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Abstract—The dominant markup language for Web visualizations—Scalable Vector Graphics (SVG)—is comparatively easy to learn,

and is open, accessible, customizable via CSS, and searchable via the DOM, with easy interaction handling and debugging. Because

these attributes allow visualization creators to focus on design on implementation details, tools built on top of SVG, such as D3.js, are

essential to the visualization community. However, slow SVG rendering can limit designs by effectively capping the number of on-screen

data points, and this can force visualization creators to switch to Canvas or WebGL. These are less flexible (e.g., no search or styling

via CSS), and harder to learn. We introduce Scalable Scalable Vector Graphics (SSVG) to reduce these limitations and allow complex

and smooth visualizations to be created with SVG. SSVG automatically translates interactive SVG visualizations into a dynamic virtual

DOM (VDOM) to bypass the browser’s slow ‘to specification’ rendering by intercepting JavaScript function calls.

De-coupling the SVG visualization specification from SVG rendering, and obtaining a dynamic VDOM, creates flexibility and

opportunity for visualization system research. SSVG uses this flexibility to free up the main thread for more interactivity and renders the

visualization with Canvas or WebGL on a web worker. Together, these concepts create a drop-in JavaScript library which can improve

rendering performance by 3–9� with only one line of code added. To demonstrate applicability, we describe the use of SSVG on

multiple example visualizations including published visualization research. A free copy of this article, collected data, and source code

are available as open science at osf.io/ge8wp.

Index Terms—Visualization systems, SVG, performance, virtual DOM, rendering, D3.js
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1 INTRODUCTION

SCALABLE Vector Graphics (SVG) is the dominant markup
language for visualizations on the web. The format is

open and comparatively easy to learn, and the SVG docu-
ment object model (DOM) is accessible, searchable, and
easy to customize with CSS. As data is represented via indi-
vidual elements, it is easy to add interaction to these ele-
ments, and to select and debug them when necessary. The
data visualization community has built infrastructure
around SVG with tools like D3.js [7], which enable fast
development because data are bound to visual mark objects
like <circle> and <rect> in the SVG DOM. The success
of this open format is in part due to Web browser tools that
help developers inspect and debug element appearance and
behavior. With the help of these tools, it is easy to learn
from and adapt existing SVG markup, leading to many

visualizations being created using SVG. In these respects,
SVG is essential to the visualization community.

However, this flexibility comes at a price: as dataset size
increases and the corresponding number of DOM nodes
grows, SVG-based visualizations become slow. Even a
minor DOM update triggers the browser rendering pipeline
which includes full re-calculation of styles, layout, updating
the DOM layer tree, painting, and compositing. This over-
head can lead to slow performance for animation and inter-
action even with only a few hundred nodes, which acts as a
significant limitation on the space of possible visualization
designs and datasets.

For rendering and interaction performance, the commu-
nity turns to lower-level pixel-based interfaces such as
Canvas and WebGL. For instance, in one 2009 Firefox
benchmark [37], Canvas is �4� faster than SVG for render-
ing 600 circles. These gains are wrought by bypassing the
DOM and requiring the user to provide their own higher-
level object (and data binding) abstraction, but this
approach is harder to learn, causes more difficult imple-
mentation and debugging, loses the useful searchable and
CSS customizable properties of SVG, and makes element-
wise interactions more difficult to implement. While object-
level abstraction libraries have been proposed to simplify
the development process for Canvas and WebGL [31], none
have yet gained a critical mass within the visualization com-
munity. Similarly, browsers have recently added support
for the new OffscreenCanvas feature [40], which can
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parallelize drawing work and increase performance. But so
far, few visualizations take advantage of these options for
higher performance because they are challenging to use.
Community investment in SVG continues as it is easier and
more flexible for visualization prototyping and develop-
ment; yet the performance problems remain.

The research question we address is how the SVG specifi-
cation of visualizations —which is important to the commu-
nity — may be de-coupled from the browser-based SVG
rendering — which does not sufficiently scale. To answer
this question, we explored multiple new visualization sys-
tem ideas by analyzing the state of the art and the back-
ground relevant to data visualization.We discovered several
shortcomings and identified research opportunities for data
visualization system research. First, we studied whether
and how JavaScript function calls meant to populate and
update theDOMcan be intercepted and redirected to instead
reliably and efficiently target a virtual DOM (VDOM). Spe-
cifically, we focused on a common scenario in data visualiza-
tion: updating attributes of many elements at once. Second,
we explored communication strategies to effectively main-
tain a VDOM on a worker thread including SharedArray-
Buffers. Again, we optimized for common data visualization
usage patterns of SVGs. Third, we introduced the usage of
the new OffscreenCanvas element to offload the rendering
work from the main thread to the worker thread. This effec-
tively provides the first accessible multi-thread solution for
web-based information visualization. Fourth, we enabled ele-
ment-level interactivity common in SVGs evenwhen render-
ing Canvas visualizations. We do this by performing hitbox
testing on the VDOM and re-triggering JavaScript events on
the hidden DOM events so that JavaScript event listeners can
capture them.

We developed, implemented and bundled these concepts
into Scalable Scalable Vector Graphics (SSVG): a drop-in
JavaScript library for D3.js which can ‘scale’ SVG perfor-
mance to that of a native Canvas reimplementation.

Depending on code complexity, SSVG works with as little as
one line of code. SSVG is the first system able to continuously
render a dynamic SVG as Canvas orWebGL, which dramati-
cally improves rendering performance and reduces DOM
overhead. In addition, SSVG is the first web-based visualiza-
tion system to take advantage of parallel rendering. This
approach frees the main thread from rendering and asks it
only to process simulation computations, interaction han-
dling, and VDOMupdates. For example, adding SSVG helps
the computationally-intensive calculation of a force-directed
graph layout converge much faster while maintaining an
interactive visualization (see Figs. 12 and 11).

We evaluated the robustness of SSVG by applying it to 25
visualizations taken from bl.ocks.org. We find that SSVG
works on 24 of them without any code changes, and that
changing 2 lines of code allows the one remaining visualiza-
tion to work with SSVG. Further, we evaluated SSVG’s effi-
ciency on four rendering-heavy visualizations. SSVG
improves rendering performance by 3� 9� , and shows a
speedup in network layout visualization stabilization from 16
seconds to 5 seconds.We show that SSVG increases its perfor-
mance twice asmuch as SVGgiven an increase inCPUpower.
We also demonstrate the increased ease of development for
complex data visualizations with a remake of a famous wind
map visualization (Fig. 1) and a node-link visualization of the
IEEE Information Visualization conference co-author net-
work (Fig. 11). Finally, we show SSVG’s applicability in visu-
alization research in a real-world research project that uses
SSVGpublished at CHI 2020 byKlamka, Horak andDachselt,
researchers unaffiliatedwith the authors [23].

We release SSVG as open source software for interactive
visualization developers to use at ssvg.io and osf.io/ge8wp.
Beyond the SSVG system, we contribute:

� The concept of automated translation from interac-
tive DOM to dynamic VDOM, de-coupling SVG
specification and rendering,

Fig. 1. Viegas & Wattenberg’s popular wind map visualization is written for the Web using Canvas for its rendering speed (http://hint.fm/wind/). Imple-
mentation via the more-familiar SVG and D3.js is comparatively simple and enables element-level events for interaction, styling with CSS, and ele-
ment inspection, but results in slow rendering at 7 frames per second (FPS). Using SSVG, via one line of additional code, we reach 36 FPS. This is
faster than the original Canvas implementation. Live at ssvg.io/examples/windmap.
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� A communication technique to efficiently maintain a
dynamic VDOM on a worker thread,

� An optimized rendering approach that batches the
drawing of many elements and that uses Offscreen-
Canvas without additional burdens for visualization
creators,

� Recommendations for visualization system creators
based on our lessons learned, including research
opportunities in the areas of accessibility, expressiv-
ity and responsiveness which take advantage of the
availability of a dynamic VDOM.

