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 Background and Objectives: Nowadays, because of accuracy, speed, cost, 
and flexibility of digital control laws, control systems are implemented by 
computers, microprocessors or DSP chips. Therefore, many investigators 
have recently focused on the design of discrete-time controllers and 
computer-based control. 
Methods: In this paper, a sliding mode controller based on the disturbance 
estimation is designed for a class of discrete-time nonlinear affine systems. 
Based on two disturbance compensator schemes, static and dynamic, 
procedures of sliding mode controller design are proposed for the discrete-
time system. 
Results: In the case of measurable state variables, the instantaneous value of 
disturbances can be estimated based on the value of states and control 
signals. In two proposed control laws, there is no switching expression to 
induce the problem of chattering. Moreover, based on the necessary and 
sufficient quasi-sliding mode condition proposed by Sarpturk, boundedness 
and robustness of the proposed controllers is evaluated. In the case of 
constant or slowly time-varying disturbances, the quasi-sliding mode band 
converges asymptotically to zero and in this case, the proposed method is 
converted to the ideal sliding mode. Finally, two examples are provided to 
verify the proposed control laws and to compare the performance of the 
proposed controllers. 
Conclusion: In this paper, a sliding mode controller based on the disturbance 

estimator was designed for a discrete-time nonlinear affine system. Due to 

the effectiveness of disturbance estimators in the performance of 

controllers, two kinds of disturbance estimators were considered. 
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Introduction 

Nowadays, because of accuracy, speed, cost, and 

flexibility of digital control laws, control systems are 

implemented by computers, microprocessors or DSP 

chips ‎[1]. Therefore, many investigators have recently 

focused on the design of discrete-time controllers and 

computer-based control. In general, the design of 

discrete-time control systems can be done in two 

approaches, namely, the direct discrete-time design and 

the emulation-based approach ‎[2]. The direct discrete-

time design is done directly in the discrete-time  domain,  

 

 
using a discrete-time model of the plant. In the 

emulation-based approach, the controller design is done 

in the continuous-time domain. Then, by using a 

discretization method, the control law will be digitalized 

to produce a discrete-time control law for digital 

implementation. However, this approach may result in 

an unstable system after digitization such as zero-order 

hold method ‎[3]. 

The sliding mode control method is very famous 

among variable structure control systems. Although 
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designing of the discrete-time sliding-mode control is 

different from that of a continuous-time case, it clearly 

has the desired performance similar to the continuous-

time case in the presence of disturbances. 

Unfortunately, the system states can only be 

approached to the sliding surface and remain around it. 

This band is well-known in the literature as the quasi-

sliding-mode band. The first work of this control method 

was introduced in ‎[4] which the emulation-based 

approach was considered. The design of sliding mode 

controllers for discrete-time systems is a topic of 

extensive research in various control applications, such 

as induction motors ‎[5]‎[6], Computer Numeric Control 

(CNC) servomechanism ‎[7], piezoelectric actuators ‎[8], 

heavy water reactor ‎[9], wheeled mobile robot 

trajectory-tracking ‎[10], boost converter ‎[11], Voltage 

Source Converter based High Voltage Direct Current 

(VSC-HVDC) systems ‎[12], pumping system ‎[13], 

automotive electronic throttle body ‎[14], and cart-

inverted pendulum ‎[15]. 

There are two approaches that can be found in the 

literature for the design of discrete-time sliding mode 

controllers ‎[16]. One of the approaches in this regard is 

to assume a specified control and to prove the stability 

this proposed control law ‎[17]‎[18]. In the second one 

that also called reaching law approach, a desirable 

sliding surface is considered and then the control law will 

be determined. The reaching law approach has been 

introduced in ‎[19] in which dynamics of the sliding 

surface are considered directly and the control law has 

nonlinear and linear parts. Moreover, other researchers 

widely developed this reaching law 

approach ‎[20]‎[21] ‎[22] ‎[23] ‎[24]. Unfortunately, the 

chattering phenomenon always exists in this approach. 

To solve this problem, a multi-power reaching law has 

been introduced in ‎[25] which has replaced the 

discontinuous function by a power term of the switching 

function. Moreover, Bartoszewicz has introduced a non-

stationary sliding surface to reduce this problem ‎[26]. 

