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Abstract 

In recent years computational methods for molecular modeling have become a prime focus of computational biol-
ogy and cheminformatics. Many dedicated systems exist for modeling specific classes of molecules such as proteins 
or small drug-like ligands. These are often heavily tailored toward the automated generation of molecular struc-
tures based on some meta-input by the user and are not intended for expert-driven structure assembly. Dedicated 
manual or semi-automated assembly software tools exist for a variety of molecule classes but are limited in the scope 
of structures they can produce. In this work we present BuildAMol, a highly flexible and extendable, general-purpose 
fragment-based molecular assembly toolkit. Written in Python and featuring a well-documented, user-friendly API, 
BuildAMol empowers researchers with a framework for detailed manual or semi-automated construction of diverse 
molecular models. Unlike specialized software, BuildAMol caters to a broad range of applications. We demonstrate 
its versatility across various use cases, encompassing generating metal complexes or the modeling of dendrimers 
or integrated into a drug discovery pipeline. By providing a robust foundation for expert-driven model building, Buil-
dAMol holds promise as a valuable tool for the continuous integration and advancement of powerful deep learning 
techniques.

Scientific contribution
BuildAMol introduces a cutting-edge framework for molecular modeling that seamlessly blends versatility with user-
friendly accessibility. This innovative toolkit integrates modeling, modification, optimization, and visualization func-
tions within a unified API, and facilitates collaboration with other cheminformatics libraries. BuildAMol, with its 
shallow learning curve, serves as a versatile tool for various molecular applications while also laying the groundwork 
for the development of specialized software tools, contributing to the progress of molecular research and innovation.
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Introduction
The field of computational modeling for molecular struc-
tures has undergone a period of rapid expansion, driven 
by its growing importance in material sciences, pharma-
cology, and life sciences. This surge has led to the devel-
opment of a diverse range of software solutions aimed at 

tackling various challenges in these fields. Furthermore, 
the continuous integration and advancement of powerful 
deep learning techniques within this domain promises 
to significantly enhance the impact of in silico structural 
modeling on future research applications.

Simplified molecular-input line-entry system (SMILES) 
[1] descriptors are a widely used and dominant method 
for generating three dimensional (3D) atomic structures 
of molecules. Their popularity stems from their efficiency 
and text-based format, making them well-suited for vari-
ous applications. Consequently, many deep learning-
based modeling tools heavily rely on SMILES strings as 
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both input and output formats. Software libraries like 
RDKit [2] and Openbabel [3] effectively process SMILES 
to build molecular structures. However, this preva-
lent “all-at-once” approach, where the entire structure 
is constructed from a single SMILES string, presents 
limitations. For complex molecules like polymers, it can 
become computationally expensive. Additionally, limited 
user control over the final structure restricts its adapta-
tion to specific research questions.

Fragment-based methods offer an alternative, by 
assembling larger structures incrementally from smaller, 
pre-defined components. This approach has gained 
traction in automated de novo molecule design frame-
works like FRAME [4] and MolSLEPA [5], which focus 
on ligand design and material sciences, respectively. 
Beyond automated frameworks, fragment-based assem-
bly empowers expert-driven, manual molecule creation. 
Users have control at each fragment addition, ensuring 
the resulting structure aligns with specific requirements 
at any intermediate stage of the building process. This 
approach not only be useful for manual design but also 
for refining predictions from deep learning models by 
providing more control over the final structure.

While popular libraries like RDKit can handle frag-
ment assembly, they lack dedicated workflows for this 
purpose. Some libraries are adept at the assembly of new 
molecules from smaller components, such as the widely 
used Python-based Stk [6] or the Julia-based Molecular-
Graph.jl [7]. Especially Stk stands as a prominent exam-
ple as its primary objective is to offer a comprehensive 
API for fragment-based assembly. However, its focus lies 
in material sciences, offering a powerful and generaliz-
able but still somewhat domain-specific interface. Other 
Python libraries like mBuild [8] cater to specific software 
ecosystems like MoSDeF [9] for molecular simulations. 
While tools like Pygen-Structures [10] and Glycosyla-
tor [11] excel in constructing molecules from special-
ized data formats (CHARMM files) or specific molecule 
classes (glycans), respectively. Although these tools pro-
vide valuable functions, they are typically specialized and 
not easily adaptable for tasks beyond their original scope.

