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Introduction
According to Dhimish, et al. [1] as well as in another work by Solo´rzano and Egido 
[2], hotspots are abnormal high temperatures at connections between power equip-
ment or in power system components themselves caused by faults and improper 
operation of equipment within the network. Normally, the temperature of objects 
has been used as a reliable index for gauging the health of biological and inanimate 
systems. In biomedical fields, Najimi et  al. [3] opined that temperature measure-
ments give easy insight into the existence of diseases within the body. The story 
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The application of computer vision continues to widen with advancement in technol-
ogy. Imaging systems which provide necessary inputs to the computer-vision-based 
models can come in various ways. Such as X-ray images, Computed Tomography 
(CT) scan images, and Infrared (IR) images. This paper is a review of different appli-
cation areas of infrared thermography (IRT) for monitoring the status of electri-
cal power equipment. It summarizes in tabular form recent research and relevant 
works within the field of condition monitoring of power assets. A general review 
of the application of IRT in power devices was undertaken before a specific review 
of selected works based on IRT for important electrical power equipment with a tabu-
lar review of possible causes of hotspots using photovoltaic installation as a reference. 
Results of previous works were presented with highlights on performance metrics 
used and accuracies achieved. Emphasis where made on the future potential of IRT 
and some associated techniques. The work saw that heat production within systems 
during operation is an important characteristic that enables IRT to become applica-
ble for monitoring diverse physical systems, most importantly power systems. The 
high cost of high-definition, and long-range IR cameras limits the wide adoption 
of the technology for its potential applications for monitoring power installations. 
The work recommends future research in the development of affordable IR imaging 
systems with advanced features for condition monitoring of physical systems such 
as power installations.
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is not different in physical industrial systems made of interconnected systems that 
usually convey energy from one point to another. Different types of thermal sens-
ing devices have been developed for various temperature measuring applications; 
ranging from conventional thermocouples, thermostats, thermistors, thermopiles, 
thermometers, and state-of-the-art infrared (IR) thermal pointing devices, IR imag-
ing cameras, etc. Hence, Bach et al. [4] saw that detection of hotspots in equipment 
or installations could become quite a challenge using the conventional methods of 
temperature measurements because they could become time-consuming, costly, and 
unsafe for personnel and equipment. However, Infrared imaging or thermography 
would be suited for applications where safety, cost, and time must be optimized. 
Moreover, Madding et  al. [5] and Usamentiaga et  al. [6] inferred that the need for 
good resolution, optimal temperature range, stability, and accuracy of the tempera-
ture measuring device encourages the adoption of the IRT application as the method 
of choice for condition monitoring of industrial systems.

In order to perform noncontact temperature recording, the camera will be appro-
priately set for optimal thermal imaging temperature. Some of these settings are not 
limited to emissivity, resolution, etc. Others include the transmission ability of the 
transmitting medium (usually air) and the temperature of that transmitting medium. 
All these settings will affect the ultimate output for the temperature of the object 
being viewed. These parameters and others ensure that the thermal imaging camera 
has become an excellent tool for condition monitoring of electrical and mechanical 
systems in the power industry.

For instance, Alvarado-Hernandez et al [7] pointed out that monitoring of power 
equipment would inadvertently aid the efficiency of the equipment and improve 
users’ experience and give leverage for enhancing the operation of the device using 
advanced intelligent optimization techniques.

This work was organized to give insight into the importance of using IR imaging 
techniques for monitoring the status of equipment in electrical installation with 
tabular briefs of diverse works done by different authors using the concept of infra-
red thermography (IRT). Then, under specific application areas, critical reviews 
of research done using IRT were presented by showing observed drawbacks of the 
highlighted methodologies and concluded with recommendations for possible future 
research.

Review of IRT methodology in various works
Between 2002 till date, many research works have been published in reputable journals. 
More compelling is that the researches have grown over the years and some of the work 
are presented in Table 1 which shows the various methods and focus of the works.

One important advantage of IRT for power equipment monitoring lies in the fact 
that the effectiveness and efficiency of the technique to produce good results does 
not depend on the operating voltage of the equipment, hence it has found wide use 
in many areas of equipment monitoring.

