platform. Bus Inf Syst Eng 63:733–
740. https:// doi. org/ 10. 1007/ s12599‑ 021‑ 00726‑8

 40. Käss S, Strahringer S, Westner M (2023) Practitioners’ perceptions on the
adoption of low code development platforms. IEEE Access 11:29009–
29034. https:// doi. org/ 10. 1109/ access. 2023. 32585 39

 41. Sahay A, Indamutsa A, Ruscio DD, Pierantonio A (2020) Supporting the
understanding and comparison of low‑code development platforms.
In: 2020 46th Euromicro Conf Softw Eng Adv Appl (SEAA). pp. 171–178.
https:// doi. org/ 10. 1109/ seaa5 1224. 2020. 00036

 42. Liu D, Jiang H, Guo S, Chen Y, Qiao L (2023) What’s wrong with
low‑code development platforms? An empirical study of low‑code
development platform bugs. IEEE Trans Reliab. https:// doi. org/ 10. 1109/
tr. 2023. 32950 09

 43. Woo M (2020) The rise of no/low code software development—no
experience needed? Engineering 6:960–961. https:// doi. org/ 10. 1016/j.
eng. 2020. 07. 007

 44. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K,
Wiswedel B (2009) KNIME‑the Konstanz information miner: version 2.0
and beyond. Acm Sigkdd Explor Newsl 11:26–31. https:// doi. org/ 10.
1145/ 16562 74. 16562 80

 45. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C,
Thiel K, Wiswedel B (2008) KNIME: The Konstanz Information Miner. In:
Preisach H, Decker R (eds) Data analysis, machine learning and applica‑
tions. Springer, Berlin, pp 319–326

 46. Jansen JM, Pascale GD, Fong S, Lindvall M, Moser HE, Pfister K, Warne B,
Wartchow C (2019) Biased complement diversity selection for effective
exploration of chemical space in hit‑finding campaigns. J Chem Inf
Model 59:1709–1714. https:// doi. org/ 10. 1021/ acs. jcim. 9b000 48

 47. Willems H, Cesco SD, Svensson F (2020) Computational chemistry on a
budget: supporting drug discovery with limited resources. J Med Chem
63:10158–10169. https:// doi. org/ 10. 1021/ acs. jmedc hem. 9b021 26

 48. Humer C, Heberle H, Montanari F, Wolf T, Huber F, Henderson R, Hein‑
rich J, Streit M (2022) ChemInformatics model explorer (CIME): explora‑
tory analysis of chemical model explanations. J Cheminformatics 14:21.
https:// doi. org/ 10. 1186/ s13321‑ 022‑ 00600‑z

 49. Gori DNP, Llanos MA, Bellera CL, Talevi A, Alberca LN (2022) iRaPCA
and SOMoC: development and validation of web applications for new

https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.1002/anie.202210651
https://doi.org/10.1021/ci2000083
https://doi.org/10.1021/ci2000083
https://doi.org/10.1002/wcms.1152
https://doi.org/10.1002/wcms.1152
https://doi.org/10.1021/ci0500029
https://doi.org/10.1186/s12859-022-04667-1
https://doi.org/10.1186/s12859-022-04667-1
https://doi.org/10.1021/acs.chemrestox.9b00518
https://doi.org/10.1021/acs.chemrestox.9b00518
https://doi.org/10.1080/15376510701857353
https://doi.org/10.1080/15376510701857353
https://doi.org/10.14573/altex.1601251
https://doi.org/10.14573/altex.1601251
https://doi.org/10.1021/acs.chemrestox.3c00062
https://doi.org/10.3390/biom13030498
https://doi.org/10.3390/biom13030498
https://doi.org/10.1007/s11634-013-0129-3
https://doi.org/10.1007/s11634-013-0129-3
https://doi.org/10.1016/j.procs.2022.07.041
https://doi.org/10.1021/acs.jmedchem.1c01789
https://doi.org/10.5555/3295222.3295230
https://doi.org/10.5555/3295222.3295230
https://doi.org/10.1016/j.procs.2023.03.107
https://doi.org/10.1016/j.procs.2023.03.107
https://doi.org/10.3389/fmed.2021.764934
https://doi.org/10.3389/fmed.2021.764934
https://doi.org/10.1038/s41598-021-91297-x
https://doi.org/10.1126/science.1213847
https://doi.org/10.1021/acs.jcim.0c01000
https://doi.org/10.1021/acs.jcim.3c00643
https://doi.org/10.1021/acs.jcim.3c00643
https://doi.org/10.1145/2783446.2783581
https://doi.org/10.1145/2783446.2783581
https://doi.org/10.1186/s13321-020-00442-7
https://doi.org/10.1186/s13321-020-00442-7
https://doi.org/10.1016/j.drudis.2018.01.032
https://doi.org/10.1016/j.drudis.2018.01.032
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.7717/peerj.8111
https://doi.org/10.1186/s13321-021-00550-y
https://doi.org/10.1186/s13321-021-00550-y
https://doi.org/10.1007/978-3-031-16947-2
https://doi.org/10.1007/978-3-031-16947-2
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.1109/access.2023.3258539
https://doi.org/10.1109/seaa51224.2020.00036
https://doi.org/10.1109/tr.2023.3295009
https://doi.org/10.1109/tr.2023.3295009
https://doi.org/10.1016/j.eng.2020.07.007
https://doi.org/10.1016/j.eng.2020.07.007
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1021/acs.jcim.9b00048
https://doi.org/10.1021/acs.jmedchem.9b02126
https://doi.org/10.1186/s13321-022-00600-z

Page 25 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

approaches for the clustering of small molecules. J Chem Inf Model
62:2987–2998. https:// doi. org/ 10. 1021/ acs. jcim. 2c002 65