One of the basic conditions in the discrete Lyapunov 

stability method has been proposed by Sarpturk ‎[27]. It 

has been widely used for the stability of sliding mode 

controllers in discrete-time cases and to show the 

existence of a quasi-sliding motion. Furthermore, 

Furuta’s sector control approach provided the quasi-

sliding mode existence conditions by another discrete 

Lyapunov function ‎[28]. Spurgeon ‎[29] proposed a 

method of hyperplane design with disturbance rejection 

capability based on the discrete Lyapunov method. Note 

that due to the sampling process in the discrete-time 

case, a complete rejection of disturbances is not 

possible. In these cases, using a disturbance estimator 

can improve the robustness of the system ‎[30]. 

The control methods based on a disturbance 

estimator are very effective in compensating 

disturbances ‎[31] ‎[32] ‎[33]. This scheme of control has 

been studied in the past several decades and has been 

utilized in many practical applications ‎[34]‎[35]‎[36]. 

Disturbance estimators may be used with other 

controllers to overcome disturbances. In the case of 

measurable state variables, the instantaneous value of 

disturbances can be estimated based on the value of 

states and control signals. Unfortunately, to the best of 

our knowledge, few results are available to design 

discrete-time sliding mode controllers based on the 

disturbance estimation. For instance, ‎[37]‎[38] have 

proposed an anti-disturbance control method for a class 

of Multi-Input Multi-Output (MIMO) linear systems with 

some nonlinear terms.  

In ‎[39], an output feedback- based sliding mode 

controller has been proposed for a class of linear 

systems in the presence of matched disturbances. 

However, these control schemes are only applicable to 

linear systems. 

In this paper, the design procedure of a sliding mode 

controller based on the disturbance estimation for 

discrete-time nonlinear affine systems is considered. The 

main objective of this paper is to derive a control law to 

guarantee the quasi-sliding mode condition of Sarpturk. 

The proposed control law consists of a sliding mode 

controller and a disturbance estimator to compensate 

disturbances for discrete-time systems.  

The contributions of the present paper mainly lie in 

two aspects. First, the direct discrete-time design is 

considered using two disturbance compensator 

schemes, static and dynamic types for a nonlinear affine 

system. Moreover, the necessary and sufficient 

condition of quasi-sliding mode method is investigated 

to evaluate the boundedness and robustness of 

proposed controllers. It is proved that the presented 

control scheme provides the robustness against external 

disturbance.  

In this regard, the boundedness of disturbance 

estimation error and the sliding variable is assured. 

Moreover, in the case of constant or slowly time-varying 

disturbances, the quasi-sliding mode band converges 

asymptotically to zero and in this case, the proposed 

method is converted to the ideal sliding mode controller. 

Preliminaries 

The following model shows the class of nonlinear 

discrete-time systems considered in this paper: 

           (1) 

  (   )    (  ( )   ( )) 
  (   )    (  ( )   ( ))

  (  ( )   ( )) ( )      
  ( ) 

where   ( )     and   ( )    are the state vectors, 

 ( )    denotes the system input,  ( ) represents the 
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disturbances,      , and   are differentiable functions 

where   (   )    and   (   )   . The main objective 

is to find a discrete-time controller based on the sliding 

mode method to converge the states of the system (1) to 

zero in the presence of disturbances. In this paper, the 

following assumptions are considered: 

Assumption 1: All state variables are available. 

Assumption 2: The matrix Function  ( ) is non-singular 

for all values of state variables. 

Assumption 3: There exists a function   ( )  

 (  ( )), with the property  ( )   , such that the 

reduced order system with the dynamic   (   )  

  (  ( )  (  ( ))) is asymptotically stable at the 

origin. 

Assumption 4: The changing rate of the disturbance 

 ( ) is considered bounded as, 

   | ( )   (   )|             . 

Discrete-time controllers, which are based on the 

sliding mode method, have an inherent difference with 

the continuous-time case. In these systems, only quasi-

sliding modes will appear. In other words, the state 

variables approach the sliding surface but cannot stay on 

it.  

In order to prepare for the main result, we consider 

the following definition. This definition clearly shows the 

quasi-sliding mode. 

Definition 1 ‎[26]: The quasi-sliding mode is the motion 

of the state variables in a band around the sliding 

surface  ( )   , with a predefined width   (the width 

of the quasi sliding mode band). Mathematically, we 

have | ( )|   , where   is a positive constant. 

Therefore, the states of the system remain always in a 

small band. 