Here, we introduce BuildAMol, a general-purpose 
Python library designed for fragment-based molecular 
modeling. BuildAMol is designed to work on consumer-
grade machines and can be used to manually and semi-
automatically assemble models for diverse and complex 
molecular structures. BuildAMol is not restricted to 
specific molecule classes or limited by pre-defined 
chemical reasoning but offers complete user freedom in 
assembling fragments, akin to the familiar analog mol-
ecule building kits used by chemists. Furthermore, Buil-
dAMol’s functionalities extend beyond de novo assembly. 
It enables modification and optimization of existing 

structures, conformational sampling, generation of cus-
tomizable and interactive visualizations, and seamless 
integration with other cheminformatics libraries. This 
comprehensive suite of tools fosters a streamlined work-
flow for diverse applications. BuildAMol prioritizes user-
friendliness through a streamlined interface, minimizing 
manual input while maximizing user control over the 
assembly process.

Implementation
BuildAMol is designed for modularity and ease of use. 
The six primary sub-packages of BuildAMol are: core, 
graphs, optimizers, resources, structural, and utils, that 
are automatically loaded upon importing the main Buil-
dAMol library. An optional seventh sub-package, (exten-
sions), provides specialized functionalities and needs to 
be imported separately (Fig. 1).

Software overview
Core
The core sub-package of BuildAMol provides the essen-
tial framework for constructing molecular structures. 
It provides foundational classes representing the build-
ing blocks of molecules (Atom and Residue), as well as 
higher-level classes (Molecule and Linkage) to handle 
the assembly process. BuildAMol leverages a hierarchi-
cal data structure, similar to the one used by Biopython 
[13]. In this approach, complex molecules are organized 
as a series of nested building blocks. For instance, indi-
vidual Atom objects are grouped into a Residue object 
representing a molecular fragment. This hierarchical 
organization allows for efficient access and manipulation 
of specific parts within complex molecules, a significant 
advantage for fragment-based assembly workflows.

BuildAMol simplifies user interaction by channeling 
most operations through the Molecule class. This class 
acts as a central hub, providing methods for users to 
perform various actions on molecular structures. For 
convenience, some frequently used functions, like read-
ing PDB files or connecting fragments, are available as 
both standalone functions and methods within the Mol-
ecule class. The key distinction lies in their behavior: 
standalone functions typically create a new copy of the 
molecule, whereas methods directly modify the existing 
molecule object. However, both functionalities can be 
customized using optional arguments.

The Linkage class plays a crucial role in fragment 
assembly workflows. It defines how atoms from differ-
ent molecules should be connected during the building 
process. Additionally, the package offers convenient top-
level functions like acetylate or carboxylate to add spe-
cific functional groups to a molecule at defined positions.
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Furthermore, BuildAMol introduces a unique oper-
ator-based syntax called “Molecular Arithmetics.” This 
user-friendly syntax allows intuitive molecule assembly: 
addition (+) facilitates combining fragments, subtraction 
(-) enables the removal of substructures like atoms or res-
idues, and multiplication (*) allows for the construction 
of regular polymers, offering a valuable short-hand nota-
tion to accelerate the modeling for users who do not wish 
or require more elaborate customization in their assem-
bly workflow.

Graphs
BuildAMol implements molecular connectivity graphs 
using NetworkX [14]. Graphs are available at the atom 
level and as an abstraction at the residue level, primarily 
for visualization or low-resolution optimization. Beyond 
storing a molecule’s connectivity, these graphs serve 
as inputs for BuildAMol’s in-house optimization suite 
(Optimizers sub-package). Users typically will not inter-
act directly with the graphs package. Instead, they can 
work with graph objects exported from the Molecule class 
using methods such as Molecule.get_atom_graph or Mol-
ecule.get_residue_graph for conformational optimization.

Optimizers
BuildAMol provides several methods to perform con-
formational optimization on a target molecule. If the 
RDKit library is available, BuildAMol can leverage its 
forcefield-based optimization to automatically obtain 
an energy-minimized conformation. BuildAMol pro-
vides its own customizable optimization environment 
built using OpenAI Gym [15]. Various algorithms imple-
mented in NumPy [16], including genetic algorithms, 
particle swarm optimization, simulated annealing, and 
Scipy-based stochastic gradient descent are available. In 
addition to the  default setup provided by the Molecule.
optimize method and the top-level optimize, the user can 
create custom optimization environments.