 50. Sorkun MC, Mullaj D, Koelman JMVA, Er S (2022) ChemPlot, a python
library for chemical space visualization. Chem Methods. https:// doi. org/
10. 1002/ cmtd. 20220 0005

 51. KNIME write variables. https:// hub. knime. com/ verna lis/ exten sions/ com.
verna lis. knime. featu re/ latest/ com. verna lis. knime. flowv ar. nodes. io. write.
Write Varia blesN odeFa ctory. Accessed 27 Jun 2023

 52. KNIME read variables. https:// hub. knime. com/ verna lis/ exten sions/ com.
verna lis. knime. featu re/ latest/ com. verna lis. knime. flowv ar. nodes. io. read.
ReadV ariab lesNo deFac tory. Accessed 4 Jun 2023

 53. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li
B, Madabhushi A, Shah P, Spitzer M, Zhao S (2019) Applications of
machine learning in drug discovery and development. Nat Rev Drug
Discov 18:463–477. https:// doi. org/ 10. 1038/ s41573‑ 019‑ 0024‑5

 54. David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular represen‑
tations in AI‑driven drug discovery: a review and practical guide. J
Cheminformatics 12:56. https:// doi. org/ 10. 1186/ s13321‑ 020‑ 00460‑5

 55. ProfDrR T, DrV C (2010) Handbook of molecular descriptors. Methods
Princ Med Chem. https:// doi. org/ 10. 1002/ 97835 27613 106

 56. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinfor‑
matics. Wiley, Hoboken

 57. RDKit fingerprint. https:// hub. knime. com/ manue lschw arze/ exten sions/
org. rdkit. knime. featu re/ latest/ org. rdkit. knime. nodes. rdkfi ngerp rint. RDKit
Finge rprin tNode Facto ry. Accessed 26 Dec 2023

 58. RDKit descriptor calculation. https:// hub. knime. com/ manue lschw arze/
exten sions/ org. rdkit. knime. featu re/ latest/ org. rdkit. knime. nodes. descr
iptor calcu lation. Descr iptor Calcu latio nNode Facto ry. Accessed 26 Dec
2023

 59. Moriwaki H, Tian Y‑S, Kawashita N, Takagi T (2018) Mordred: a molecular
descriptor calculator. J Cheminformatics 10:4. https:// doi. org/ 10. 1186/
s13321‑ 018‑ 0258‑y

 60. Yap CW (2011) PaDEL‑descriptor: an open source software to calculate
molecular descriptors and fingerprints. J Comput Chem 32:1466–1474.
https:// doi. org/ 10. 1002/ jcc. 21707

 61. PaDELPy: A Python wrapper for PaDEL‑descriptor software. https://
github. com/ ecrl/ padel py. Accessed 19 May 2023

 62. Nantasenamat C (2021) Data professor. In: Calculating molecular fin‑
gerprints using padelpy. https:// datap rofes sor. github. io/ ws/ bioin forma
tics/ chemi nform atics/ padel py/ scikit‑ learn/ qsar/ qspr/ 2021/ 07/ 06/ padel
py. html. Accessed 19 May 2023

 63. KNIME normalizer. https:// hub. knime. com/ knime/ exten sions/ org.
knime. featu res. base/ latest/ org. knime. base. node. prepr oc. norma lize3.
Norma lizer 3Node Facto ry. Accessed 22 Dec 2023

 64. Mansouri K, Moreira‑Filho JT, Lowe CN, Charest N, Martin T, Tkachenko
V, Judson R, Conway M, Kleinstreuer NC, Williams AJ (2024) Free and
open‑source QSAR‑ready workflow for automated standardization of
chemical structures in support of QSAR modeling. J Cheminformatics
16:19. https:// doi. org/ 10. 1186/ s13321‑ 024‑ 00814‑3

 65. Low variance filter. https:// hub. knime. com/ knime/ exten sions/ org.
knime. featu res. base/ latest/ org. knime. base. node. prepr oc. lowva rfilt er2.
LowVa rFilt er2No deFac tory. Accessed 26 Dec 2023

 66. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R,
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay É (2011) Scikit‑learn: machine learning in Python. J Mach
Learn Res 12:2825

 67. Scikit‑learn: machine learning in Python. https:// scikit‑ learn. org/ stable/
index. html. Accessed 19 May 2023

 68. Linear correlation. https:// hub. knime. com/ knime/ exten sions/ org.
knime. featu res. base/ latest/ org. knime. base. node. prepr oc. corre lation.
compu te2. Corre latio nComp ute2N odeFa ctory. Accessed 26 Dec 2023

 69. Correlation filter. https:// hub. knime. com/ knime/ exten sions/ org. knime.
featu res. base/ latest/ org. knime. base. node. prepr oc. corre lation. filter. Corre
latio nFilt erNod eFact ory. Accessed 26 Dec 2023

 70. Pandas T pandas development team (2020) pandas‑dev/pandas:
Pandas

 71. Freedman D, Pisani R, Purves R (2007) Statistics. WW Norton & Com‑
pany, New York

 72. Ponzoni I, Sebastián‑Pérez V, Requena‑Triguero C, Roca C, Martínez
MJ, Cravero F, Díaz MF, Páez JA, Arrayás RG, Adrio J, Campillo NE (2017)

Hybridizing feature selection and feature learning approaches in QSAR
modeling for drug discovery. Sci Rep 7:2403. https:// doi. org/ 10. 1038/
s41598‑ 017‑ 02114‑3