Results and Discussion 

The design procedure of the proposed controller is 

composed of two parts; First, design a sliding surface 

which represents a desired stable dynamics and 

performance of the plant.  

Then, a state-feedback control law,  ( ), is designed 

to guarantee the finite-time reaching of the state 

variables to the sliding surface and remaining on it.  

First, let us define a sliding surface according to 

Assumption 3 as follows: 

             (2)    ( )    ( )   (  ( ))          

Clearly, the origin of the dynamics of the system on 

the surface according to assumption 3 is asymptotically 

stable. 

Our purpose is to reach the sliding surface from any 

arbitrary state  ( ) in a finite number of sampling-time 

steps. In an ideal sliding motion, a discrete-time 

equivalent control can be proposed using the equality 

 (   )   ( )         , where        denotes 

the sampling instant in which the sliding motion 

starts ‎[40]‎[41].  

If the following control law is used, the state variables 

reach the sliding surface in one sampling period (one-

step reaching): 

              (3) 

 (   )    (   )   (  (   )) 
                     (  ( )   ( ))

  (  ( )   ( )) ( )

  ( )   (  (  ( )   ( ))) 

By solving  (   )   , the so-called equivalent 

control law can be obtained as, 

       (4) 
 ( )     (  ( )   ( )), (  (  ( )   ( )))

   (  ( )   ( ))   ( )- 

Since the disturbance  ( ) is unknown, the control 

law (4) cannot be actually implemented. In real systems, 

measuring the disturbance,  ( ), is impossible.  

Therefore, the value of  ( ) in (4) should be replaced 

with its estimation which is called  ̂( ). To do this, two 

disturbance estimator schemes are utilized to estimate 

unknown disturbance.  

From the discrete-time model of (1) and Assumption 

1, disturbance  ( ) can be predicted by its previous 

value.Figure 1 shows the situation of the proposed 

method in the control field: 

 

 

Fig. 1: The situation of the proposed method. 

 

A.  Design Based on a Static Disturbance Estimator 

Now, a discrete-time disturbance estimator by the 

one-step delay is proposed ‎[41]. The disturbance can be 

predicted as, 
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         (5) 

 ̂( )    (   ) 

              ( )    (  (   )   (   )) 
                 (  (   )   (   )) (   ) 

where  ̂( ) is the disturbance estimation of  ( ). 

Convergent analysis of disturbance estimator can be 

investigated by the following expression. Substituting 

the control law (4) into (3) leads to 

         (6) 

 (   )    (  ( )   ( ))

  (  (  ( )   ( )))

   (  ( )   ( ))   ̂( )

  ( )

  (  (  ( )   ( ))) 

                   ( )   ̂( ) 

Using disturbance estimator (5), we have 

         (7)  (   )   ( )   (   ) 

It is clear from Assumption 4 and (7) that the quasi-

sliding mode band can be achieved  

         (8) | (   )|  | ( )   (   )|    

Thus, the system states will enter a quasi-sliding 

mode band around the sliding surface and remain in it. 

The constant   is the width of that band. 

For the stability of the closed-loop discrete-time 

system and to have a desired quasi-sliding mode motion, 

it is necessary to force the state variables to this band, 

from any initial condition  ( ), and to steer the state in 

the ε-vicinity of  ( ), regardless of the action of any 

bounded disturbance.  

In what follows, the necessary and sufficient 

condition is considered to evaluate the boundedness and 

robustness of the closed-loop discrete-time system. 

Lemma 1 ‎[27]: A necessary and sufficient condition to 

guarantee the sliding motion and convergence of a  

discrete closed-loop control system is as, 

         (9)     | (   )|  | ( )| 

This is equivalent to the following inequalities: 

   (10) 
| (   )   ( )|   ( ( ))    

| (   )   ( )|   ( ( ))    

where    () is the sign function. The first inequality is 

the necessary sliding mode existence condition and the 

second one gives sufficient condition for the 

convergence of the quasi-sliding mode. 

Now, we will demonstrate that the proposed control 

law ensures the convergence of  ( ) to the ε-band of 

the sliding surface. 

Theorem 1: Consider the discrete-time nonlinear system 

(1) with the control law (4), the sliding surface (2) and 

the disturbance estimator (5). Then, the quasi-sliding 

mode condition (9) or its equivalent conditions (10) are 

satisfied outside the following region which is named 

as   :  

   (11)    * ( )   | ( )|    + 

Proof: The proof will be presented into two parts:  

Part I: This part is related to the sliding condition. 