Resources
The built-in reference data for chemical compounds 
relevant to fragment-based assembly are stored in the 
Resources sub-package. This sub-package provides 
numerous functions to query compounds, load existing 
data or read new data from files, add molecules to the ref-
erence dataset, as well as save datasets to files. The default 
reference data is a subset of the Protein-Data-Bank’s 

Fig. 1 Software overview. A Graphical summary of BuildAMol, its seven packages, and their functional interplay. B Integrations with external 
libraries and supported file formats. C Overview of built-in reference data. D Overview of supported molecular visualizations. All panels show 
the small alternative reading frame peptide SPRWWPTCL of Intestinal carboxyl esterase found in Renal cell carcinoma [12]
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Component Dictionary (PDBCD), containing a cho-
sen selection of 7630 molecules out of the nearly 40,000 
available. To facilitate efficient access, the reference data 
is further categorized into five individually loadable data-
sets: small_molecules, amino_acids, nucleotides, sugars, 
and lipids. Additionally, users can load their own cus-
tom datasets in the mmCIF format for further flexibil-
ity. Beyond fragment data, we also included a selection 
of molecular linkages derived from CHARMM topology 
files (Patches). Custom linkage defined in the CHARMM 
topology format can also be imported into the reference 
dataset. Figure  1C provides a graphical summary of the 
built-in reference data. For user convenience, all core 
functionalities of the Resources sub-package are auto-
matically imported upon loading the main BuildAMol 
library. This eliminates the need for manual interaction 
with the sub-package itself in most use cases.

Structural
The Structural sub-package forms the core of Buil-
dAMol’s structural manipulation capabilities. It 
encompasses functionalities related to atom-level manip-
ulations, including algorithms used to compute atomic 
placements during fragment assembly. This sub-package 
provides a rich set of functions and data classes for inter-
nal use, such as fundamental mathematical operations on 
vectors and matrices, explicit computations on molecular 
structures, and inference tasks like adding missing hydro-
gen atoms. The Structural sub-package serves as a foun-
dation for most other BuildAMol functionalities. Many 
of its functionalities are also directly accessible through 
methods of the Molecule class. Therefore, in most use 
cases, users will not need to interact directly with the 
Structural sub-package itself.

Utils
The Utils sub-package provides a collection of utility 
functions and helpers that support BuildAMol’s internal 
operations. This includes managing optional dependen-
cies, general constants, and the core functionalities for 
molecular visualization.

BuildAMol’s built-in visualization leverages Plotly [17] 
to generate interactive 3D representations of molecular 
structures. These visualizations can be customized with 
points, lines, annotations, and hover data to highlight 
specific features or regions of interest. While Plotly is 
the default option, BuildAMol offers additional visualiza-
tion support using RDKit (2D only), Py3DMol [18], and 
NGLView [19], provided they are installed (Fig. 1D). All 
visualization functionalities are conveniently accessible 
through methods of the Molecule class, minimizing the 
need for direct interaction with the Utils sub-package 
itself.

Extensions
The Extensions sub-package serves as an open hub for 
expanding BuildAMol’s functionalities. It currently pro-
vides dedicated implementations for specific modeling 
problems. Currently, we implemented packages to gen-
erate linear and cyclic polycarbons, nanotubes, metal 
complexes, rotaxanes, glycans, small peptides, fatty acids, 
mono-, di-, and triacylglycerols, as well as phospho- and 
sphingolipids.

Connecting molecules
BuildAMol leverages an atom-substitution strategy to 
connect molecular fragments, enabling the direct spa-
tial positioning of one molecule relative to another. This 
approach involves designating a set of four atoms, two 
from each fragment. A rigid body transformation is then 
employed to precisely align the fragments by superim-
posing two atoms from one fragment onto their counter-
parts in the other fragment. This ensures proper spatial 
arrangement for bonding. Subsequently, a new bond is 
formed between a designated atom from each fragment, 
while the corresponding atoms used for alignment are 
removed. This method ensures the resulting molecule 
has realistic bond lengths and angles, provided both frag-
ment molecules are chemically sound.