2 A MOTIVATING EXAMPLE

Jasmine is a student who has taken a data visualization
course and learned basic Web development and D3.js. She
sees Viegas & Wattenberg’s wind map [39] and feels
inspired to better understand the chosen encodings by inter-
actively editing them. She right-clicks the map and looks for
“Inspect” to change the map’s color via CSS, but is sur-
prised to find instead “Save image as...”: the visualization is
rendered via Canvas, which only allows exporting as an
image and has no DOM to inspect. Jasmine investigates to
find that the Canvas visualization is over 1,000 lines of pure
JavaScript.

Undeterred, Jasmine re-makes the visualization as a
learning exercise. Using D3.js, she binds the wind data to
line elements in her SVG and, with 200 lines of JavaScript
code, creates the visualization seen in Fig. 1. With moderate
effort, she has implemented it in a format open to inspec-
tion, CSS manipulation, and modification in editors such as
Inkscape or Illustrator. However, she quickly realizes why
Canvas was used, as Jasmine’s SVG windmap has three
problems: First, the rendering happens at such a low frame
rate (7 FPS) that she sees individual images rather than con-
tinuous motion. Second, the browser becomes slow to
respond to interaction input like click or scroll. Third, the
wind particle paths contain visible corners, which is an arti-
fact of not being able to compute the wind paths smoothly
without causing additional render time.

When Jasmine hears about SSVG, she visits ssvg.io and
simply copies a one-line script tag into her HTML file. With
no other changes, the visualization rendering performance
increases to 36 FPS and browser interaction performance
increases sevenfold. The browser’s main thread is also now
free enough to quadruple particle computations for smooth
path traces. If she now wishes to change the appearance via
CSS, she disables SSVG momentarily and tweaks the CSS in
the browser developer tools. Once she decides on a new
style, she re-enables SSVG for higher performance.

3 BACKGROUND

3.1 SVGs in Information Visualization Research

Online information visualization relies heavily on SVG. We
compiled a list of the software technology used in Web visu-
alizations from the 2018 proceedings of the IEEE Information
Visualization conference (InfoVis), available in the supple-
mental material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2021.3059294, by reading paper descriptions,

reviewing online demos, and contacting authors. We started
with all 47 InfoVis papers, excluded work without interac-
tive web-based visualizations, and learned the technology of
27 papers. Of 27 examples with known technology, 23 used
SVG. Of the remaining four publications, two used Canvas
and two used WebGL. For example, Wang et al. [38] “used
SVG for visualizing the animations, as it is easier to operate
on the SVG elements and the efficiency of SVG is acceptable
for our project”. On the other hand, Jo et al. [22] wrote their
application with “the HTML5 Canvas API to support visual-
izing tens of thousands of nodes and edges.” This trade-off is
understood within the community: researchers generally
prefer to use SVG unless they are forced to switch technolo-
gies for performance reasons. We aim to enable researchers
to investigate complex data visualizations with their pre-
ferred technology.

3.2 Metrics

To help describe browser SVG performance and our alterna-
tive approach, we introduce three performance metrics: ren-
dering performance, interaction delay, and compute time.

Rendering performance describes the speed at which a
visualization is re-rendered. This speed is measured in
frames per second (FPS), where FPS of �30 are perceived as
continuous motion (Fig. 2). FPS can affect task performance,
e.g., below 30 FPS, performance decreases in first-person
games [11]. Google’s Web Fundamentals performance
model states: “Users are exceptionally good at tracking
motion, and they dislike it when animations aren’t smooth.
They perceive animations as smooth so long as 60 new
frames are rendered every second” [16]. The question we
seek to answer is how rendering performance can be
increased as much as possible while retaining SVG’s
flexibility.

Interaction delay is the response time of the browser and
website to user input, such as clicking. High interaction
delay (feeling “laggy”) takes control away from the user
and stops a visualization from feeling interactive. Accord-
ing to Google, websites should respond to user input, such
as a click, within 100ms [16], and numerous studies recom-
mend 40–400ms depending on task [18], [19], [27], [32].
Bostock, Ogievetsky, and Heer write that “a sufficient frame
rate is necessary for fluent interaction and animation”, and
that “results also indicate that browser vendors still have
some distance to cover in improving SVG rendering per-
formance” [7]. This is supported by literature on human
psychology: for brushing and linking, for example, visual
feedback is recommended to appear within 50–100 ms to
support human perception [4], [10], [26].

Compute time is the time required to complete calcula-
tions necessary for a visualization. Force-based network
visualizations, for example, require many iterations to com-
pute a stable layout for user interpretation. A long compute

Fig. 2. Perception of frame rates between 0 and 60 FPS. At least 24 FPS
are required to “tolerably” perceive motion [3] as opposed to individual
images, and 30 FPS and above are perceived as smooth.
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time until the visualization is ‘ready’ can turn away users,
as shown by Liu and Heer [26].

3.3 The Browser and SVG

In this subsection, we analyze the browser setup commonly
used on web-based data visualizations. We identify usabil-
ity issues that we recommend visualization system rese-
archers to tackle.

3.3.1 Processes and Threading

Consider Google Chrome as an example of a modern
browser. Chrome runs a top-level ‘browser process’ with its
own dedicated threads to handle user input and drawUI ele-
ments. Each Website instance runs in its own ‘render proc-
ess’, such as in individual tabs. Each render process has a
main thread, responsible for everything shown and inter-
acted with on the page, from rendering the page contents
itself to computingwhich DOMobject the pointer clicked on.

Apart from low level operations on the graphics card,
SVG visualizations are rendered on the render process main
thread. To respond to input requests such as clicks, the main
thread must finish rendering a frame before it can react
to user input. In other words, visualization rendering per-
formance is typically the same as interaction performance;
4 FPS rendering would delay user input by 250 milliseconds.
Likewise, any computation required for a visualization’s
simulationwould happen every 250milliseconds.

Challenge 1. Rendering, interaction, and simulation computation
are performed on the main thread, which does not take advantage
of multi-core CPUs. This slows rendering, hampers interactivity,
and increases compute times — even if other CPUs are idle. We
explore strategies to decouple these processes and parallelize work.

3.3.2 Render Process Pipeline

The render process pipeline governs a significant portion of
the rendering time of DOM-based visualizations like SVG—
typically up to half. This is supported by Google’s Web Fun-
damentals documentation: “Each of those frames has a bud-
get of just over 16ms (1 second / 60 = 16.66ms). In reality,
however, the browser has housekeeping work to do, so all
of your work needs to be completed inside 10ms. When you
fail to meet this budget the frame rate drops, and the con-
tent judders on screen. This is often referred to as jank, and
it negatively impacts the user’s experience” [17].

After JavaScript is executed to perform changes to the
DOM (including any SVG DOM changes), the browser
must translate this markup into pixels visible on the screen.
On Google Chrome, the steps which are performed on the

main thread are shown in Fig. 3:1 Style, Layout, Paint, and
Composite. The Style step applies rules specified in CSS, the
Layout step lays out elements on the website, the Paint step
decides which areas get filled with what color, and the
Compositing step resolves layering questions and requests
output. These modular steps happen one after another, each
taking the output of the previous step as input.

While this ordering always ensures correct rendering, it
also loses context which could make the rendering faster.
For example, when only the position of one circle element is
changed by JavaScript, the style rules are still re-parsed and
re-applied to every SVG node in the DOM because the Style
step requires the complete DOM as input. In fact, at the
browser’s tick rate, the whole pipeline is triggered any time
anything on the DOM is accessed or edited. While browsers
try to keep track of “dirty” elements and regions to avoid
unnecessary work, their to-spec implementation has to be
conservative and is more optimized for HTML than for
SVG. Further, while in HTML, developers can specify nodes
that should be assigned individual compositing layers for
joint transformations of nested elements, such optimizations
are not enabled for SVG. With a sufficient number of DOM
nodes, the time spent in unnecessarily performed work in
the render process pipeline is often greater than the time
spent in the visualization’s JavaScript code.

Challenge 2. The expensive render pipeline is triggered for any
SVG DOM updates, which can slow down rendering with re-
applying previously completed work on unchanged nodes. We
use the knowledge of what DOM changes have occurred to avoid
unnecessary work and explore additional strategies that minimize
work by communicating information across rendering steps.