Selected papers where infra-red thermography were applied in different areas or 
critical devices in the power installations was reviewed in the succeeding sections.
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Table 1  Recent works in infrared thermography for monitoring electrical equipment

Reference Methodology/focus of the research

Feng et al. [8] The work presented a deployment of an electric transformer thermal 
assessment scheme using a matching heat model of the thermal circuit. 
The model sampled mean temperature values of the oil, coils, core, and 
ambient as well as thermal capacitors and the status of the ONAN/OFAF 
cooling schemes, whereas the corresponding output parameters are the 
oil changes in temperature at the inlet and outlet channels, the tempera-
ture of the hotspot, the position of the tap changer, loadability indices, 
and some evaluation criteria
The model was simulated using an object-based technique in three parts: 
real-time capturing of temperature inputs, development of the thermal 
model and monitoring terminal, and internet application

Ali-Younus and Yang [9] Studied IR thermal image using discrete wavelet at second decomposi-
tion level under four machine states: normal, bearing, mass-imbalance, 
and misalignment faults. The authors presented a mechanism for obtain-
ing machine state indices from field IRT images using DWT. The method 
involves a setup of a 0.5hp variable dc motor fault simulator with a flexibly 
coupled 30 mm diameter shaft rotating at 3450 rpm and monitored by a 
FLIR Thermocam. Features of interest for the final analysis of each of the 
four machine conditions are the average, standard deviation, kurtosis, 
entropy, mean absolute deviation (MAD), and skew

Manana et al. [10] Analyzed various electric motor manufacture-induced defect conditions 
like turn-turn faults, earth to live winding faults and disconnected wind-
ing, among other fault conditions, which can come from manufacturing 
of field poles and insertion inside the stator

Eftekhari et al. [11] Presented a measure of inter-turn short circuit fault in induction motor in 
the stator electric circuit using IRT. Histogram of thermal images provided 
features of interest gotten and compared between good and abnormal 
4pole, 2hp, 380 V IM driving servo motor load.
The stator coils were supplied with 220 V to evade catastrophic harm to 
the machine, especially in the short circuit condition. In computing the 
distance of the r color vector to the average vector μ, the Mahalanobis 
distance was preferred over the Euclidean distance for measuring diver-
gence in pixels of the IR image. The authors used Hullindex, Hotarea, and 
Histogrammean values to forecast hot spots in the stator

Cui et al. [12] The work discussed the method of feature extraction, de-noising, and 
segmentation as used in image processing for improving accuracy of 
diagnostic models by the use of Backpropagation and Radial Basis Func-
tion in neural networks for intelligent solutions of faults

Jadin et al.[13] The paper focused on a semi-automatic, qualitative IR image analysis for 
quick thermal fault detection and classification. Normalized Cross-Cor-
relation (NCC) algorithm was adopted to detect related parts of interest 
in the pictures. Thereafter, important numerical features of the images 
were collected from each identified region and grouped with multilayer 
perceptron (MLP) for obtaining the temperature of the electrical unit

Huda and Taib [14] The authors identified a system for checking the status of power equip-
ment using intelligent networks taking features like component-based 
intensity features, first-order histogram-based statistics, and gray-level 
co-occurrence matrix gotten by analyzing the images, that are applied 
as input for the neural network model. Using four separate training 
algorithms like Resilient back propagation, Levenberg–Marquardt, Bayes-
ian Regularization, and Scale conjugate gradient, the work trained the 
multilayered perceptron networks. With the component-based intensity 
features outperforming the other two features. Later, the Levenberg–Mar-
quardt produced good classification results when training the MLP net-
work algorithm for the classification of the status of electrical equipment

Huda and Taib [15] The use of intelligent IRT for preventive and predictive maintenance for 
fault detection in electrical devices was the goal of the research, thermal 
defects in electrical equipment. The authors applied statistical structures 
to feed the classification network. And, used both MLP as well as discrimi-
nant analysis classification models. With a classification accuracy of 82.4%, 
the discriminant-based model outperformed that of the neural network 
classifier
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Table 1  (continued)

Reference Methodology/focus of the research

Garcia et al. [16] IR image segmentation and statistical feature extraction for regions of 
interest by the application of a motor current signature analysis (MCSA) 
balancing technique for isolating bearing issues, lop-sided mass, and 
misaligned rotor