While BuildAMol is able to generate a wide variety 
of molecular structures, its atom-substitution strategy 
introduces limitations for certain reaction types. Since it 
requires an atomic “leaving group” for substitution, Buil-
dAMol cannot directly simulate reactions that do not 
involve atom removal, such as the reduction of double 
bonds. Additionally, the system is primarily designed to 
create linear or branched structures. Although optimiza-
tion techniques can enable BuildAMol to generate cyclic 
molecules, it is not the most efficient approach for this 
specific task.

Two modes of fragment assembly
Superimposing fragments based on a single reference 
bond offers a fast and convenient alignment method. 
However, with only two points of reference, the relative 
orientation of the fragments remains undefined, poten-
tially leading to sub-optimal conformations. BuildA-
Mol addresses this issue by providing two options. The 
first approach requires defining a detailed Linkage. This 
linkage specifies the internal coordinates, such as bond 
lengths, angles, and dihedrals, for the atoms surround-
ing the newly formed bond.  This additional geometric 
information allows BuildAMol to place the fragment 
precisely in the desired orientation. However, defining 
such detailed geometry might not always be feasible or 
necessary. Therefore, by default, BuildAMol will perform 
a small-scale optimization around the new bond in order 
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to rotate the incoming fragment into a chemically sound 
orientation.

In practice, the mode of assembly is automatically 
determined by BuildAMol behind the scenes. To connect 
molecules in BuildAMol the user may use the Molecule.
attach method or the top-level connect function. Alter-
natively, the user may use Molecular Arithmetics to “add” 
molecules together using the + operator. A more detailed 
description of the assembly modes is provided in the sup-
plementary materials.

Chemical reactions
While BuildAMol was not designed to simulate true 
chemical reactions, it offers functionalities to achieve 
similar outcomes for specific reaction types. This is 
achieved by a user-extensible library of functional 
groups. When reacting two fragments, functional groups 
automatically infer the binder and deleter atoms needed 
to link both fragments. Therefore, substitution reactions 
can be imitated to a certain extent, by using either the 
Molecule.react_with method or top-level react function 
or the + operator. It is important to note that due to its 
core principle of atom substitution, BuildAMol currently 
cannot handle addition reactions, where a new bond is 
formed without the removal of existing atoms.

The optimization suite
Conformational optimization
BuildAMol implements a torsional optimization scheme 
to improve molecular conformations. By rotating a spe-
cific part of the molecule around a chosen bond’s axis, 
a new conformation is generated. This approach inher-
ently avoids introducing invalid bond lengths or angles, 
assuming the initial structure is valid. Also, compared to 
traditional “translational” optimization, this “torsional” 
approach typically explores a smaller search space. This 
is because the number of bonds in a molecule is usually 
less than, and can never exceed, the number of atoms. 
Additionally, the search space can be further reduced 
by strategically subsetting the bonds considered during 
optimization.

We implemented a basic OpenAI Gym environment 
named the Rotatron that accepts a molecular graph 
(either at the atom or residue level) and an optional list 
of rotatable edges to optimize. If not provided, rotat-
able edges are inferred directly  from the graph. Using 
the Rotatron as a parent class, we implemented three 
optimization environments that use different heuristics 
to evaluate a given conformation. (1) The DistanceRo-
tatron, which serves as the default optimization envi-
ronment in BuildAMol. It aims to maximize pairwise 
distances between graph nodes in order to obtain a con-
formation with maximal spatial occupancy. Since the 

heuristic computes distances between pairs of nodes, its 
computational load can be heavy for large input graphs. 
To address this, we developed (2) the OverlapRotatron. 
This environment models all nodes between two rotat-
able edges, a so-called “rotation unit”, using a Gaussian 
Mixture Model. The environment’s heuristic is set toward 
minimizing the overlap between all Gaussians in order to 
achieve a conformation with maximal spatial occupancy. 
Both the DistanceRotatron and OverlapRotatron strictly 
perform “unfolding” operations and are not suited for 
optimizing molecules with prominent non-covalent 
interactions such as Hydrogen bonds. To account for 
cases where such purely geometric considerations may 
not be sufficient for optimization, we also developed (3) 
the ForceFieldRotatron. This environment uses RDKit’s 
Merck Molecular Force Field (MMFF) to compute the 
molecular energy of a particular conformation, which 
directly serves as the optimization metric.