 73. Khan PM, Roy K (2018) Current approaches for choosing feature selec‑
tion and learning algorithms in quantitative structure–activity relation‑
ships (QSAR). Exp Opin Drug Discov 13:1075–1089. https:// doi. org/ 10.
1080/ 17460 441. 2018. 15424 28

 74. Danishuddin KAU (2016) Descriptors and their selection methods in
QSAR analysis: paradigm for drug design. Drug Discov Today 21:1291–
1302. https:// doi. org/ 10. 1016/j. drudis. 2016. 06. 013

 75. Gonzalez M, Teran C, Saiz‑Urra L, Teijeira M (2008) Variable selection
methods in QSAR: an overview. Curr Top Med Chem 8:1606–1627.
https:// doi. org/ 10. 2174/ 15680 26087 86786 552

 76. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer
classification using support vector machines. Mach Learn 46:389–422.
https:// doi. org/ 10. 1023/a: 10124 87302 797

 77. Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning, 1st edn. Addison‑Wesley Professional, Boston

 78. Holland JH (1992) Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT Press, Cambridge

 79. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220:671–680. https:// doi. org/ 10. 1126/ scien ce. 220.
4598. 671

 80. Teixeira AL, Leal JP, Falcao AO (2013) Random forests for feature selec‑
tion in QSPR Models—an application for predicting standard enthalpy
of formation of hydrocarbons. J Cheminformatics 5:9. https:// doi. org/
10. 1186/ 1758‑ 2946‑5‑9

 81. Ghosh P, Bagchi M (2009) QSAR modeling for quinoxaline derivatives
using genetic algorithm and simulated annealing based feature selec‑
tion. Curr Med Chem 16:4032–4048. https:// doi. org/ 10. 2174/ 09298
67097 89352 303

 82. Yasri A, Hartsough D (2001) Toward an Optimal procedure for variable
selection and QSAR model building. J Chem Inf Comput Sci 41:1218–
1227. https:// doi. org/ 10. 1021/ ci010 291a

 83. Chiesa M, Maioli G, Colombo GI, Piacentini L (2020) GARS: genetic
algorithm for the identification of a robust subset of features in high‑
dimensional datasets. BMC Bioinform 21:54. https:// doi. org/ 10. 1186/
s12859‑ 020‑ 3400‑6

 84. sklearn‑genetic. https:// github. com/ manuel‑ calzo lari/ sklea rn‑ genet
ic? source= post_ page‑‑‑‑‑ 7dd7e 02dd2 37‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
Accessed 8 Feb 2024

 85. Goodarzi M, Dejaegher B, Heyden YV (2012) Feature selection methods
in QSAR studies. J AOAC Int 95:636–651. https:// doi. org/ 10. 5740/ jaoac
int. sge_ gooda rzi

 86. Chantar H, Tubishat M, Essgaer M, Mirjalili S (2021) Hybrid binary
dragonfly algorithm with simulated annealing for feature selection. SN
Comput Sci 2:295. https:// doi. org/ 10. 1007/ s42979‑ 021‑ 00687‑5

 87. Kuhn M, Johnson K (2019) Feature engineering and selection: a practi‑
cal approach for predictive models, 1st edn. CRC Press, Boca Raton

 88. Lin S‑W, Tseng T‑Y, Chou S‑Y, Chen S‑C (2008) A simulated‑annealing‑
based approach for simultaneous parameter optimization and feature
selection of back‑propagation networks. Expert Syst Appl 34:1491–
1499. https:// doi. org/ 10. 1016/j. eswa. 2007. 01. 014

 89. Leung K (2022) Feature selection with simulated annealing in python,
clearly explained. https:// towar dsdat ascie nce. com/ featu re‑ selec tion‑
with‑ simul ated‑ annea ling‑ in‑ python‑ clear ly‑ expla ined‑ 1808d b14f8 fa.
Accessed 19 May 2023

 90. Mansouri K, Taylor K, Auerbach S, Ferguson S, Frawley R, Hsieh J‑H,
Jahnke G, Kleinstreuer N, Mehta S, Moreira‑Filho JT, Parham F, Rider C,
Rooney AA, Wang A, Sutherland V (2024) Unlocking the Potential of
Clustering and Classification Approaches: Navigating Supervised and
Unsupervised Chemical Similarity. Environmental Health Perspectives
In Press: https:// doi. org/ 10. 1289/ ehp14 001

 91. Optuna. https:// github. com/ optuna/ optuna. Accessed 19 May 2023
 92. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: A Next‑

generation Hyperparameter Optimization Framework. KDD ’19. In:
Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery and data mining. https:// doi. org/ 10. 1145/ 32925
00. 33307 01