Karvelis et al. [17] The paper focused on the automatic pattern recognition process in 
infrared images based on object matching by analyzing four abnormal 
electro-mechanical conditions of the IM like imbalances in the stator, 
failure of the cooling fan, defective bearings, and broken rotor structure. 
The authors divided the IM into the frame, fan cover, and motor coupling 
as well as using a combination of photometric and geometric invariant 
descriptors. The feature descriptors were obtained in 6 steps from the 
various points of interest located in the machine. SIFT key points were 
gotten from both the training and target image samples. Then, the 
geometric transformations between the two images were calculated 
after matching their respective SIFTs. Later, models of the test and train 
images were matched using earlier geometric transformations. The 
average intensity of any section of the IM together with its surroundings 
were obtained. Before classifying the temperature to isolate the nature of 
the problem. The research captured IR images of a 1.1-kW IM driving an 
auxiliary DC machine using a FLIR S65 IR camera. Applied the Naïve Bayes 
and C4.5 Tree-based classification models validated by a tenfold cross-
validation model to gauge the classifier’s performance

Janssens et al. [18] Used two image-processing pipelines for identifying rotor imbalance 
irrespective of bearing defects by firstly discounting successive image 
frames that are thereafter abridged to their spread within the image 
coordinates and secondly identifying bearing defects notwithstanding 
machine imbalanced by the introduction of the standard deviation of the 
temperature, the Gini coefficient, and the Moment of Light

Zou et al. [19] An original IR-based two-stage artificial intelligence classification tech-
nique for diagnosis of faulty states of electrical devices.
The initial stage was based on the K-means algorithm for the extraction 
of region and thermal data. The next stage deals with the selection of 
IR image-relevant features. A set of seven features of both stages were 
taken as input and fed to the support vector machine (SVM) classification 
algorithm. The final SVM model was optimized using a coarse-to-fine 
parameter optimization method and compared with backpropagation

Munoz-Ornelas et al. [20] Studied how camera position or location impacts monitoring of induc-
tion motors from 6 orientations not limited to distance from the object, 
the angle from the target and height above the target, etc.

Ramirez-Nunez et al. [21] A new method of auto fine-tuning of the thermal camera with additional 
external temperature sensors to standardize IR images for improved 
accuracy of the actual temperature of the object

Singh et al. [22] Electric motor transient analysis at different stages of operation using IRT 
and applicable pseudo-coloring method

Singh et al. [23] Failure of cooling system recognition using IRT for no-load and loaded 
operating condition

Dragomir et al. [24] The authors looked at the effects of dust from electrical assets on IR 
images and gauged the associated thermal stress. They presented a 
method of delineation of a copper bar into different six surface areas 
of various reflexivity with different thicknesses of dust particles on 
each surface area. Experimented with a 300A applied on the copper 
bar for 50 min until constant temperature was reached. The setup was 
accomplished with a FLIR T650oC alongside a temperature logger and a 
FLIR Max IR analytical software. And concluded that dust particles limit 
reflexivity from such metallic surfaces while enhancing its IR emissivity

Khan et al. [25] Presented the application of a specific IR camera called IRISYS (IRI4010) 
for condition assessment of electric motors and power transformers used 
along with the IRISYS ISI 4604–4000 Series Imager Software
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Table 1  (continued)

Reference Methodology/focus of the research

Dutta et al. [26] IR images of power equipment were captured and transformed to the 
appropriate HSI color model, taking cognizance of the hue region for 
further processing. Edge detection filters such as Sobel, Prewitt, and 
Roberts were applied to detect high-temperature areas within the IR 
image. The Otsu image segmentation algorithm was used for clustering 
the hue regions and with 27 IR images, analyzed with MSE and Peak SNR; 
the method provided improved segmentation results in comparison with 
its monochromatic images

Resendiz-Ochoa [27] Achieved a segmented thermal image using manual thresholding of the 
IR images, for detection of hotspots in power equipment under investiga-
tion

Liu et al. [28] Presented a rotor platform defect identification based on infrared image 
and convolution neural network (CNN) classification algorithm for auto-
selection of IR image feature and fault type identification

Lopez-Perez and Antonino-Daviu [29] Presents an illustrative model based on IR images that hinge on the study 
of Isotherms by showing the temperature gradient and locating the point 
of the defect using three case studies: a 4Pole 3ph 58 kW, 380 V motor 
driving a blower; a 2pole 3ph 10 kW, 380 V motor driving pump in polyol 
tank; and a 4pole 3ph 75 kW 380 V motor driving a fan cooling tower