Circularization
At its core, BuildAMol was designed to create linear or 
branched molecules rather than circular structures. 
To create circular molecules, BuildAMol provides an 
extended version of the Rotatron, named the Circula-
tron. This environment works on a linear molecule graph 
alongside instructions on ultimately circularizing the 
structure. The Circulatron then uses one of the three 
above-mentioned environments to keep track of the 
quality of generated conformations while trying to super-
impose binder and deleter atoms that must be provided 
during initialization.

Spatial optimization
BuildAMol can also be used to construct multi-molecule 
systems that require a molecule’s specific placement and 
orientation in three-dimensional space. While methods 
such as Molecule.move_to, Molecule.rotate, or Molecule.
align_to are designed to facilitate the manual arrange-
ment of a molecule in space, it can be difficult for a user 
to identify the right location and orientation a priori. 
Thus, to facilitate the placement of molecules in a par-
ticular system, we developed an optimization environ-
ment called the Translatron. This environment optimizes 
a translation and rotation vector along all three pri-
mary spatial axes, which are applied to the entire mol-
ecule. Consequently, this environment will not alter the 
molecule’s conformation but only its global placement 
and orientation. To guide the optimization process, the 
environment requires the user to provide a constraint 
function that returns a metric the environment tries to 
minimize. Thus, the user must define a suitable heuristic 
function that describes the placement problem they want 
to solve.
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User‑guided optimization
While the three primary conformational optimization 
environments employ a fixed heuristic that is  not cus-
tomizable by the user, situations like those encountered 
in the Circulatron may necessitate special considerations 
during optimization. To address this, we introduced a 
more versatile ConstraintRotatron class. This class acts as 
a wrapper, utilizing one of the three main environments 
to assess the created conformations. It also requires a 
user-provided constraint function to enhance the heu-
ristic as per score = eval(s)+ constraint(s) , where eval is 
the evaluation function of any optimization environment 
and s denotes the current state that is evaluated. In this 
way, users may direct the optimization process by their 
specific needs.

Optimization algorithms
We implemented several classical optimization algo-
rithms directly in BuildAMol, including a genetic algo-
rithm (GA), a global-best particle swarm optimization 
(PSO), and simulated annealing. Additionally, molecules 
can be forwarded directly to SciPy’s minimize optimiza-
tion suite, where stochastic gradient descent (SGD) is 
used by default, though any algorithm available within 
the suite can be utilized.

Performance enhancements
Numba [20] is a Just-In-Time Compiler (JIT) to improve 
the runtime efficiency of Python code and primarily 
works with Numpy. We implemented several functions 
of the optimization environment setup and optimization 
algorithms as standard Numpy and Numba versions to 
allow for a greater speed-up. BuildAMol also offers par-
allel computing using Python’s built-in multiprocessing 
library to enhance performance for certain functions.

Results
Showcase of example molecules
To evaluate the performance of BuildAMol, we gener-
ated three different benchmark. We measured the runt-
ime after imports as well as the number of lines of code. 
The lines of code were counted after formatting with the 
Black formatter [21] and include import-lines but typi-
cally exclude intermediary visualizations added purely 
for clarity in the tutorial code. The code for all exam-
ples is available in the BuildAMol documentation on 
ReadTheDocs.

To demonstrate BuildAMol’s capability of building 
a wide range of molecules with concise code, we con-
structed several structures from various molecular 
classes and sizes (Fig. 2). This included a small rotaxane 
[22], a glycan, a circular poly-Histidine, and two den-
drimers [23, 24].

The rotaxane was built using three fragments for 
the axle and one single fragment for the ring. To align 
the ring around the axle molecule, we wrote a Rotax-
aneBuilder class, which is available as part of the Exten-
sions. The complete example comprises 28 lines of code.

For the glycan model, all necessary fragments and link-
ages are available in the built-in reference dataset, and 
the complete example comprises 11 lines of code.