3.4 The OffscreenCanvas HTML Element

Newly added to the document ofWeb standards—theHTML
Living Specification—in Section 4.12.5.3 [40] is the Offscreen-
Canvas element: “an HTMLCanvasElement but with no con-
nection to the DOM. This makes it possible to use Canvas
rendering contexts in [web] workers.” To date, Chromium-
based browsers support OffscreenCanvas, such as Google
Chrome andMicrosoft’s new Edge browser, as well as Opera
[30]. Mozilla Firefox allows enabling OffscreenCanvas in the
settings, with official support coming soon.

OffscreenCanvas implies that rendering can happen on a
separate thread without blocking the main thread and with-
out triggering the render process pipeline for DOM
updates. The OffscreenCanvas is linked to a Canvas DOM
element, and changes on the OffscreenCanvas appear
instantly in the browser window – no manual transfer of
the OffscreenCanvas image is needed. This is an opportunity
for the data visualization community with many potential
applications. Simulation-intensive visualizations would not
slow down a separate rendering thread, e.g., with expensive
node position calculations. Likewise, drawing-intensive vis-
ualizations can render in a separate thread to free up the
main thread for faster interaction performance and

Fig. 3. Chrome’s rendering pipeline performs these steps on the main
thread at its tick rate after any JavaScript code updates the DOM: Style,
Layout, Paint and Composite. In some cases, these steps take just as
much time as the visualization’s JavaScript code itself even though that
work is often unnecessary for visualization, such as re-applying CSS
rules when styles have not changed or positioning and layering HTML
elements even though SVG does not support these features. SVGs are
much simpler to render than HTML, yet browser rendering does not take
advantage of their simplicity. Figure adopted from [17].

1. Mozilla is currently developing and rolling out GPU-based
threaded painting and compositing for Firefox, called WebRender [2].
For simplicity of exposition and due to its popularity, we use Google
Chrome as our example browser.
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simulation. Finally, removing rendering from the main
thread could improve the overall interaction performance
of the browser, which currently must wait for a response
from the render process before responding to general UI
requests which relate to the page.

Challenge 3. To achieve parallelization through rendering on an
OffscreenCanvas, the main thread needs to efficiently communi-
cate to the render thread what to render—effectively replacing
the DOManalysis functions provided by the render process pipe-
line. Conventionally, visualization creators wishing to use the
OffscreenCanvas element would need to implement their custom
logic for rendering the specific visualization, for communicating
updates from the main thread to the renderer thread, and to sup-
port interactivity. Interactivity is particularly challenging
because knowing what visualization elements were interacted
with requires position information that typically lives on the ren-
dering thread. Further, if a lot of data must be updated, such as in
a large node-link visualization, communicating the new node
positions is costly, and the overhead needs to be managed. To our
knowledge, OffscreenCanvas has never been used by the informa-
tion visualization research community to improve visualization
render performance. We find a way for visualization creators to
easily take advantage of the new OffscreenCanvas element by
streamlining communication between threads and by minimiz-
ing changes to visualization development for increased adoption.

3.5 Related Work

3.5.1 Canvas and WebGL Libraries

Significant progress has been made in simplifying the use of
Canvas andWebGL for information visualization. Vega [34],
shown in Fig. 4, uses a customdeclaration to specify the visu-
alization and create a scene graph, which can be rendered as
SVG or WebGL. Three.js [9] is a general-purpose WebGL
library which abstracts some low-level implementation

details of WebGL programming. PixiJS [14] is a 2D WebGL
rendering library which simplifies the complexities of
WebGL scenes, cameras, and GPU sprite loading. Proton
[21] is a WebGL library which comes with many predefined
behaviors and physics simulations for particle rendering.
For network visualizations, vis.js [1] and Cytoscape [12], [36]
provide fast-rendering and configurable visualizations.
These libraries significantly simplify parts of the challenges
of developing visualizations with WebGL. However, they
have a higher barrier of entry than SVG for designing custom
visualization since they require either Canvas/WebGL
knowledge or knowledge of these less familiar libraries, and
there is little compatibility with existing visualizations and
workflows compared to the open standard of SVGs.

Other libraries propose paradigms closer to the DOM.
Stardust [31] is a library which provides a data-binding
abstraction for WebGL visualizations and reduces the
required effort to create 2D data visualization in WebGL.
Two.js [8] has a similar objective, and replicates some DOM
advantages such as CSS-like styling. Paper.js [24] defines a
programming interface to more easily define Canvas visual-
izations that are also statically exportable as SVG.

While promising, these tools are not yet widely used in
the information visualization community. Two possible rea-
sons are that Canvas and WebGL are less flexible to style
(no CSS) and are harder to debug in the browser. Another
reason is that each framework proposes its own application
programming interface (API), and a consensus on which to
standardize has yet to form within the community. We
believe that switching to one of these APIs with their own
language is counterproductive to the sharing and extending
tools necessary for a vital visualization ecosystem. In con-
trast, SVG is already an open standard with widespread
support and widely-used infrastructure such as D3.js. None
of these tools aim to improve existing visualizations and

Fig. 4. A high level comparison of how visualization creators specify and define data visualizations in different languages and frameworks, and how
these specifications are then rendered by the browser. Green denotes specifications familiar to the data visualization community and fast renderers,
red denotes specifications less familiar to the community and slow renderers. Bridging the gap between the familiar SVG Specification and the fast
Canvas and WebGL Renderers is a crucial challenge for data visualization system research to allow the community to use their preferred language
even on large data sets. Translating the SVG Specification for automatic application to a Canvas or WebGL Renderer is a difficult process that SSVG
tackles with a VDOM.
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support the established and preferred infrastructure. While
changes in visualization creators’ workflows are sometimes
desirable, e.g., for more expressivity, we see a switch from
the open standard of SVGs to a custom API due to perfor-
mance reasons as detrimental to the ecosystem. We advo-
cate for extending the rendering capabilities of SVGs to
strengthen this open and expressive format.

3.5.2 Canvas and WebGL with D3.js

D3.js [7] can render to Canvas by specifying a custom name-
space, appending so-called custom elements, and then defin-
ing a custom Canvas draw function for each element type
such as circles and rectangles. This provides visualization
creators some familiarity within the Canvas environment
and helps manage data binding to virtual elements. How-
ever, implementing the draw functions requires time and
familiarity with Canvas, and the use of D3.js in this way does
not provide the advantages of styling via CSS.

Some projects convert SVG visualizations into Canvas
renderings, e.g., by extracting the rendered SVG as pixels
and pasting the bitmap or rendering a textured quad into a
Canvas. This does not increase performance as more work
must be completed. Other projects, such as canvg [25], ren-
der SVG elements individually in a Canvas. Canvg supports
many SVG features, including definition-based complex
gradients. However, canvg is optimized for static SVGs and
one-time rendering.

3.5.3 Virtual DOM

The concept of VDOMs is widely known andwell adopted to
improve DOM update performance, particularly in frontend
JavaScript frameworks such as React [13], Vue.js [41], Angu-
lar [15], and many others. These frameworks use optimized
VDOM implementations to efficiently update the DOM but,
to our knowledge, no frameworks exist to intercept DOM
changes to populate a VDOM. Furthermore, efficientlymain-
taining a VDOM on a worker thread requires effective com-
munication that is hard to achieve because theworker thread
has no access to the DOM. One work-in-progress project,
WorkerDOM [5], implements synchronization of the DOM
across web workers to support a small number of compute-
heavy operations; however, it does not consider rendering
nor our scenario of coping with updates on many thousands
of visualization elements per frame.

3.5.4 Summary

To our knowledge, prior work has yet to enable rendering
of interactive or animated SVG visualizations as Canvas,
smooth or not. Likewise, existing solutions do not maintain
the valuable properties of SVG like CSS styling, and do not
provide consistency with the SVG API. Existing VDOM
implementations require custom implementations and are
not useful for multi-threaded visualization, and no current
visualization systems support rendering on a web worker.
This is a large set of challenges and opportunities for data
visualization system research, as data visualization can ben-
efit from progress in all these areas.

We build upon existing technology and infrastructure
which is already in use by the information visualization

community, and avoid custom APIs while still increasing
SVG performance. To take advantage of multi-threading,
we create a VDOM implementation optimized for commu-
nication of SVG properties across threads simply based on
JavaScript function calls to the DOM.