Dragomir et al. [30] The work focused on the application of IRT for heat stress detection in HV 
busbar under electrical load considering the extraneous conditions and 
correction indices necessary for getting valid results

Mariprasath and Kirubakaran [31] The research identified various parameters and methods that can be used 
to assess the health of power transformers such as internal fault detectors, 
Recovery Voltage technique, Furan Current Analysis, Expert system based 
software, Frequency Response Analysis, online PD detection, Dissolved 
Gas Analysis, and Power quality systems. The authors highlighted the 
merits and demerits of each method and applied six case studies of IRT to 
depict different locations of hotspots in power transformers of different 
ratings and recommended IRT for effective, safe, and efficient CM

Sangeetha et al. [32] The research obtained single- and dual-dimensional relationships 
between the distance of image capture, emissivity, and hotspot tempera-
ture having derived a relationship between the aforementioned three 
parameters

Fambrini et al. [33] The research presented an auto-IRT-based system for fault real-time 
monitoring of power distribution networks using deep learning image 
processing-based neural networks. The legacy JSEG IR image segmenta-
tion was used and the result proved the method would supersede the 
manual monitoring method

Sahu et al. [34] The work presented an IRT methodology for monitoring aging accelera-
tion in transformer insulation, by calculating its per unit life. Thereafter, 
identified effects of transformer insulation’s Aging Accelerating Factor 
(AAFTi) caused by unusually high abnormal temperature on the equip-
ment windings. Data were sourced from IR images of transformers as well 
as associated readings of oil temperatures at the top of the tank taken at 
different intervals. The proposal discussed the effect tank coefficient of 
reflexivity and oil emissivity on predicting the hotspot in the windings 
using digital image processing with mathematical expressions found in 
the IEEE Guide to Loading. The authors developed a model equation for 
calculating the revised temperature value of the existing hotspot and 
record any mismatch error found. The model indicated that the actual 
hotspot in the winding depends on the winding hotspot temperature, 
the top oil temperature read by the IR camera, and the top oil tempera-
ture pointed by the oil temperature indicator

Najafi et al. [35] The authors proposed an interpretable Machine Learning containing an 
automated channel for assessing the status of power assets by means 
IRT dataset. The application of a pre-processing stage divides the images 
based on the unit’s temperature, that is cold or hot conditions. Finally, a 
sliding window technique based on AdaBoost and Random Forest (RF)-
based classifiers were utilized for segmentation
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Review of infra‑red thermographs in critical power equipment
Power transformers

Utami et  al. [38] presented a transformer monitoring scheme with IRT results of the 
tank, tap regulating device, cooling system, and external insulators. The work involves 
analyzing the top, bottom, sides, and center of two transformers (normal and abnormal) 
of the same rating and loading, whereas Asiegbu et al. [39] presented an RLC thermal 
network model that could reflect the basic equivalent circuit of the transformer which 
would be applied to develop a comparable analogous thermal model in terms of electri-
cal parameters. Changes in the thermal capacitance of power equipment indicate the 
condition of the insulation in inductive loads like transformers and cause the working 
temperature to increase. The analogous model was then used to perform the thermal 
gradient evaluation of the system. On their part, Fang et al. [40] proposed a method of 
fault diagnosis of electric transformers using semi-supervised learning to train infrared 
image processed data. The work adopted a support vector machine for fault classifica-
tion, whereas the infrared images were clustered utilizing the K-means technique. The 
authors used feature extraction and generative adversarial networks to get artificial data 
of the labeled images before applying a semi-supervised graph model to train both the 
labeled and unlabeled images. However, the SVM does not perform well for large data-
sets, requires a long period of training, and adversely affected by noisy datasets. Moreo-
ver, the SVM technique finds it difficult to compute local optimal condition and could be 
quite complex to implement. The major issue with K-means is linked to its vulnerability 
to outliers.