The poly-histidine was initially created as a linear pep-
tide, which was then pseudo-circularized by connecting 
the first and last residues. This unrealistic conformation 
was optimized using RDKit’s optimization suite to obtain 
the final circular structure. The code comprises 8 lines of 
code.

The polyphenylene dendrimer was modeled using only 
a single fragment molecule (benzene) and required 20 
lines of code.

Finally, the open-resorcinarene dendrimer was built 
from “inside” to “outside”, by incrementally attaching new 
fragments to multiple residues and optimizing structural 
intermediaries. The final code comprises 43 lines.

Comparing to Stk
To evaluate BuildAMol’s performance and capabili-
ties, we compared it to the Stk library, the closest exist-
ing software for molecular construction. We focused on 
five diverse examples from the Stk documentation with 
publicly available source code (Fig.  3). These examples 
encompassed a wide range of molecular structures: (1) 
an aminated cycloheptane ring, (2) a macrocycle of buty-
lamine molecules, (3) a metal complex, (4) a linear poly-
mer, and (5) a simple rotaxane with three cycles around a 
linear axle.

Our evaluation included a comparison of code concise-
ness and runtime performance between BuildAMol and 
Stk. The hardware used for this comparison was an octa-
core Intel Core i9 processor with 2.3 GHz clock speed 
and 32 GB of RAM.

In every instance, using BuildAMol required fewer 
lines of code to accomplish identical molecular con-
struction, typically resulting in a 50% decrease compared 
to Stk code (Fig.  3, upper bar chart). While BuildAMol 
demonstrated faster execution times in examples 1, 2, 
and 4 (Fig. 3, lower bar chart), for example 5 (a rotaxane), 
the execution time was comparable for both. The only 
example where Stk clearly outperformed BuildAMol was 
example 3, the metal complex. This can be attributed to 
BuildAMol’s sequential optimizations for ligand place-
ment around the metal center. This approach is compu-
tationally expensive and can potentially lead to unstable 
structures. In contrast, Stk utilizes a dedicated geomet-
ric approach for metal complex generation, resulting in 
faster and more stable performance. It is important to 
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note, however, that the Stk-generated metal complex 
exhibited misalignment in half of its Nitrogen atoms.

Since the Stk core library does not consider the 
chemical validity of the generated structures and relies 
on the external library Stko for structure optimization 
Stko, we compared BuildAMol’s outputs to both the 

raw and optimized structures from Stk or Stk+Stko. 
In each case we optimized Stk-raw structures using 
Stko’s UFF Force Field implementation. In most cases 
Stk+Stko structure outputs were on par with those 
of BuildAMol. In case of the metal complex (3) the 
Nitrogen atoms were properly aligned but at the cost 

Fig. 2 Example molecules. A A small rotaxane. B The glycan Man(a1-6)Man(a1-6)[Man(a1-3)]b-Man(b1-4)GlNAc(b1-4)GlNAc. C A circular peptide 
of 20 Histidines. D A Polyphenylene dendrimer. E An open-resorcinarene dendrimer
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of bond distortions in the ligands. In the case of the 
rotaxane (5), after optimization with Stko, the axle 
molecule’s distorted bonds were fixed, but the cycles 
were colliding with the main axle.

Although BuildAMol is capable of generating mod-
els for all molecule classes supported by Stk, including 
caged structures and macro-frameworks, it is impor-
tant to note that, currently, BuildAMol does not incor-
porate specific methods tailored toward modeling 
these structures.

Benchmarking optimization
We evaluated the performance of different optimiza-
tion environments on a highly branched dendrimer, 
composed of 657 atoms in total (Fig. 4). We optimized 
the atom and residue graphs on a random subset of 
15 bonds using each optimization environment and 
global-best particle swarm optimization. We performed 
20 parallel optimizations in each case and repeated 
the entire workflow 20 times, resulting in a total of 