According to (7), one has 

   (12)  (   )   ( )   , ( )   (   )-   ( ) 

Post-multiplying (12) by    ( ( )) 

   (13) 

, (   )   ( )-   ( ( ))

  , ( )

  (   )-   ( ( ))

 | ( )| 

Now, we suppose that | ( )|    is satisfied. 

equation (13) may be rewritten as 

       (14) 

, (   )   ( )-   ( ( ))

 | ( )   (   )|

 | ( )|    (| ( )|    )

   

Thus, we can conclude that if | ( )|    then 

, (   )   ( )-   ( ( ))   , which guarantees the 

sliding condition. 

Part II: This part is related to the convergence condition. 

From (7), the term  (   )   ( ) obeys from the 

following relation: 

     (15)  (   )   ( )   , ( )   (   )-   ( ) 

Post-multiplying (15) by    ( ( )) 

   (16) 
, (   )   ( )-   ( ( ))

  , ( )   ( 
  )-   ( ( ))  | ( )| 

Similarly, we suppose that | ( )|    is satisfied and 

thus, (16) can be rewritten as 

 (17) 
               , (   )   ( )-   ( ( ))

   | ( )   (   )|  | ( )|

  (| ( )|    )    

Thus, we can conclude that if | ( )|   , then 

, (   )   ( )-   ( ( ))   , which guarantees the 

convergence condition. 

According to these parts and Lemma 1, if | ( )|   , 

it concludes that | (   )|  | ( )|, which means that 

 ( ) is decreasing outside the region   . Consequently, 

the system trajectories will approach the sliding surface 

in a finite number of sampling-time steps. The proof is 

complete.    

Remark 1: The proposed control law (4) when  ( ) has 

been replaced with its estimation,  ̂( ) presented in (5), 

contains no switching expression. Therefore, the 

chattering phenomenon will not appear in the closed-

loop system. Moreover, in the proposed control law, 
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knowing the upper bound of the disturbance  ( ) is not 

necessary. These benefits lead to the wide applicability 

of the proposed controller.  

Remark 2: As can be seen from the above result, when 

the disturbance is constant or slowly time-varying, 

disturbance estimator can yield to the exact estimation. 

Therefore, the width of the mentioned band (quasi-

sliding mode band) converges asymptotically to zero. 

Thus, in this case,  ( ) goes asymptotically to zero and 

we have an ideal sliding mode. 

B.  Design Based on a Dynamic Disturbance Estimation 

In this section, a dynamic disturbance estimator is 

proposed. Because of the lack of knowledge of 

disturbance, the preceding equivalent control (4) cannot 

be actually implemented. Therefore, in the following, we 

propose a dynamic disturbance estimator inspired by the 

method in ‎[42]. 

The disturbance estimator is suggested as 

    (18) 

 ̂( )      ( )   ( ) 

 (   )   ( )   ,  (  ( )   ( ))
  (  ( )   ( )) ( )

  ̂( )    ( )- 

where  ( )     is a new state and      1 is an 

arbitrary positive constant. 

Remark 3 ‎[42]: When the initial value of the disturbance 

is known as  ̂( ), it is possible to choose the initial value 

of the newly defined state variable as  ( )     ( )  

 ̂( ). In the case of unknown initial values of the 

disturbance, only set  ( )     ( ), which is equivalent 

to considering  ̂( )   . These activities reduce the 

undesirable transient response of the proposed 

observer. Now, convergent analysis of dynamic 

disturbance estimator can be investigated by the 

following expression. Substituting the control law (4) 

into (3) leads to 

   (19) 

  (   )    (  ( )   ( ))

  (  (  ( )   ( )))

   (  ( )   ( ))   ̂( )

  ( )

  (  (  ( )   ( ))) 

                   ( )   ̂( ) 

Using disturbance estimator in equation (18), we have 

  (20) 

                      (   )   ( )     ( )   ( ) 

                    ( )   [  (  (   )   (   ))

  (  (   )   (   )) (   )

  (   )]   (   )

  [  (  (   )   (   ))

  (  (   )   (   )) (   )

  ̂(   )    (   )] 

                    ( )   [ (   )   ̂(   )]   (   )

    (   ) 

                    ( )   [ (   )   ̂(   )]   ̂(   ) 

Let us add and subtract  (   ) to it as 

    (21) 