In Fig. 4, we display a high-level overview comparison of
different visualization creator inputs and the corresponding
rendering outputs across different visualization systems.
The SVG specification as input allows visualization creators
to design with HTML, CSS, and JavaScript, such as D3.js,
but typically requires going through the browsers’ slow
DOM pipeline and SVG renderer. Other systems, such as
Vega, Canvas and WebGL require less familiar and less
open languages to specify the visualization, but allow usage
of the faster rendering performance. We propose for visuali-
zation systems to bridge this gap between desired visualiza-
tion creator input and desired rendering engine. SSVG
achieves this by parsing SVGs and JavaScript DOM calls,
translating them into well-defined VDOM updates, sending
batched VDOM updates to a worker, and rendering the
VDOM as Canvas or WebGL on the worker.

4 GOALS

Drawing from our insights on the browser’s rendering pipe-
line and lessons learned from related work, we arrive at the
following goals for Scalable Scalable Vector Graphics (SSVG):

G1: SVG Format. As shown in Section 3.1, the information
visualization community relies on SVGs and is familiar
with D3.js. We believe that SVG is a natural fit for data bind-
ing because of the availability of elements (to which data
can be mapped). We also believe that since SVG allows
inspection and is customized more easily in browsers’
developer tools as well as with CSS, reviewing existing SVG
code is more conducive to learning than Canvas implemen-
tations. We want SSVG to be SVG-based.

G2: Interactivity. Interactivity plays a big role in data visual-
izations. Enabling listeners on elements rather than absolute
positions eases interactivity implementation, as Canvas-based
visualizations have to manually infer which data point was
hovered or clicked. In SSVG,wewish to enable element-based
listeners as they exist on SVG.

G3: Rendering Performance. To address SVG’s main short-
coming, we wish to make the technology scalable to more
elements so that more data can be displayed. For a smooth
user experience, the rendering performance should be at
least 20–30 FPS, see Section 3.2.

G4: Load on Mzain Thread. To aid scalability, slow render-
ing should impact the user experience as little as possible.We
wish to perform rendering on a separate thread such that the
main thread can prepare the next frame concurrently. Little
free time on the main thread can also lead to slow visualiza-
tion layouts, such as network visualizations. We aim to keep
the load on themain thread low tomaximize browser interac-
tion performance, and for quick layout computations.

5 SYSTEM

In this section we describe Scalable Scalable Vector Graphic
(SSVG)’s core concepts, its architecture, implementation,
browser support, features, limitations, future work, and
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how these address our design goals. We also include techni-
cal information to help the reader understand the system’s
inner workings, but this is not required for understanding
later sections of the paper.

5.1 Overview and Alternative Strategies

At a high level, SSVG circumvents browsers’ render pro-
cess, as we have identified this pipeline to be too slow for
high interactivity and rendering performance (G2 & G3).
Any system designed to circumvent the DOM for custom
rendering needs a VDOM as an internal representation of
the visualization so that it can be rendered. Flexibility exists
in the approach of obtaining a VDOM, in the format of the
VDOM, and in the rendering technique.

SSVG obtains a VDOM by intercepting JavaScript calls
which would normally affect the SVG DOM. SSVG’s
approach causes no interaction with the Webpage’s own
DOM, and avoids the costs associated with browsers’ ren-
der pipeline. SSVG uses the DOM function calls to maintain
a VDOM and records associated styles from relevant CSS.
This approach has the benefit of not introducing a new API
and not requiring workflow changes for visualization crea-
tors, but comes with some challenges to interpret the Java-
Script calls correctly. The much more common approach of
obtaining a VDOM is via custom APIs, or via templates
such as in React [13] or Angular [15]. This approach is possi-
ble for visualization systems, but reduces compatibility with
existing systems such as D3.js.

SSVG draws the VDOM on an OffscreenCanvas in its
own render thread, but also allows single-thread use. This
requires us to automatically communicate all required
VDOM information across the separate main and rendering
threads. We implement efficient communication via Shared-
ArrayBuffers: a low-level technology for sharing integers
across JavaScript workers. Our implementation focuses on
canvas rendering and optimizes the canvas drawing calls.
An alternative strategy is to use WebGL for rendering.
WebGL rendering is fast when the information needed to
render is largely contained within the graphics card, and lit-
tle communication is needed to update the image. This is
unfortunately not the case for general-purpose rendering
systems, as they have no information about what is causing
the data updates. Therefore, for cases like this, the WebGL
performance is expected to be similar to Canvas. Our choice
to use OffscreenCanvas is in line with our goal to improve
interactivity and to reduce the load on the main thread (G2
& G4), but other systems could reduce our communication
overhead and complexity with single-thread rendering at
the cost of some interactivity and rendering performance.

Put together, SSVG is a system for turning main-thread-
rendered SVG visualizations into multi-threaded visualiza-
tions. It achieves higher rendering performance, low interac-
tion delays, and low computation times with minimal code
changes — many existing visualizations are accelerated sim-
ply by importing ssvg.js with one line of code. For other
cases,we describe limitations andworkarounds in Section 5.5.

5.2 Description

To support interactive visualizations built with SVG (see G1
and G2 in Section 4), we want to enable fast rendering on

visualizations implemented with D3.js with as few changes
as possible. To achieve fast rendering (G3), we address chal-
lenges 1 and 2 identified in Section 3.3 by taking the render-
ing work off the main thread and using a tight connection
between the rendering steps in Fig. 3 to avoid unnecessary
work.

We address these issues with the design of SSVG by
maintaining an up-to-date virtual DOM (VDOM), only re-
applying CSS for new or changed elements, and using the
VDOM to render the visualization in a separate worker. In
Fig. 5, we explain these concepts through an example of a
node-link visualization:

Init (top arrow, blue). To set up the VDOM and the Can-
vas element, SSVG parses the SVG and extracts any poten-
tial contained elements and copies them to the VDOM.
Stylesheet rules are parsed. The original SVG element is hid-
den and replaced with a new Canvas element of the same
size at the same position. Control over the Canvas contents
is then passed to the Web Worker, which is responsible for
rendering.

Update (middle arrow, orange). When a visualization
attempts to access the DOM, the operation is re-routed to
the VDOM. This is achieved by capturing JavaScript func-
tion calls such as appendChild(), setAttribute(),
and getAttribute(). In this way, visualizations do not
modify the DOM when calling setAttribute(). Mean-
while, the visualization remains naive to these processes
and continues to operate as usual. This is possible because
getAttribute() also accesses the VDOM instead of the
DOM. As a performance improvement, we intercept D3.js’
attr function which operates on a selection of nodes
instead of individual nodes. This helps minimize the over-
head of mapping DOM to VDOM. But because this is only a
performance improvement, SSVG works with other frame-
works such as Vega and React. Calls to appendChild()

determine the position of an element in the VDOM, but are
also used to fake hierarchy in the original elements so that
visualizations can continue to rely on the DOM structure,
such as with element.parentNode. When accessing the
DOM outside the SVG, SSVG passes on the information to
the native functions so as to not disrupt any non-SVG Java-
Script on a website.

Interaction (bottom arrow, purple). In SVG visualizations,
event listeners are attached to DOM elements. With SSVG,
no elements are appended to the DOM so event handling
must work differently. To support element-based interac-
tions, SSVG manually re-triggers events on the original SVG
elements after they occur on the Canvas element. To find
the correct SVG element on which to trigger an event, the
matching VDOM element must be identified based on the
event position. SSVG achieves this with manual hitbox test-
ing, but for speed it performs this only on elements which
received a listener function from the visualization. To allow
event listeners to receive events without delay, hitbox test-
ing needs to occur on the main thread. To support hitbox
testing on the main thread, the main thread needs to have a
partial copy of the VDOM that contains position informa-
tion of elements. For a smooth user experience (G2), it is
important to minimize discrepancies between the main
thread VDOM, which users interact with, and the render
VDOM, which is used to display the visualization. SSVG
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minimizes the discrepancy by only applying changes to the
main thread VDOMwhen the render thread is done render-
ing and ready to update its VDOM for rendering a new
frame. SSVG’s fast parallel rendering also contributes to an
immediate response to user interaction.