Fig. 3 Comparing to Stk. The bar charts show the lines of code and total computation times required to model each of the five test molecules. 
Output structures are shown for all cases in a side-by-side comparison
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Fig. 4 Benchmarking optimization. A A graphical summary of the benchmarking workflow. We optimized the AtomGraph and ResidueGraph 
of the input molecule 20 times in parallel with PSO using all three optimization environments, respectively. All optimizations were done on default 
settings. B  The number of clashes in the final conformations are shown as mode (upper) and mean + standard deviation (lower). C A more detailed 
view of the distributions of clashes in final conformations split by graph and environment. D The total measured computation times (mean + 
standard deviation) for environment setup and optimization. The code was run on an octa-core Intel Core i9 processor with 2.3GHz and 32 Gigabyte 
of RAM. E The test molecule used for comparison between BuildAMol, Ginger, and Frog2. The 3D view shows the UFF-minimized conformation. F 
Upper bar chart: UFF-based molecular energy of generated conformers. A black dashed line denotes the energy of the UFF-minimized conformer. 
Lower bar chart: RMSD of generated conformers compared to the UFF-minimized conformation. Shown is the mean + standard deviation. G Visual 
overlay of all generated conformers. The coloring matches the bar charts in F 
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400 generated conformations for each combination of 
graph and environment (Fig. 4A).

Our results indicate that, even without hyperparam-
eter tuning of the environments, BuildAMol produced 
clash-free conformations reliably in almost all cases. 
The mode of clashes in optimized conformations was 
zero for all combinations of graph and environment 
except for the  ResidueGraph+ForceFieldRotatron and 
ResidueGraph+OverlapRotatron (Fig.  4B). Inspection 
of the distributions of clashes in the final conforma-
tions shows that the AtomGraph+DistanceRotatron and 
AtomGraph+ForceFieldRotatron markedly tend toward 
producing clash-free structures, while any combination 
with the OverlapRotatron yields poorer results due to the 
greater structural abstraction (Fig. 4C).

Noticeably poor performance is exhibited by theResidu
eGraph+ForceFieldRotatron, where the worst conforma-
tion comprises 40 clashes.This lack of performance can 
be explained by the graph input. While the environment 
computes molecular energy, which should be a highly 
accurate metric for conformer evaluation, the input resi-
due graph is not a valid chemical structure and, therefore, 
its molecular energy is a meaningless metric to optimize. 
Hence, we strongly discourage users from optimizing 
structures in this way.

While the DistanceRotatron showed the most consist-
ent behavior, it was also by far the slowest environment 
to compute. Both the OverlapRotatron and ForceFieldRo-
tatron were roughly on par in terms of computation time 
(Fig. 4D).

We also evaluated BuildAMol’s conformer genera-
tion capacities on a small drug-like molecule of 49 atoms 
(Fig. 4E). We generated 50 conformers with default opti-
mization settings using the DistanceRotatron and auto-
matic edge selection. For comparison, we generated an 
equivalent set of conformers using Ginger [25] and Frog2 
[26]. Ginger uses a generative deep learning framework 
paired with a force-field minimization, while Frog2 uti-
lizes a Monte Carlo sampling mechanism similar to 
BuildAMol.

We evaluated the generated conformers by comput-
ing their molecular energy with RDKit’s Universal Force 
Field (UFF). Additionally, we determined the atomic Root 
Mean Square Deviation (RMSD) between each generated 
conformer and the molecule’s UFF-minimized structure.

Since both BuildAMol and Frog2 employ a tor-
sional optimization scheme, their performances were 
comparable. The generated conformations exhibited 
approximately double the energy of the UFF-mini-
mized structure (Fig. 4F, upper bar chart). Since Ginger 
employs an energy minimization step, the generated 
conformers showed a lower energy level, similar to the 
UFF-minimized one. However, all three tools produced 

conformers with comparable RMSD values (Fig. 4F, lower 
bar chart). Visual inspection showed that Frog2 pro-
duced many similar conformers resulting in a clustered 
appearance (Fig. 4G), while both BuildAMol and Ginger 
showed greater diversity in the produced conformations. 
As expected, Ginger’s conformers closely resembled the 
UFF-minimized structure, while BuildAMol’s conform-
ers tended to be elongated due to the DistanceRotatron 
optimization.

While BuildAMol demonstrated comparable perfor-
mance to other conformer generation tools in our tests, 
the use of dedicated software remains advantageous for 
specific applications. For instance, small drug-like mol-
ecules can benefit from a wider range of specialized 
options. Moreover, BuildAMol’s current limitations pre-
clude its effective application to macrocyclic molecules. 
In such cases, tools like OpenEye’s OMEGA [27] are 
recommended.