https://doi.org/10.1021/acs.jcim.2c00265
https://doi.org/10.1002/cmtd.202200005
https://doi.org/10.1002/cmtd.202200005
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.write.WriteVariablesNodeFactory
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.write.WriteVariablesNodeFactory
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.write.WriteVariablesNodeFactory
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.read.ReadVariablesNodeFactory
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.read.ReadVariablesNodeFactory
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest/com.vernalis.knime.flowvar.nodes.io.read.ReadVariablesNodeFactory
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1186/s13321-020-00460-5
https://doi.org/10.1002/9783527613106
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.rdkfingerprint.RDKitFingerprintNodeFactory
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.rdkfingerprint.RDKitFingerprintNodeFactory
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.rdkfingerprint.RDKitFingerprintNodeFactory
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.descriptorcalculation.DescriptorCalculationNodeFactory
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.descriptorcalculation.DescriptorCalculationNodeFactory
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest/org.rdkit.knime.nodes.descriptorcalculation.DescriptorCalculationNodeFactory
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1002/jcc.21707
https://github.com/ecrl/padelpy
https://github.com/ecrl/padelpy
https://dataprofessor.github.io/ws/bioinformatics/cheminformatics/padelpy/scikit-learn/qsar/qspr/2021/07/06/padelpy.html
https://dataprofessor.github.io/ws/bioinformatics/cheminformatics/padelpy/scikit-learn/qsar/qspr/2021/07/06/padelpy.html
https://dataprofessor.github.io/ws/bioinformatics/cheminformatics/padelpy/scikit-learn/qsar/qspr/2021/07/06/padelpy.html
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.normalize3.Normalizer3NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.normalize3.Normalizer3NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.normalize3.Normalizer3NodeFactory
https://doi.org/10.1186/s13321-024-00814-3
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.lowvarfilter2.LowVarFilter2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.lowvarfilter2.LowVarFilter2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.lowvarfilter2.LowVarFilter2NodeFactory
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.compute2.CorrelationCompute2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.compute2.CorrelationCompute2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.compute2.CorrelationCompute2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.filter.CorrelationFilterNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.filter.CorrelationFilterNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.preproc.correlation.filter.CorrelationFilterNodeFactory
https://doi.org/10.1038/s41598-017-02114-3
https://doi.org/10.1038/s41598-017-02114-3
https://doi.org/10.1080/17460441.2018.1542428
https://doi.org/10.1080/17460441.2018.1542428
https://doi.org/10.1016/j.drudis.2016.06.013
https://doi.org/10.2174/156802608786786552
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1186/1758-2946-5-9
https://doi.org/10.1186/1758-2946-5-9
https://doi.org/10.2174/092986709789352303
https://doi.org/10.2174/092986709789352303
https://doi.org/10.1021/ci010291a
https://doi.org/10.1186/s12859-020-3400-6
https://doi.org/10.1186/s12859-020-3400-6
https://github.com/manuel-calzolari/sklearn-genetic?source=post_page-----7dd7e02dd237--------------------------------
https://github.com/manuel-calzolari/sklearn-genetic?source=post_page-----7dd7e02dd237--------------------------------
https://doi.org/10.5740/jaoacint.sge_goodarzi
https://doi.org/10.5740/jaoacint.sge_goodarzi
https://doi.org/10.1007/s42979-021-00687-5
https://doi.org/10.1016/j.eswa.2007.01.014
https://towardsdatascience.com/feature-selection-with-simulated-annealing-in-python-clearly-explained-1808db14f8fa
https://towardsdatascience.com/feature-selection-with-simulated-annealing-in-python-clearly-explained-1808db14f8fa
https://doi.org/10.1289/ehp14001
https://github.com/optuna/optuna
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701

Page 26 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

 93. Ozaki Y, Tanigaki Y, Watanabe S, Onishi M (2020) Multiobjective tree‑
structured parzen estimator for computationally expensive optimiza‑
tion problems. In: Proceedings of the 2020 genetic and evolutionary
computation conference. pp. 533–541. https:// doi. org/ 10. 1145/ 33779
30. 33898 17

 94. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpreta‑
tion and validation of cluster analysis. J Comput Appl Math 20:53–65.
https:// doi. org/ 10. 1016/ 0377‑ 0427(87) 90125‑7

 95. Moise G, Zimek A, Kröger P, Kriegel H‑P, Sander J (2009) Subspace and
projected clustering: experimental evaluation and analysis. Knowl Inf
Syst 21:299. https:// doi. org/ 10. 1007/ s10115‑ 009‑ 0226‑y

 96. Yang Y, Sun H, Zhang Y, Zhang T, Gong J, Wei Y, Duan Y‑G, Shu M, Yang
Y, Wu D, Yu D (2021) Dimensionality reduction by UMAP reinforces
sample heterogeneity analysis in bulk transcriptomic data. Cell Rep
36:109442. https:// doi. org/ 10. 1016/j. celrep. 2021. 109442

 97. Lee K, Ayyasamy MV, Ji Y, Balachandran PV (2022) A comparison of
explainable artificial intelligence methods in the phase classification of
multi‑principal element alloys. Sci Rep‑uk 12:11591. https:// doi. org/ 10.
1038/ s41598‑ 022‑ 15618‑4

 98. Thrun MC, Ultsch A (2021) Using projection‑based clustering to find
distance‑ and density‑based clusters in high‑dimensional data. J Classif
38:280–312. https:// doi. org/ 10. 1007/ s00357‑ 020‑ 09373‑2

 99. MacQueen J (1967) Some methods for classification and analysis of
multivariate observations. University California Press, Berkeley

 100. Lloyd SP (1982) Least square quantization in PCM. IEEE Trans Inform
Theory. https:// doi. org/ 10. 1109/ TIT. 1982. 10564 89

 101. Pasrija P, Jha P, Upadhyaya P, MohdS K, Chopra M (2022) Machine learn‑
ing and artificial intelligence: a paradigm shift in big data‑driven drug
design and discovery. Curr Top Med Chem 22:1692–1727. https:// doi.
org/ 10. 2174/ 15680 26622 66622 07010 91339

 102. Chen W, Liu X, Zhang S, Chen S (2023) Artificial intelligence for drug
discovery: resources, methods, and applications. Mol Ther Nucleic Acids
31:691–702. https:// doi. org/ 10. 1016/j. omtn. 2023. 02. 019

 103. k‑means. https:// hub. knime. com/ knime/ exten sions/ org. knime. featu res.
base/ latest/ org. knime. base. node. mine. clust er. kmeans. Clust erNod eFact
ory2. Accessed 26 Dec 2023