5.3 Cross-thread Communication

To allow the worker thread to render the visualization, the
main thread has to communicate all VDOM data and keep
the worker VDOM up to date by sending updates when
they occur. To prevent race conditions, the main thread
saves the local VDOM updates until the rendering thread
informs the main thread that it is done rendering the last
frame and is ready to receive updates for a new frame. We
identify three main requirements for the communication:

Lightweight Communication. Serializing large messages for
JavaScript’s postMessage is expensive. To minimize
delay, message sizes need to be small even when communi-
cating updated data for thousands of node attributes.

Reliable Identification. Because messages are serialized, no
VDOM node references can be transferred, and changed
nodes have to be identified based on a specified message
protocol. However identifiers, such as element selectors,
can be unreliable; the communication happens asynchro-
nously and the changes may effect the DOM and VDOM
structure. For example, the commands “move the fifth SVG
element to the right, then delete the fourth SVG element, then
move the fifth SVG element down“ need to be executed in the

correct order so that the element that is moved to the right
and the element that is moved down are not the same
element.

Efficient Computation. It is important to consider the
computational cost of generating the update messages on
the main thread as well as decoding and applying the
update on the worker thread. Importantly, the main thread
has to generate a message that uniquely assigns the new
values to specific elements. If element selectors are used to
identify nodes, efficient ways to generate these selectors
and intelligent ways of caching and updating these selectors
are needed. On the worker, the updates have to be applied
quickly without the need to look up nodes on an individual
basis, and fast iterations over the elements are desired.

To address these three requirements, visualization sys-
tems aiming to support multi-thread VDOM updates for
many nodes need to explore different batching strategies
for update messages. Before switching to our latest strategy,
SSVG used hierarchy-based lists of updates similar to how
D3.js applies attribute changes to a selection of elements
with a common parent. Within the parent, elements can be
identified simply by their child index, and the worker can
iterate over all children instead of looking them up individ-
ually. We paired this strategy with a selector-based method
of identifying the parent element. Positive aspects of this
approach are that it is similar to D3.js, lists are only as big as
the number of elements within a parent, and the worker can
iterate over the nodes efficiently if they have the same par-
ent. On the other hand, the selector-based approach is

Fig. 5. Overview of SSVG’s architecture and how it enables a conventional nodelink diagram written with D3.js to be rendered smoothly. From left to
right, the diagram shows the user’s visualization code, SSVG’s main thread tasks, it’s internal representation of the DOM, and the Canvas rendering
in a web worker. Methods that read and write on the DOM are overridden to instead operate on the VDOM, which is used to render the Canvas. The
browser rendering pipeline is largely skipped because DOM updates are avoided.
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difficult to implement reliably because of the asynchronous
communication and simultaneous structural changes. The
biggest issue with this earlier approach is that it relies on a
flat hierarchy for its performance: if many nested elements
are changed simultaneously, e.g., with d3.selectAll

(’g’).select(’circle’).attr(), they have to be
identified individually. This can result in slow performance.

We decided in our final implementation on a strategy
that identifies all elements by a global element index
within the visualization, assigned upon creation of the ele-
ment. This strategy avoids referring to elements by their
selectors, which makes this approach more reliable. New
attribute values are simply communicated via an array,
and the index within the array refers to the global element
ID. This approach minimizes context that needs to be com-
municated within the update messages, but can lead to
larger arrays. The biggest benefit of this array-based
approach is that the computation on both threads is
straightforward, and the worker can simply iterate over
the array and assign the values to the elements with the
corresponding global element IDs. Therefore, for each type
of attribute changed, one single array is needed to commu-
nicate the new values.

To additionally improve communication performance,
we use SharedArrayBuffers [29]. These are part of the
ECMAScript 2017 standard and were added to browsers
recently. SharedArrayBuffers are low-level arrays which
can only contain integer values, to prevent any harmful
content from being transmitted. We currently use Share-
dArrayBuffers to communicate cx, cy, x1, x2, y1,

y2, x, and y attributes. These are frequently-updated
position attributes, e.g., to move circles, rectangles, and
lines. Since more than integer-level precision is required to
avoid flickering of node positions, the message also con-
tains information about the encoding of the values in the
SharedArrayBuffers. We typically multiply position values
by a factor of 100 before converting to integers. This infor-
mation is then used by the worker to decode the values
and to receive float values.

Combining these approaches, our update messages fol-
low the format shown below. The portion of the data that is
not sent via SharedArrayBuffers is sent as part of the “raw”
data and supports arbitrary values such as strings. For the
rest, pointers to the SharedArrayBuffers are transferred,

along with the information of what types of attributes their
values refer to, such as “cx”.
const updateData = {

raw: {fill: [‘red‘,‘red‘,‘blue‘],

class: [‘group1‘, ‘group1‘, ‘group2‘]},

shared: {cx: bufferX, cy: bufferY}};

5.4 Implementation

SSVG is implemented in TypeScript, which is compiled and
bundled to JavaScript. One JavaScript file defines the main
thread behavior, and one file is created for the web worker.
To avoid loading multiple files, the main library file
includes the worker file as a Blob [28]. The internal architec-
ture of SSVG is shown in Fig. 6. SSVG is modular, and dif-
ferent types of renderers can be used. We provide our own
optimized Canvas renderer as well as a basic implementa-
tion of a WebGL renderer using Stardust [31]. When over-
laps are not an issue, the order of drawing calls is not
important. For such cases, SSVG’s default rendering behav-
ior is to group elements within the same parent by color,
begin a rendering path, follow the path of all these elements,
and then apply a single stroke and fill for them all. This
approach dramatically speeds up rendering. As a fallback
for visualizations in which the order within a parent is
important, this option can be turned off and the Canvas ren-
derer draws each element individually.

When OffscreenCanvas is available for rendering, SSVG
creates a worker which uses the renderer on a separate
thread. For browsers which do not yet support Offscreen-
Canvas, the Canvas renderer is used directly. As a conse-
quence, SSVG does not require OffscreenCanvas to work.
We show a performance comparison between single-thread
usage of SSVG and SSVG with two threads in Section 7.

The DomHandler manages the mapping between DOM
elements and the corresponding VDOM elements so that
interactions can be propagated to the correct elements. The
DomHandler lives on the main thread since the Web
Worker has no access to the DOM. The CanvasRenderer
only uses the VDOM to render since it has no access to any
elements if it is being called from the renderer thread.

5.5 Features and Limitations

SSVG supports JavaScript features frequently used in SVG
information visualization such as adding and removing ele-
ments, setting and reading attributes, setting CSS classes, and
setting styles via CSS and via the style attribute. Atmichasch-
wab.github.io/ssvg-tests/, we track SSVG’s rendering qual-
ity by comparing it with SVG’s rendering output across a
growing set of examples. This allows us to work on support-
ing more advanced SVG and CSS features while maintaining
the established capabilities. The full list of supported and
experimental features is available on the testing website.
SSVG does not yet support SVG definitions such as arrow
heads, advanced path settings such as stroke-dasharray, or
SVG animations. D3.js functions with complex DOM opera-
tions, such as nested data selections or reordering SVG ele-
ments in the DOM, have limited support within SSVG. We
aim to add implementations for these features in the future to
supportmore use cases. Generally, visualizations can achieve

Fig. 6. SSVG’s internal architecture. The main file sets up the Canvas
and passes it to the CanvasRenderer through the CanvasWorker if Off-
screenCanvas is supported, or directly otherwise. The main file inter-
cepts function calls such as setAttribute() to DOM objects and
captures the initiated attribute changes in the DomHandler. These
changes are propagated to the local VDOM as well as to the renderer
VDOM. The renderer uses the up-to-date VDOM and included utility
functions to draw the Canvas.
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the same DOM changes through simpler operations that are
already supported by SSVG, such as D3.js transitions instead
of SVG animations, and single-depth data selections with
nested elements instead of nested data selections. SSVG has a
growing implementation of CSS and supports rule priorities.
We will support more features in the future based on priori-
tized importance for the visualization community.