Extended use cases
While BuildAMol’s core functionality is the generation 
of molecular models from smaller fragments, we also 
explored more exotic use cases that go beyond “simple” 
fragment-based molecular assembly. Here, we present 
three different examples.

BuildAMol was primarily intended for solvated organic 
molecules that have conformational freedom. As such, 
modeling pseudo-crystalline structures was not our pri-
mary objective, especially in light of Stk which is able to 
handle such structures well. Nevertheless, we demon-
strate that geometrically regular structures can be easily 
created using BuildAMol by employing methods such 
as align_to, move, and merge instead of attach which is 
conventionally used to assemble fragments. Here we 
demonstrate an example metal organic framework with 
a pillard paddlewheel structure [28] which we modeled 
from a metal complex fragment and benzene (Fig.  5A). 
The metal complex was generated with Stk.

In a second example, we used BuildAMol’s parallel 
optimization capacities to perform conformational sam-
pling. We repeatedly selected a random subset of bonds 
within the target molecule and performed independent 
optimizations on them. Figure 5B shows an overlay of 50 
thus sampled partial conformations.

Finally, in the third case we created a simple automated 
protein-ligand design pipeline using BuildAMol. To that 
end, we prepared a small library of some 200 fragments 
of small organic molecules. We then developed a class 
to assemble fragments based on instructions encoded 
numerically in Numpy arrays. The assembled molecules 
were then passed to the software library dockstring [29] 
to generate a docking score. For our example case, we 
chose the dopamine D2 receptor (Uniprot ID F8VUV1), 
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which is bound by the drug Risperidone. Our “pipe-
line’s” main function would generate a molecule from a 
Numpy array and return a docking score for use with an 
optimization algorithm. For the example, we used Scipy’s 
Nelder-Mead algorithm which we ran for five iterations 

only. We repeated the test three times. Interestingly, our 
simple pipeline was already able to generate molecules 
that bind in the same pocket as Risperidone (Fig.  5C, 
lower left panel). Moreover, our best prediction (the blue 
ligand in Fig. 5C, lower left panel) showed some features 

Fig. 5 Extended use cases. A A metal-organic framework constructed from benzene and a metal complex. B Conformational sampling 
of a molecular compound. C Protein-ligand design. The upper panel shows the design workflow. Steps involving BuildAMol are highlighted 
with the BuildAMol logo. Lower left panel: our designed ligand (light blue) and the true ligand Risperidone (sand-colored) are shown overlaid 
on the dopamine D2 receptor. Lower right panel: modified versions of our ligand docked on the same protein
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that were structurally similar to Riesperidone and pro-
duced a docking score of − 11.6, which is in a similar 
range to Risperidone’s own docking score of − 11.9. As 
a proof of concept to demonstrate BuildAMol in a work-
flow involving deep learning applications, we performed 
a follow-up experiment where we created multiple 
derivatives from the generated ligand by adding various 
functional groups to one position. We then successfully 
docked the derivatives using the deep learning tool Dif-
fDock [30], presenting a practical illustration of BuildA-
Mol’s compatibility with state-of-the-art deep learning 
tools (Fig. 5C, lower right panel).

Conclusion
In this work, we presented BuildAMol, a versatile and 
user-friendly Python library designed to empower 
researchers in fragment-based molecular modeling. Buil-
dAMol caters to a broad range of applications, from de 
novo assembly of complex molecules to the modifica-
tion and optimization of existing structures. Its focus on 
user control and extensibility supports both manual and 
semi-automated workflows, making it suitable for expert-
driven modeling tasks.

BuildAMol’s ability to handle diverse molecule 
classes and integrate with established cheminformat-
ics libraries positions it as a valuable tool for various 
scientific pursuits. By prioritizing user-friendliness and 
offering a streamlined interface, BuildAMol minimizes 
manual input while maximizing control over the molecu-
lar assembly process. Coupled with its extensibility, Buil-
dAMol is a promising platform for future advancements 
in fragment-based modeling, particularly when inte-
grated with powerful deep-learning techniques. The con-
tinuous integration and advancement of these techniques 
within this domain promise to significantly enhance the 
impact of in silico structural modeling on future research 
initiatives.
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