 104. Kaufman L, Rousseeuw PJ (1990) Finding groups in data. Wiley,
Hoboken

 105. Park H‑S, Jun C‑H (2009) A simple and fast algorithm for K‑medoids
clustering. Expert Syst Appl 36:3336–3341. https:// doi. org/ 10. 1016/j.
eswa. 2008. 01. 039

 106. Odziomek K, Rybinska A, Puzyn T (2016) Unsupervised learning
methods and similarity analysis in chemoinformatics. Knowl Base Univ
Gdansk. https:// doi. org/ 10. 1007/ 978‑ 94‑ 007‑ 6169‑8_ 53‑1

 107. Mannor S, Jin X, Han J, Zhang X (2010) K‑medoids clustering. In: Sam‑
mut C, Webb GI (eds) Encyclopedia of machine learning. Springer, New
York, pp 564–565

 108. scikit‑learn‑extra. https:// github. com/ scikit‑ learn‑ contr ib/ scikit‑ learn‑
extra. Accessed 20 May 2023

 109. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika
32:241–254. https:// doi. org/ 10. 1007/ bf022 89588

 110. Eckhardt CM, Madjarova SJ, Williams RJ, Ollivier M, Karlsson J, Pareek
A, Nwachukwu BU (2023) Unsupervised machine learning methods
and emerging applications in healthcare. Knee Surg Sports Traumatol
Arthrosc 31:376–381. https:// doi. org/ 10. 1007/ s00167‑ 022‑ 07233‑7

 111. Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an
overview II. Wiley Interdiscip Rev Data Min Knowl Discov. https:// doi.
org/ 10. 1002/ widm. 1219

 112. Hierarchical cluster assigner. https:// hub. knime. com/ knime/ exten sions/
org. knime. featu res. js. views. labs/ latest/ org. knime. base. node. mine. clust
er. hiera rchic al. js. Hiera rchic alClu sterA ssign erFac tory. Accessed 26 Dec
2023

 113. Ester M, Kriegel H‑P, Sander J, Xu X (1996) A density‑based algorithm for
discovering clusters in large spatial databases with noise. In: Proceed‑
ings of 2nd International conference on knowledge discovery and data
mining (KDD‑96)

 114. Géron A (2019) Hands‑on machine learning with scikit‑learn, keras, and
tensorflow: concepts, tools, and techniques to build intelligent systems,
2nd edn. O’Reilly Media, Sebastopol

 115. Bindra K, Mishra A (2017) A detailed study of clustering algorithms.
In: Bindra K (ed) 6th international conference on reliability, infocom

technologies and optimization (trends and future directions) (ICRITO).
IEEE, Noida, pp 371–376. https:// doi. org/ 10. 1109/ icrito. 2017. 83424 54

 116. Campello RJGB, Moulavi D, Sander J (2013) Density‑based clustering
based on hierarchical density estimates. Lect Notes Comput Sci. https://
doi. org/ 10. 1007/ 978‑3‑ 642‑ 37456‑2_ 14

 117. Campello RJGB, Moulavi D, Zimek A, Sander J (2015) Hierarchical den‑
sity estimates for data clustering, visualization, and outlier detection.
ACM Trans Knowl Discov Data (TKDD) 10:1–51. https:// doi. org/ 10. 1145/
27333 81

 118. Stewart G, Al‑Khassaweneh M (2022) An Implementation of the HDB‑
SCAN* Clustering Algorithm. Appl Sci 12:2405. https:// doi. org/ 10. 3390/
app12 052405

 119. hdbscan. https:// github. com/ scikit‑ learn‑ contr ib/ hdbsc an. Accessed 19
May 2023

 120. McInnes L, Healy J, Astels S (2017) hdbscan: hierarchical density based
clustering. J Open Source Softw. 2:205. https:// doi. org/ 10. 21105/ joss.
00205

 121. Cooper A, Doyle O, Bourke A (2021) Supervised clustering for subgroup
discovery: an application to COVID‑19 symptomatology. In: Kamp M,
Koprinska I, Bibal A, Bouadi T, Frénay B, Galárraga L, Oramas J, Adilova L,
Krishnamurthy Y, Kang B, Largeron C, Lijffijt J, Viard T, Welke P, Ruocco M,
Aune E, Gallicchio C, Schiele G, Pernkopf F, Blott M, Fröning H, Schindler
G, Guidotti R, Monreale A, Rinzivillo S, Biecek P, Ntoutsi E, Pechenizkiy
M, Rosenhahn B, Buckley C, Cialfi D, Lanillos P, Ramstead M, Verbelen T,
Ferreira PM, Andresini G, Malerba D, Medeiros I, Fournier‑Viger P, Nawaz
MS, Ventura S, Sun M, Zhou M, Bitetta V, Bordino I, Ferretti A, Gullo F,
Ponti G, Severini L, Ribeiro R, Gama J, Gavaldà R, Cooper L, Ghazaleh N,
Richiardi J, Roqueiro D, Miranda DS, Sechidis K, Graça G (eds) Machine
learning and principles and practice of knowledge discovery in data‑
bases. Springer, Cham

 122. Lounkine E, Nigsch F, Jenkins JL, Glick M (2011) Activity‑aware cluster‑
ing of high throughput screening data and elucidation of orthogonal
structure‑activity relationships. J Chem Inf Model 51:3158–3168.
https:// doi. org/ 10. 1021/ ci200 4994

 123. Shapley LS (1953) A value for N‑person games. In: Kuhn HW, Tucker AW
(eds) Contributions to the theory of games. Princeton University Press,
Princeton

 124. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R,
Himmelfarb J, Bansal N, Lee S‑I (2020) From local explanations to global
understanding with explainable AI for trees. Nat Mach Intell 2:56–67.
https:// doi. org/ 10. 1038/ s42256‑ 019‑ 0138‑9