 (   )    ( )   (   )   , (   )
    (   )-   (   )
    (   ) 

Using (19), we have,  

      (22)      (   )  (   ) ( )  ( ( )   (   )) 

It is clear from Assumption 4 and equation (22) that if  

     1, the quasi-sliding mode band is as, 

  (23) 
| (   )|  (   )   | ( )|   ∑(   ) 

 

   

 

                     (   )   *| ( )|  
 

 
+  

 

 
 

Consequently, the state variables will enter the sliding 

band and will not leave it. Now, similar to the 

procedures in the previous section, we will demonstrate 

that the proposed control law with disturbance 

estimator (18) ensures the convergence of  ( ) to the ε-

band of the sliding surface. 

Theorem 2: Consider the discrete-time nonlinear system 

(1) with the control law (4), the sliding surface (2) and 

the disturbance estimator (18). Then, the quasi-sliding 

mode condition (9) or its equivalent conditions (10) are 

satisfied outside the following region:  

      (24)    { ( )   | ( )|  
 

 
 } 

Proof: Similar to the procedures in the previous 

theorem, the proof will be presented into two parts: 

Part I: This part is related to the sliding condition. 

according to (22), one has 

 (25)         (   )   ( )   , ( )   (   )-    ( ) 

Post-multiplying (25) by    ( ( )) 

 (26) 
, (   )   ( )-   ( ( ))

  , ( )   (   )-   ( ( ))
  | ( )| 

Now, we suppose that | ( )|      is satisfied. 

Equation (26) may be rewritten as 

   (27) 
     , (   )   ( )-   ( ( ))

  | ( )   (   )|   | ( )|
   ( | ( )|    )    

Thus, we can conclude that if | ( )|       then 

, (   )   ( )-   ( ( ))   , which guarantees the 

sliding condition. 

Part II: This part is related to the convergence condition. 

The term  (   )   ( ) obeys from the following 

relation:  

   (28) 
                   (   )   ( )

  , ( )   (   )-  (   ) ( ) 

 

Post-multiplying (28) by     ( ( )) 
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   (29) 
    , (   )   ( )-   ( ( ))

  , ( )   (   )-   ( ( ))
 (   )| ( )| 

Similarly, we suppose that | ( )|    (   ) is 

satisfied. (29) can be expressed as 

   (30) 
       , (   )   ( )-   ( ( ))

   | ( )   (   )|  | ( )| 
                                   ((   )| ( )|    )    

Thus, we can conclude that if | ( )|    (   ) then 

, (   )   ( )-   ( ( ))   , which guarantees the 

convergence condition. 

According to these parts, Lemma 1 and the equality 

        {
 

 
 

 

   
}  

 

 
, it concludes | (   )|  

| ( )|, which indicates that  ( ) is decreasing outside 

   and consequently, the system trajectories will 

approach the sliding surface in a finite number of 

sampling-time steps. The proof is complete.  

Remark 4: Note that the   variable indicates the 

convergent rate of observer internal state variable of 

disturbance estimator. This variable affects the rate of 

convergence and the width of the quasi sliding mode 

band. 

C.  Numerical Example 

In this section, to illustrate the performance of the 

proposed controllers two simulations are presented.  

Example 1: Consider the following discrete-time 

nonlinear system: 

    (31) 

  (   )      ( )     ( ) 

  (   )   
  ( )  ( )

    
 ( )

   ( )   ( ) 

A time-varying disturbance is considered as  ( )  

    (     ) to investigate the robustness of the system. 

Two proposed methods in the previous sections will be 

applied to this example. 

The function   given in (2) can be considered as 

 (  ( ))       ( ). Clearly, the origin of the dynamic 

  (   )       ( ) is asymptotically stable. 

Accordingly, the sliding surface is designed as, 

      (32)   ( )    ( )       ( ) 

Therefore, the equivalent control law is as,  

   ( )     (   ( )     ( ))  
  ( )  ( )

    
 ( )

   ̂( )  

                                                                                              (33) 

where  ̂( ) is the disturbance estimation of  ( ) can be 

predicted by (5) or (18). We consider       for 

observer internal state variable of disturbance estimator 

in (18). 

Numerical simulations are given in Figs. 2-5. Figs. 2-4 

show the state variables and control input variable for 

two proposed methods, respectively. It is observed from 

these figures that the proposed methods stabilize the 

system and attenuate the disturbance.  