6 USING SSVG

SSVG currently works on visualizations with D3.js version 3,
4, and 5. In most settings, users simply have to include a new
script tag on their website. The automatic version of SSVG
detects SVG visualizations on the website and automatically
enables SSVGwith default settings:

<script src=“//unpkg.com/ssvg/ssvg-auto.js“>
</script>

If more control is desired, visualization creators can use
the manual version with new SSVG(). This can be used to
create separate instances of SSVG for multiple SVGs, in
which case separate web workers would be created for each
visualization. The manual version also allows passing
settings:

<scriptsrc=“//unpkg.com/ssvg/ssvg.js“></script>
<script>new SSVG({

safeMode: false, useWorker: true,

getFps: function(fps) { console.log(fps); }

});</script>

The settings (see ssvg.io/docs) include:
safeMode (default false): With safeMode enabled, SSVG ren-
ders all elements individually. This is closest to SVG-based
rendering.

useWorker (default true): If supported, use a Web Worker.
getFps: A function which receives the current rendering

performance. The FPS drops to 0 for visualizations with no
animation to avoid unnecessary work.

We recommend minimizing the use of transformations
for x and y positions, as these are difficult to optimize. In
general, little work is needed to enable SSVG on a D3.js
visualization.

6.1 Debugging With SSVG

While a VDOM is maintained in memory, one drawback of
SSVG’s Canvas rendering is that the VDOM elements are
not readily available for browser inspection. This can make
development more difficult, and does not allow easy access
to the elements for users of the visualization. To support
continued SVG debugging even on SSVG-rendered visual-
izations, we provide a toggle to switch back to SVG render-
ing for development purposes. Once SSVG is included, re-
loading a website with an svg parameter will temporarily
disable SSVG. For example, if vis.com loads a SSVG visu-
alization, then vis.com?svg disables SSVG and allows tra-
ditional browser-based inspection. If unfamiliar users
attempt to inspect a SSVG visualization, a comment in the
HTML explains that this is an SSVG visualization and
provides the URL to enable SVG inspection. Thus, the work-
flow is to debug in SVG but toggle SSVG to monitor

performance. Final presentation is in SSVG; should another
user ‘Inspect’ the visualization, they will see instructions to
toggle SSVG and view the SVG DOM as normal.

7 UTILITY

We demonstrate the utility of SSVG for visualization in prac-
tice and in research, and evaluate it on common visualiza-
tions and visualization sizes. SSVG works out of the box on
24 of 25 D3.js (v3, v4, v5) visualizations found on bl.ocks.org.
In four benchmarks, we show that SSVG renders 3–9� faster
than SVG. While performance varies, in one benchmark we
find SSVG performs similarly to the speed of a native Canvas
implementation. Further, we show that SSVG can be used
for current research in two examples. First, we re-create an
example publication from IEEE VIS 2018 [35] with SSVG
whichwas originally implementedwith canvas, demonstrat-
ing that work which typically happens offline or in complex
Canvas or WebGL environments can be implemented and
shared in the D3.js and SVG format which is better under-
stood by the community. Second, we show how SSVG was
used in a CHI 2020 visualization publication to render visu-
alizations on wrist bands of smart watches [23]. Finally, on a
IEEE VIS authorship network visualization, we demonstrate
that expanding the scope of SVG enables visualization crea-
tors to focus on visual marks during development.

7.1 Bl.ocks.org

To test the general applicability of SSVG to D3-based data
visualizations on the Web, we selected a set of 25 examples
from bl.ocks.org to try SSVG on without any code changes.
We selected the visualizations based on interactivity, anima-
tions, and amount of data to test SSVG’s stability across
challenging conditions.

With the only change to the visualizations being to load
SSVG, SSVG fully worked on 24 out of the 25 visualizations.
Twelve of the correctly-working visualizations are shown in
Fig. 8. The one visualization that did not work correctly
actually renders correctly, but only very slowly. An analysis
revealed that the visualization unnecessarily deleted and
re-created many of its elements in each frame. Because
updates occur much more frequently in data visualizations
than node creations, SSVG is more optimized for updating
attributes, and creating an element involves the additional
cost of transferring the information across threads. A two-
line change in the visualization code prevented the unneces-
sary deletion and re-creation of elements, and cause SSVG’s
rendering to be smooth. With this change, all 25 interactive
visualizations work with SSVG.

While we are working on continuously growing our sup-
port for SVG features, we demonstrated here that SSVG
works a large subset of D3.js visualizations to be of immedi-
ate use to the visualization community. At ssvg.io/exam-
ples, we present a list of SSVG-rendered visualizations. At
osf.io/ge8wp, we document the evaluation of the 25 exam-
ple visualizations with testable demos.

7.2 Benchmark

To measure our success in achieving goal G3: high perfor-
mance rendering, we take a D3.js SVG data visualization
and compare its performance against SSVG rendering. We
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create a simple visualization with many marks but little
computationally-heavy work (Fig. 7). Data points move in a
circle at varying radii and speeds (also visible on ssvg.io).

Visualization. For the benchmark, we use a simplified ver-
sion of the circular visualization: All elements are gray and
begin moving immediately. We gradually increase the num-
ber of data points with a step size of 100 nodes and average
the rendering performance over a time period of 6 seconds
at each step. We create a native Canvas implementation for
the same visualization to compare performance.

Setup. For software, we use Google Chrome version 78.
For hardware, we use a Apple MacBook Pro (16-inch, 2019)
with 32 GB memory, an 2.4 GHz 8-Core Intel Core i9 proces-
sor and AMD Radeon Pro 5500M 8 GB graphics card,
capped at a 60 FPS tick rate by the OS and hardware dis-
play. Performance will vary across devices due to varying
hardware and software. Additional results for other hard-
ware, including smart phones, is provided at osf.io/ge8wp
and briefly described below. Also note that the frame rate
results also imply corresponding interaction delay: for sin-
gle-thread systems, such as SVG and Canvas, the interaction
delay is equivalent to the FPS because interactions can only
be picked up when the rendering process is done. For
SSVG’s multi-threading, interaction performance is at least
as high as rendering performance.

Results. The performance results for rectangles are shown
in Fig. 9. At 15,000 nodes, SSVG renders about 9� faster
than SVG, and overall about on par with a custom native
implementation of the visualization for Canvas. To stay
above a rendering performance of 30 FPS, SVGs limit data
visualization creators to about 2,500 data points, whereas
SSVG supports about 35,000 data points at the same frame
rate without any code changes; a 14-fold increase. Even for
browsers that do not yet support the multi-thread setup,
SSVG still allows up to 14,000 data points. This shows that
the bigger contributor to SSVG’s performance improvement
over SVG is the ability to render dynamic SVGs as Canvas,
side-stepping the browser’s rendering pipeline by intercept-
ing JavaScript function calls without any changes to the
SVG visualization code.

CPU Scaling. To compare performance across different
CPU powers, we measure SVG and SSVG performance on a
computer using full CPU clock speed, as well as using only
half the CPU’s clock speed. Given twice the CPU perfor-
mance, SVG’s performance increased by 50 percent. How-
ever, SSVG increased its performance by 100 percent. As
there is less overhead, SSVG can better take advantage of the

Fig. 9. Rendering performance comparison between SVG (blue), SSVG
(yellow), SSVG with Stardust using WebGL (orange), custom native
implementations of the same visualization for Canvas (green) and Star-
dust (cyan), and a single-threaded version of SSVG and SSVG with Star-
dust (yellow and orange, dash-dotted) that shows how much multi-
threading contributes to SSVG’s performance. At 20,000 nodes, the
SVG only renders at about 6 FPS, leading to jank and a bad user experi-
ence. Meanwhile, both SSVG implementations render at about 55 FPS,
on par with and even outperforming custom native implementations of
the same visualization in Canvas and WebGL. Data and implementa-
tions at osf.io/ge8wp.

Fig. 8. A set of 12 SSVG data visualizations. The visualizations were
taken as-is from bl.ocks.org and were not modified for SSVG usage
beyond including a script tag. Live at ssvg.io/examples.