 125. shap. https:// github. com/ slund berg/ shap. Accessed 19 May 2023
 126. Carracedo‑Reboredo P, Liñares‑Blanco J, Rodríguez‑Fernández N,

Cedrón F, Novoa FJ, Carballal A, Maojo V, Pazos A, Fernandez‑Lozano C
(2021) A review on machine learning approaches and trends in drug
discovery. Comput Struct Biotechnol J 19:4538–4558. https:// doi. org/
10. 1016/j. csbj. 2021. 08. 011

 127. Podgorelec V, Kokol P, Stiglic B, Rozman I (2002) Decision trees: an
overview and their use in medicine. J Méd Syst 26:445–463. https:// doi.
org/ 10. 1023/a: 10164 09317 640

 128. Kingsford C, Salzberg SL (2008) What are decision trees? Nat Biotechnol
26:1011–1013. https:// doi. org/ 10. 1038/ nbt09 08‑ 1011

 129. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Light‑
GBM: a highly efficient gradient boosting decision tree. Adv Neural Inf
Process Syst 30:3147–3155

 130. Zhang J, Mucs D, Norinder U, Svensson F (2019) LightGBM: an effective
and scalable algorithm for prediction of chemical toxicity‑application to
the Tox21 and mutagenicity data sets. J Chem Inf Model 59:4150–4158.
https:// doi. org/ 10. 1021/ acs. jcim. 9b006 33

 131. Heikamp K, Bajorath J (2014) Support vector machines for drug discov‑
ery. Expert Opin Drug Discov 9:93–104. https:// doi. org/ 10. 1517/ 17460
441. 2014. 866943

 132. Cortes C, Vapnik V (1995) Support‑vector networks. Mach Learn
20:273–297. https:// doi. org/ 10. 1023/a: 10226 27411 411

 133. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans
Inf Theory 13:21–27. https:// doi. org/ 10. 1109/ tit. 1967. 10539 64

 134. Pérez‑Sianes J, Pérez‑Sánchez H, Díaz F (2018) Virtual screening meets
deep learning. Curr Comput‑aid Drug 15:6–28. https:// doi. org/ 10. 2174/
15734 09914 66618 10181 41602

 135. Carpenter KA, Huang X (2018) Machine learning‑based virtual screen‑
ing and its applications to Alzheimer’s drug discovery: a review. Curr

https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s10115-009-0226-y
https://doi.org/10.1016/j.celrep.2021.109442
https://doi.org/10.1038/s41598-022-15618-4
https://doi.org/10.1038/s41598-022-15618-4
https://doi.org/10.1007/s00357-020-09373-2
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.2174/1568026622666220701091339
https://doi.org/10.2174/1568026622666220701091339
https://doi.org/10.1016/j.omtn.2023.02.019
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.cluster.kmeans.ClusterNodeFactory2
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.cluster.kmeans.ClusterNodeFactory2
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.cluster.kmeans.ClusterNodeFactory2
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1007/978-94-007-6169-8_53-1
https://github.com/scikit-learn-contrib/scikit-learn-extra
https://github.com/scikit-learn-contrib/scikit-learn-extra
https://doi.org/10.1007/bf02289588
https://doi.org/10.1007/s00167-022-07233-7
https://doi.org/10.1002/widm.1219
https://doi.org/10.1002/widm.1219
https://hub.knime.com/knime/extensions/org.knime.features.js.views.labs/latest/org.knime.base.node.mine.cluster.hierarchical.js.HierarchicalClusterAssignerFactory
https://hub.knime.com/knime/extensions/org.knime.features.js.views.labs/latest/org.knime.base.node.mine.cluster.hierarchical.js.HierarchicalClusterAssignerFactory
https://hub.knime.com/knime/extensions/org.knime.features.js.views.labs/latest/org.knime.base.node.mine.cluster.hierarchical.js.HierarchicalClusterAssignerFactory
https://doi.org/10.1109/icrito.2017.8342454
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://doi.org/10.3390/app12052405
https://doi.org/10.3390/app12052405
https://github.com/scikit-learn-contrib/hdbscan
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.1021/ci2004994
https://doi.org/10.1038/s42256-019-0138-9
https://github.com/slundberg/shap
https://doi.org/10.1016/j.csbj.2021.08.011
https://doi.org/10.1016/j.csbj.2021.08.011
https://doi.org/10.1023/a:1016409317640
https://doi.org/10.1023/a:1016409317640
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1021/acs.jcim.9b00633
https://doi.org/10.1517/17460441.2014.866943
https://doi.org/10.1517/17460441.2014.866943
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.2174/1573409914666181018141602
https://doi.org/10.2174/1573409914666181018141602

Page 27 of 27Moreira‑Filho et al. Journal of Cheminformatics (2024) 16:101

Pharm Des 24:3347–3358. https:// doi. org/ 10. 2174/ 13816 12824 66618
06071 24038

 136. Bartosik A, Whittingham H (2021) Evaluating safety and toxicity. In:
Ashenden SK (ed) The era of artificial intelligence, machine learning,
and data science in the pharmaceutical industry. Elsevier, London

 137. Riniker S, Fechner N, Landrum GA (2013) Heterogeneous classifier
fusion for ligand‑based virtual screening: or, how decision making
by committee can be a good thing. J Chem Inf Model 53:2829–2836.
https:// doi. org/ 10. 1021/ ci400 466r

 138. Ritchie TJ, Ertl P, Lewis R (2011) The graphical representation of ADME‑
related molecule properties for medicinal chemists. Drug Discov Today
16:65–72. https:// doi. org/ 10. 1016/j. drudis. 2010. 11. 002