Furthermore, the sliding surface as shown in Fig. 5 is 

stable with small fluctuations. The quasi-sliding mode 

widths are | ( )|      for the proposed control law 1 

and | ( )|       for the proposed control law 2, which 

agree with the theoretical results. 
 

 
 

Fig. 2: State   ( ) in example 1 
 

 
 

Fig. 3: State   ( ) in example 1 
 

 

 
 

Fig. 4: The control signal in example 1 
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Fig. 5: The sliding surface in example 1 

 

Example 2: In this example, the proposed method is 

compared with the method of [43].  

Consider a trailer-truck model [43]: 

  (   )     ( )  
  

 
   (  ( ))  

  

 
   ( ( ))

   ( ) 

  (   )     ( )  
  

 
   (  ( )) 

  (   )     ( ) 

      (  ( ))    (
  ( )    (   )

 
) 

                                                                                               (34) 

where,   ( ) and   ( ) are respectively the angle 

between the axis of trailer and truck, and the angle of 

the trailer. Also,   ( ) denotes the vertical position of a 

definite point on the trailer.  

The input variable (steering angle) is denoted by  ( ) 

and  ( ) is the model of disturbances. Moreover,   and 

  are the lengths of the trailer and the truck, 

respectively, and   denotes the sampling period, and   is 

a constant specifying the speed of the vehicle in a 

backward movement. By defining the state vector as 

  
 ( )  (  ( )   ( ))

 
,   

 ( )     ( ) and 

  ( )     ( ( )), system (34) is rewritten into the 

form of (1).  

Backward movement control of trailer-truck has been 

used as a nonlinear benchmark control problem. 

Difficulties of this control problem are caused because of 

its nonlinearity and the jack-knife phenomenon.  The 

task is the design of the control input variable to move 

the trailer-truck in the backward direction and along the 

horizontal line.  

This means that for any initial condition, the trailer to 

be placed on the origin and also the alignments of the 

truck and its trailer are along the  -axis. In the 

simulation, parameters and initial conditions have been 

chosen as:                           
     

 
   

        
 ( )  (       )  and   

 ( )   . Moreover, 

the function   has been chosen as a linear function as 

 (  
 ( ))      

 ( ), where   (           ) . 

Finally, a time-varying disturbance as  ( )  

       (     ), has been considered, which is similar 

to ‎[43].  

The results of numerical simulations are illustrated in 

Figs. 6-8.  

Here, Quasi-Sliding Mode Controller (QSMC) means 

the modified quasi-sliding mode controller, (6) in ‎[43], 

and the Proposed Law is the equivalent control law 

obtained using (4) with disturbance estimator (5). Figs. 6, 

7 and 8 show the system states variable, control input 

and the sliding surface variable, respectively.  

Due to the effect of the disturbance, the states are 

oscillating. It is observed from these figures that the 

disturbance attenuation is improved in the presence of 

disturbances. Moreover, the proposed method has an 

improved transient response compared to the QSMC 

controller.  

The performance of the controlled system in our 

method is          while for QSMC controller is 

         where the performance measured as 

  ∑ | ( )|   
   . Furthermore, the sliding surface is more 

stable with fewer fluctuations. The quasi-sliding mode 

width of the proposed method is | ( )|      , which 

approve the theoretical results. 

Conclusions  

In this paper, a sliding mode controller based on the 

disturbance estimator was designed for a discrete-time 

nonlinear affine system. Due to the effectiveness of 

disturbance estimators in the performance of 

controllers, two kinds of disturbance estimators were 

considered.  

The proposed control laws guaranteed the quasi-

sliding mode condition which is one of the basic 

conditions in the stability of sliding mode controllers for 

discrete-time systems. The necessary and sufficient 

quasi-sliding mode conditions were derived for two 

disturbance estimators, and the width of the 

convergence band in quasi-sliding mode method was 

calculated.  

It was shown that, when the disturbance was 

constant or slowly time-varying, the width of this band 

converges asymptotically to zero. Moreover, the control 

laws that suggested had no switching expression, which 

prevents the chattering phenomenon. Finally, two 

examples were presented to illustrate the effectiveness 

of the main result. 
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Fig. 6: States of the trailer-truck controller. 
 
 

 
 

Fig. 7: The control signal for the trailer-truck controller. 
 

 

Fig. 8: Sliding surface for the trailer-truck controller. 
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