Fig. 7. A sample visualization which counts the completed turns for particles moving in a circle, rendered with SVG (left) and SSVG (right) over one
minute each. While the particles have made 18 turns with SSVG, only 5 turns were completed with SVG. The number of particles is gradually
increased. SSVG’s rendering contains more particles for a given framerate, demonstrating its higher performance. Live on ssvg.io/examples/donut.
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faster CPU. On a fast computer, SSVG performs even faster
than the native Canvas implementation because multi-
threading is more advantageous there. This data is included
at osf.io/ge8wp.

Smart Phones. Initial benchmarks on smart phones show
average of a 55–60 percent rendering performance increase
for 1,000–10,000 rectangles on an iPhone SE iOS 11 for
Chrome 73 and Safari 11, and an average of 180 percent
speedup for a Pixel 3 device.

WebGL. When evaluating our basic Stardust WebGL ren-
derer (see Section 5.4), we found similar performance com-
pared to the Canvas-based worker. Based on these results,
our impression is that the Canvas renderer is already quite
optimized for this use case and little improvement can be
made by switching to WebGL.

Conclusion. These benchmarks show how that a speedup
of up to 9� is possible, and our results in Fig. 10 show that
this speedup is consistent across different shapes. In the
next sections, we demonstrate real-world applicability: We
analyze the utility of SSVG for a previously-published VIS
paper technique, describe how SSVG was used in a research
project published at CHI by researchers unaffiliated with
the authors, and discuss more examples.

7.3 Probabilistic Graph

Faster Web rendering with SSVG would allow our commu-
nity to share more complex designs or data with online
demos. We could then collectively learn from these online
demos because they are created and shared in a familiar for-
mat. To demonstrate this aspect of SSVG’s utility to the data
visualization research community, we present an example
case where SSVG could be used to make available online
recent research which was completed offline.

In 2017, Schulz et al. [35] developed probabilistic graph
layouts including uncertainty, drawing thousands of nodes
and marking clusters. Unfortunately, the work was com-
pleted offline, making the results difficult to share. Here, we
create a SVG-based visualization with similar visual encod-
ing to demonstrate feasibility of rendering similarly struc-
tured networks with many nodes. Our implementation is a
two-layer force layout where the node groups repel each

other, and individual nodes are pulled toward the node
group centers. Our recreated visualization contains 6,000
elements (Fig. 12). SSVG increases rendering performance
from 9 FPS to 23 FPS and decreases the time to stabilize the
network layout from 79 to 27 seconds. Our demonstration
shows that rendering this probabilistic graph using a simple
D3.js and SSVG implementation is feasible even with large
datasets. While other factors, such as availability of cluster-
ing algorithms, may have played a role in their decision to
implement their research offline, we want rendering perfor-
mance to not dictate whether work can be shared online.

7.4 Network Visualization

In this example, we demonstrate SSVG’s utility with the abil-
ity to focus ondesign even in complex network visualizations.
This is a domain which typically requires heavy attention on
implementation due to the many visualized data points.
Using data from Isenberg et al. [20], we explore the co-author-
ships of researchers depending on location. We use multiple
forces to determine authors’ positions on the visualization,
for which D3.js provides excellent support: A collision force
prevents node overlaps and a geoposition force determines
an author’s position on the map. Co-authors are linked and
pulled toward each other, whereas researchers without col-
laboration are repelled. A combination of these forces moves
authors close to their affiliations, but allows collaborations to
have a significant impact on their position (Fig. 11). The visu-
alization is available online at ssvg.io/examples/infovis and
has been presented as a IEEEVIS 2019 poster [33].

We created this visualization by starting with an example
network graph on bl.ocks.org [6], added a map background,
and defined custom forces to move nodes to the desired
locations. We did not have to learn the API of a network
visualization library nor implement custom drawing func-
tions. Instead, we were able to benefit from forces and colors
provided by D3.js, and SSVG is able to render the visualiza-
tion smoothly (44 FPS instead of 15 FPS) and quickly produ-
ces a stable layout (5 seconds instead of 16 seconds). In this
familiar workflow, we can add other forces provided by D3.
js to experiment with different layouts, or style nodes differ-
ently with CSS. We believe maintaining the D3.js design
process is helpful to data visualization research.

7.5 Windmap

We developed a remake of Fernanda Viegas and Martin
Wattenberg’s popular wind map [39], as illustrated in Sec-
tion 2 and Fig. 1, to demonstrate that particle visualizations
are feasible with SVGwhen SSVG is used for rendering. Our
new implementation and performance results are shown in
Fig. 1.Wind is visualized as 3,000 traces at a given time using
four line segments with decreasing opacity, or 12,000 indi-
vidual SVG elements total. Opacities and colors are simply
set with CSS, and the lines are drawn with D3.js. The SVG
visualization renders too slowly and causes low browser
interactivity with this much data (�7 FPS). Including the
SSVG library immediately results in an improved perfor-
mance of 36 FPS. This new windmap visualization can now
be customized easily, such as styling path colors with CSS,
and data binding makes the code’s structure clear. In Fig. 13
we compare the SVG and SSVG rendering pipeline,

Fig. 10. Rendering performance comparison between SVG and SSVG
for text, circle, rectangle, and line primitives. SSVG outperforms SVG
across all tested shapes. Around 17,000 lines, SSVG’s performance is
lower than with more and fewer nodes. This anomaly requires further
investigation.
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demonstrating that SSVG performs faster both by executing
the rendering pipeline more quickly, as well as preparing the
next framewhile rendering via themulti-thread setup.

7.6 e-Ink Data Visualization

SSVG is open source and has already been used in research
projects published at CHI. Klamka et. al used SSVG to effi-
ciently render data visualizations on e-Ink devices [23],
which can render images but not SVG. The researchers
implemented their data visualizations using SVG and D3.js,
their preferred technologies, and use SSVG to render images
on the devices. We canvassed their opinion via personal cor-
respondence: “I don’t know any libraries for Canvas that are
as powerful as D3.js, and using D3.js allows us to re-use pre-
viously created visualizations. With SSVG, we don’t need to
implement hit testing or give up inspecting DOM elements.
SSVG can be a useful tool because researchers often have to
decide between smooth rendering and the flexible experi-
mentation with the relatively easy D3.js implementation
that they are used to.”

They noted that SSVG is easy to use: “The first steps are
super easy, and there are good examples on the website [..].
You need a little bit of time to get used to debugging, switch-
ing back to the SVG, but even that is pretty straightforward.
If things don’t work, you can check if the normal SVG
worked to check if the issue is in your code or in how SSVG
translated it to Canvas. [..] Even our new students are getting
the hang of it and are able to use SSVGwell. It’s working out
nicely.” However, some shortcomings exist: “Not yet all fea-
tures of D3.js are supported. [..] I try to avoid D3.js’ nested
selection groups, as SSVG seems to struggle with that”.

8 DISCUSSION

SSVG consists of multiple techniques that are executed in a
pipeline to take data visualizations created with SVG, CSS,
JavaScript, and D3.js, and render them smoothly in a

Fig. 11. IEEE VIS Information Visualization paper authors of the last 10 years, visualized by a combination of geolocation and co-authorship of
papers [33]. Author nodes are sized by number of papers and colored by affiliation. Authors with at least 8 papers are shown with initials, such as
Hanspeter Pfister (HP) or Sheelagh Carpendale (SC). Visualization researchers on the US East coast often collaborate with Europe, and research-
ers from Australia tend to collaborate with the US and Europe. Several authors are placed far from their institution. For example, Tim Dwyer (TD) and
Huamin Qu (HQ) are placed far from Australia and Hong Kong, respectively, due to co-authorships with collaborators in the US and Europe. Without
SSVG, this visualization’s layout takes 16 seconds to compute, whereas with SSVG, the layout only takes 5 seconds and the visualization renders
smoothly.

Fig. 13. Chrome’s performance analysis on the windmap visualization
for SVG (top) and SSVG (bottom). In 300ms, SVG renders one frame,
whereas SSVG renders five frames. Parallelization is a strong perfor-
mance advantage, as well as saving costly DOM access and avoiding
the expensive browser rendering pipeline.

Fig. 12. A graph layout with 6,000 elements rendered with SSVG. This
could be used as a starting point to make Schulz’ work [35] open and
accessible on the Web. SVG renders at 9 FPS, and layout takes 79 sec-
onds to stabilize. SSVG renders at 23 FPS and arrives at a stable layout
in 27 seconds. Available at ssvg.io/examples/probabilistic.
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separate thread. Below, we discuss each step before discus-
sing high level points.