 139. Probst D, Reymond J‑L (2020) Visualization of very large high‑dimen‑
sional data sets as minimum spanning trees. J Cheminformatics 12:12.
https:// doi. org/ 10. 1186/ s13321‑ 020‑ 0416‑x

 140. Naveja JJ, Medina‑Franco JL (2019) Finding constellations in chemical
space through core analysis. Front Chem 7:510. https:// doi. org/ 10. 3389/
fchem. 2019. 00510

 141. Scatter plot. https:// hub. knime. com/ knime/ exten sions/ org. knime. featu
res. base. views/ latest/ org. knime. base. views. node. scatt erplot. Scatt erPlo
tNode Facto ry. Accessed 26 Dec 2023

 142. Waskom M (2021) seaborn: statistical data visualization. J Open Source
Softw. 6:3021. https:// doi. org/ 10. 21105/ joss. 03021

 143. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods
6:2812–2831. https:// doi. org/ 10. 1039/ c3ay4 1907j

 144. PCA. https:// hub. knime. com/ knime/ exten sions/ org. knime. featu res.
base/ latest/ org. knime. base. node. mine. trans forma tion. pca. perfo rm.
PCA2N odeFa ctory. Accessed 26 Dec 2023

 145. McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: Uniform Mani‑
fold Approximation and Projection. J Open Source Softw. https:// doi.
org/ 10. 21105/ joss. 00861

 146. umap. https:// github. com/ lmcin nes/ umap. Accessed 20 May 2023
 147. van der Maaten L, Hinton G (2008) Visualizing data using t‑SNE. J Mach

Learn Res 9:2579
 148. RDKit: Open‑source cheminformatics. https:// www. rdkit. org. Accessed

20 May 2023
 149. exmol. https:// github. com/ ur‑ white lab/ exmol. Accessed 16 Jul 2023
 150. Gandhi HA, White AD (2022) Explaining structure‑activity relationships

using locally faithful surrogate models. ChemRxiv. https:// doi. org/ 10.
26434/ chemr xiv‑ 2022‑ v5p6m‑ v2

 151. Lee BD (2018) Ten simple rules for documenting scientific software.
PLoS Comput Biol 14:e1006561. https:// doi. org/ 10. 1371/ journ al. pcbi.
10065 61

 152. Silva LB, Jimenez RC, Blomberg N, Oliveira JL (2017) General guidelines
for biomedical software development. F1000Research. 6:273. https://
doi. org/ 10. 12688/ f1000 resea rch. 10750.2

 153. KNIME KNIME base chemistry types and nodes. https:// hub. knime.
com/ epam‑ lsop/ exten sions/ com. epam. indigo. knime. featu re/ latest.
Accessed 19 May 2023

 154. KNIME Indigo KNIME integration. https:// hub. knime. com/ epam‑ lsop/
exten sions/ com. epam. indigo. knime. featu re/ latest. Accessed 19 May
2023

 155. KNIME RDKit nodes feature. https:// hub. knime. com/ manue lschw arze/
exten sions/ org. rdkit. knime. featu re/ latest. Accessed 19 May 2023

 156. KNIME KNIME python integration. https:// hub. knime. com/ knime/ exten
sions/ org. knime. featu res. pytho n3. scrip ting/ latest. Accessed 19 May
2023

 157. KNIME KNIME JavaScript views (labs). https:// hub. knime. com/ knime/
exten sions/ org. knime. featu res. js. views. labs/ latest. Accessed 19 May
2023

 158. KNIME Vernalis KNIME nodes. https:// hub. knime. com/ verna lis/ exten
sions/ com. verna lis. knime. featu re/ latest

 159. KNIME KNIME HTML/PDF writer. https:// hub. knime. com/ knime/ exten
sions/ org. knime. featu res. ext. birt/ latest. Accessed 19 May 2023

 160. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cour‑
napeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer
S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson
P, Gérard‑Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H,
Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature
585:357–362. https:// doi. org/ 10. 1038/ s41586‑ 020‑ 2649‑2

 161. mordred. https:// github. com/ mordr ed‑ descr iptor/ mordr ed. Accessed
19 May 2023

 162. LightGBM. https:// github. com/ micro soft/ Light GBM. Accessed 19 May
2023

 163. cairosvg. https:// github. com/ Kozea/ Cairo SVG. Accessed 20 May 2023
 164. ipython. https:// github. com/ ipyth on/ ipyth on. Accessed 20 May 2023
 165. Pillow. https:// github. com/ python‑ pillow/ Pillow/ tree/9. 4.x. Accessed 20

May 2023
 166. OpenAI OpenAI API. https:// platf orm. openai. com/ docs/ api‑ refer ence/

chat/ create. Accessed 16 Jul 2023
 167. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci

Eng 9:90–95. https:// doi. org/ 10. 1109/ mcse. 2007. 55
 168. Borba JVB, Alves VM, Braga RC, Korn DR, Overdahl K, Silva AC, Hall

SUS, Overdahl E, Kleinstreuer N, Strickland J, Allen D, Andrade CH,
Muratov EN, Tropsha A (2022) STopTox: an in silico alternative to animal
testing for acute systemic and topical toxicity. Environ Health Persp
130:027012. https:// doi. org/ 10. 1289/ ehp93 41

 169. Hajipour H, Bhattacharyya A, Staicu C‑A, Fritz M (2022) Machine learn‑
ing and principles and practice of knowledge discovery in databases.
In: Hajipour H, Bhattacharyya A, Staicu C‑A, Fritz M (eds) International
workshops of ECML PKDD 2021, virtual event, september 13–17, 2021,
proceedings, Part II Comm Com Inf Sci. Springer, Cham, pp 119–133.
https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 93733‑1_8

 170. Lovrić M, Đuričić T, Tran HTN, Hussain H, Lacić E, Rasmussen MA, Kern R
(2021) Should we embed in chemistry? A comparison of unsupervised
transfer learning with PCA, UMAP, and VAE on molecular fingerprints.
Pharm 14:758. https:// doi. org/ 10. 3390/ ph140 80758

 171. Blumenberg L, Ruggles KV (2020) Hypercluster: a flexible tool for paral‑
lelized unsupervised clustering optimization. BMC Bioinform 21:428.
https:// doi. org/ 10. 1186/ s12859‑ 020‑ 03774‑1

 172. Verma RP, Matthews EJ (2015) An in silico expert system for the identi‑
fication of eye irritants. SAR QSAR Environ Res 26:383–395. https:// doi.
org/ 10. 1080/ 10629 36x. 2015. 10395 78

 173. Kang Y, Jeong B, Lim D‑H, Lee D, Lim K‑M (2021) In silico prediction of
the full United Nations Globally Harmonized System eye irritation cat‑
egories of liquid chemicals by IATA‑like bottom‑up approach of random
forest method. J Toxicol Environ Health Part A 84:960–972. https:// doi.
org/ 10. 1080/ 15287 394. 2021. 19566 61

 174. Kar S, Roy K (2014) Quantification of contributions of molecular frag‑
ments for eye irritation of organic chemicals using QSAR study. Comput
Biol Med 48:102–108. https:// doi. org/ 10. 1016/j. compb iomed. 2014. 02.
014

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.2174/1381612824666180607124038
https://doi.org/10.2174/1381612824666180607124038
https://doi.org/10.1021/ci400466r
https://doi.org/10.1016/j.drudis.2010.11.002
https://doi.org/10.1186/s13321-020-0416-x
https://doi.org/10.3389/fchem.2019.00510
https://doi.org/10.3389/fchem.2019.00510
https://hub.knime.com/knime/extensions/org.knime.features.base.views/latest/org.knime.base.views.node.scatterplot.ScatterPlotNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base.views/latest/org.knime.base.views.node.scatterplot.ScatterPlotNodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base.views/latest/org.knime.base.views.node.scatterplot.ScatterPlotNodeFactory
https://doi.org/10.21105/joss.03021
https://doi.org/10.1039/c3ay41907j
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.transformation.pca.perform.PCA2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.transformation.pca.perform.PCA2NodeFactory
https://hub.knime.com/knime/extensions/org.knime.features.base/latest/org.knime.base.node.mine.transformation.pca.perform.PCA2NodeFactory
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://github.com/lmcinnes/umap
https://www.rdkit.org
https://github.com/ur-whitelab/exmol
https://doi.org/10.26434/chemrxiv-2022-v5p6m-v2
https://doi.org/10.26434/chemrxiv-2022-v5p6m-v2
https://doi.org/10.1371/journal.pcbi.1006561
https://doi.org/10.1371/journal.pcbi.1006561
https://doi.org/10.12688/f1000research.10750.2
https://doi.org/10.12688/f1000research.10750.2
https://hub.knime.com/epam-lsop/extensions/com.epam.indigo.knime.feature/latest
https://hub.knime.com/epam-lsop/extensions/com.epam.indigo.knime.feature/latest
https://hub.knime.com/epam-lsop/extensions/com.epam.indigo.knime.feature/latest
https://hub.knime.com/epam-lsop/extensions/com.epam.indigo.knime.feature/latest
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest
https://hub.knime.com/manuelschwarze/extensions/org.rdkit.knime.feature/latest
https://hub.knime.com/knime/extensions/org.knime.features.python3.scripting/latest
https://hub.knime.com/knime/extensions/org.knime.features.python3.scripting/latest
https://hub.knime.com/knime/extensions/org.knime.features.js.views.labs/latest
https://hub.knime.com/knime/extensions/org.knime.features.js.views.labs/latest
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest
https://hub.knime.com/vernalis/extensions/com.vernalis.knime.feature/latest
https://hub.knime.com/knime/extensions/org.knime.features.ext.birt/latest
https://hub.knime.com/knime/extensions/org.knime.features.ext.birt/latest
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/mordred-descriptor/mordred
https://github.com/microsoft/LightGBM
https://github.com/Kozea/CairoSVG
https://github.com/ipython/ipython
https://github.com/python-pillow/Pillow/tree/9.4.x
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1289/ehp9341
https://doi.org/10.1007/978-3-030-93733-1_8
https://doi.org/10.3390/ph14080758
https://doi.org/10.1186/s12859-020-03774-1
https://doi.org/10.1080/1062936x.2015.1039578
https://doi.org/10.1080/1062936x.2015.1039578
https://doi.org/10.1080/15287394.2021.1956661
https://doi.org/10.1080/15287394.2021.1956661
https://doi.org/10.1016/j.compbiomed.2014.02.014
https://doi.org/10.1016/j.compbiomed.2014.02.014

	Democratizing cheminformatics: interpretable chemical grouping using an automated KNIME workflow
	Abstract
	Introduction
	Materials and methods
	Overview of the chemical grouping workflow
	Workflow input
	Molecular descriptors
	Dimensionality reduction
	Supervised feature selection
	Chemical grouping
	Hyperparameter tuning
	Unsupervised clustering
	Supervised classification

	Data visualization
	Interpretation
	Report and download of results
	Documentation and guides
	Computational tools
	Case study

	Results and discussion
	Workflow overview and execution
	Input and exploratory analysis
	Chemical grouping
	Unsupervised clustering
	Supervised classification

	Report and results download

	Conclusion
	References