1. DOM to VDOM. This research demonstrates that it is
possible to populate a VDOM based on the DOM, and keep
it up to date by intercepting and redirecting JavaScript
DOM function calls. The ability to automatically obtain an
interactive VDOM, and de-coupling the SVG specification
from SVG rendering, opens up many opportunities for data
visualization system researchers that want to minimize
changes to the visualization creation workflow based on
SVG and D3.js while being able to customize visualization
output. In this work, the VDOM is used for fast rendering
of thousands of nodes. Other works may focus on extending
the capabilities of SVGs, such as introducing z-index

attributes to manage the layering of elements, which is not
possible with the current SVG standard. Other possible
extensions include the simplification of existing features,
such as the direct use of gradients or arrow heads within
SVG elements, as opposed to requiring separate SVG defini-
tion elements to be created. We also hope that other work
will take advantage of a dynamic VDOM to target more
devices, such as done in the published e-Ink data visualiza-
tion project, or to automatically reposition or rescale ele-
ments to fit different screen sizes such as smart phones.
Lastly, the VDOM may also be useful for systems that can
make systematic accessibility adjustments for visualiza-
tions, such as to improve contrast or systematically avoid
colors that are hard to distinguish by red-green colorblind
users. Because of the ability to automatically obtain a
dynamic VDOM for most DOM-based visualizations, such
systems would be applicable to a wide set of visualizations,
often without necessary changes, and a consistent set of
accessibility settings could be applied across these visual-
izations. To summarize, the ability to obtain a dynamic VDOM
allows visualization system researchers to customize visualization
rendering to improve aspects such as performance, expressivity,
responsiveness, and accessibility.

2. VDOM to Worker. Our work showcases that a VDOM
can be automatically synchronized to a worker thread to
parallelize work. Our approach bundles VDOM updates
and sends the data to the worker thread via JavaScript
worker messages and SharedArrayBuffers. Clearly defined
update messages, such as ones with unique element identi-
fiers, have the advantage of synchronizing the VDOM on
the worker more robustly, but come with significant over-
head in message size and work to update the VDOM ele-
ment-by-element, rather than allowing grouped attribute
changes. To support fast rendering of thousands of ele-
ments, we minimize lookups of individual elements and
batch attribute changes. This comes with challenges of
uniquely identifying elements if elements are removed and
added at the same time as they are being modified, and we
do not yet support nested D3.js selections that further com-
plicate the update structure. These trade-offs between syn-
chronization approaches should be explored in future
visualization systems aiming to enable parallel work.

3. Canvas Renderer. Our renderer connects the paths of all
elements within the same parent element that have the
same color. This speeds up rendering, but the grouping
changes the order in which elements are painted. In some
cases, this can change the layering of elements compared

with the original SVG. SSVG comes with a fallback option
to render elements individually to more reliably arrive at
the same result as SVG rendering. Ideally, an intelligent ren-
derer would identify which elements can be grouped into
batched paint calls without layering issues, and which ele-
ments need to be rendered individually. To further speed
up rendering and to increase reliability, data visualization
system researchers should explore strategies to intelligently
group Canvas drawing calls.

4. OffscreenCanvas Rendering. SSVG demonstrates that
multi-thread rendering using OffscreenCanvas is possible
for data visualizations without additional technical burdens
on visualization creators. To achieve this, SSVG synchro-
nizes the SVG VDOM to the worker thread. Other possible
architectures could make multi-threading easier for canvas
visualizations, e.g., by sending Canvas drawing calls to the
worker, as opposed to sending a virtual DOM. Future visu-
alization system research should explore these and other
strategies to make OffscreenCanvas useful and feasible for
data visualization creators. Beyond OffscreenCanvas specif-
ically, our work shows that giving visualization researchers
the ability to customize rendering allows us to benefit from
new technologies. This may be advantageous for data visu-
alization when further future technologies are released. For
example, Vulcan is a new graphics and compute API that is
currently starting to be supported by browsers, and the abil-
ity to customize rendering allows the data visualization
community to take advantages of new developments such
as these while also benefiting from the open format of SVGs.

Overall, SSVG combines several existing and new ideas to
achieve Canvas- and WebGL-based rendering on a worker
thread of traditional SVG and D3.js visualizations. Each
step — DOM, CSS and JS ! VDOM ! worker VDOM !
Canvas/WebGL drawing — comes with opportunities and
trade-offs. SSVG focuses on replicating SVG and DOM
capabilities most efficiently with optimized communication
and rendering, and other systems may focus on other
aspects, such as added expressivity and accessibility.

Custom APIs. The benefits of by-passing the browser’s
rendering pipeline can also be achieved by using Canvas
directly, or by using one of the available frameworks that
provide a custom API to design visualizations. While this
solution makes sense in special cases, we believe it is impor-
tant for the data visualization ecosystem to continue to
invest in the open, inspectable, and flexible format of SVG,
and build on established works like D3.js.

Advantages Over Browser-Based Rendering. The perfor-
mance gains of SSVG are achieved by replacing the normal
browser rendering process, by batching attribute changes,
by avoiding work on unchanged nodes, and by taking
advantage of new multi-thread technology. In each step, we
take advantage of how data visualizations are typically cre-
ated: CSS rules typically do not change over time, many
SVG features are rarely needed, and many nodes’ attributes
are often changed at once. This domain knowledge of how
SVGs are typically used in the data visualization domain
allows us to make assumptions, simplifications, and perfor-
mance improvements that are not possible for browser ven-
dors without breaking backward compatibility. Through
public discussions and personal communication with the
Google Chrome SVG team, we have advocated for
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systematic improvements to SVG rendering. In some cases,
we were successful: as part of the discussion surrounding
our suggestion to add a “bulk setAttribute” function on
many nodes at crbug.com/978513, improvements in the
existing setAttribute function were identified, implemented
and deployed in Chrome that speed up its execution by
about 20 percent. We continue to work with the Chrome
team to share our lessons learned. However, from our dis-
cussions, it is clear that substantial improvements, such as
the 3–9� speedup provided by SSVG, are not feasible for
browser vendors because they can not make the assump-
tions and simplifications that we can make within the data
visualization community. Therefore, we argue that commu-
nity-driven visualization systems are a useful path toward
greater SVG performance in data visualization.

9 CONCLUSION

We contribute Scalable Scalable Vector Graphics (SSVG):
a JavaScript library for faster rendering and interaction of
Scalable VectorGraphics (SVG). As this is a foundational tech-
nology for the visualization community, we hope SSVG will
enable the development of new and complex data visualiza-
tions on the Web. We show that SSVG automatically enables
a 3–9� performance boost on four rendering-intensive visual-
izations. We use an online collection of data visualizations to
demonstrate compatibility.

We believe that enabling visualization creators to use
their generally-preferred technology—SVG—allows them
to increase the number of iterations within the design pro-
cess because it is a high-level specification with CSS custom-
izability. This may aid researchers to focus on the visual
design and interpretation, rather than on Canvas and
WebGL implementation details. With SSVG, we encourage
continued SVG-based visualization research because the
result is open, meaning it can be easily customized, ana-
lyzed and learned from—crucial elements for research. To
visualization system designers, we show how Canvas ren-
dering and multi-threading can be integrated into users’
visualization without many changes in their way to create
visualizations, and hope that this approach will inspire
more work that adds to existing infrastructure. Ultimately,
we hope to contribute to the success of the visualization eco-
system by making Scalable Vector Graphics more scalable.
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please visit our Digital Library at www.computer.org/csdl.

3234 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Brown University. Downloaded on September 04,2022 at 03:14:38 UTC from IEEE Xplore.  Restrictions apply. 

https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas/OffscreenCanvas#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas/OffscreenCanvas#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas/OffscreenCanvas#Browser_compatibility
http://dx.doi.org/10.31219/osf.io/ykwah
https://smus.com/canvas-vs-svg-performance/
https://smus.com/canvas-vs-svg-performance/
http://hint.fm/wind/
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
https://vuejs.org


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