Mlakic et al. [41] applied modern machine learning tools for power asset monitoring 
inspired to present a fault identification technique in transformers using deep learning 
tools for the analysis of IR images of 10/0.4 kV distribution transformers. The authors 
applied the AlexNet CNN-based learning algorithm in Matlab for processing the raw 
image datasets. The work restated that as a diagnostic tool, the IR imaging tool can yield 
important insight into the heat intensity and its distribution within power equipment as 
well as the rate of energy flow from the hotspots in the device. These data can be applied 
to isolate the level of disorder within the unit. The authors emphasized that unequal 

Table 1  (continued)

Reference Methodology/focus of the research

Vidhya et al. [36] Used Symlet wave transform to achieve flatter transformer breather 
image decomposition of typical parameters of IR images. The images 
were represented in discrete form by the mechanism of discrete transfor-
mation. The statistical information derived from the transformation under 
different states of decomposition reveals the changes in the temperature 
distribution within the breather piping system at defined functional 
states of the transformer. The Symlet technique shows very low asym-
metric features in most types of Daubechies wavelets. Comparison of the 
decomposition was done for normal and abnormal operating conditions. 
Local regions were defined through feature descriptors like histograms. 
The result shows that wavelets can bring out inherent characteristics of 
the IR image

Mahami et al. [37] The work used the Bag-of-Visual Word (BoVW) to capture anomalies in IR 
features with Speeded-Up Robust Features (SURF) detector and descrip-
tor. Also applied the Ensemble learning-based Extremely Randomized 
Tree (ERT) to automatically identify anomalies in IM
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distribution of heat radiated from the cooling fins could be a result of the presence of air 
pouches or low oil levels therein. The research described the CNN architecture with the 
human visual system and how its layers effect the process of image recognition. The case 
study involves image acquisition during normal and abnormal conditions of the equip-
ment. The datasets are labeled based on the brightness of identified hotspots. However, 
large convolution filters used in the AlexNet is not quite optimal because of issue of 
overfitting, longer training time, etc. because it would increase the number of param-
eters, thereby raising the amount of unrelated features that can be extracted which limits 
the learning ability of the algorithm with respect to features common to different situa-
tions and therefore generalize poorly. And the depth of the AlexNet is not sufficient in 
comparison with other deep models like ResNet, VGGNet, etc. Again, the adoption of 
the normal distribution instead of the Xavier Glorot (XG) method for weight initializa-
tion, hinders the ability of the algorithm to overcome issues of vanishing gradient. The 
XG function can initialize weights of neural networks in a manner to limit the variance 
of the activations in each layer, thereby solving the problem of vanishing or exploding 
gradients, hence the XG function has been applied to later versions of AlexNet.

Similarly, Shiravan et al. [42] IRT and computational fluid dynamics (CFD) of 3 trans-
formers of different ratings; 630 kVA, 400 kVA, and 50 kVA. And predicted faults in the 
transformers’ cooling mechanism by a combination of both IRT and CFD techniques. 
The authors developed a thermal model of the transformers using nonlinear thermal 
resistive components which were developed further into differential equations consider-
ing design-dependent parameters (DDP) and empirical factors (EFs). The CFD technique 
used was finite volume based and simulated in ANSYS FLUENT version 19. Validation 
of the proposed model was done by comparing the maximum error and the root mean 
square error (RMSE) of the CFD model with that of the thermal model. Decision criteria 
were based on the difference in temperature between both methods was more than 4 °C 
for the radiator or top oil, then the unit is not okay; if it is 6 °C or more, then the unit is 
not only faulty but its cooling system is not good. The challenge of using the RMSE of 
evaluation metric lies in the fact that it is affected by the scale of data used such that as 
the error rises its value also increases. The RMSE is also dependent on the distribution 
of outliers within the dataset and would normally increase with the extent of the dataset.

But Jiang et al. [43] proposed a mask R-CNN and modified Pulse Coupled neural net-
work joint method for determining faults in bushings of electrical equipment using IRT 
images. Noting that problems in bushings make up 5–50% of faults in transformers, the 
authors used relative position and coverage area of fault as parameters of concern for 
feature extraction. The work noted that when PCNN method was used for segmenting 
the target pixels around the feature-mapped areas and extraction of the faulty regions, 
the result was an image with lots of difficulties to remove noises. This encouraged them 
to apply a simple linear iterative clustering (SLIC) to produce definite frames, thereby 
limiting undesirable effects of borders on the PCNN by finding the mean of nearby 
colors. By this method, the metrics of the PCNN were enhanced. Different bushing fault 
conditions were evaluated as dielectric loss, connection fault, oil leakage, and partial dis-
charge with regard to coverage areas. With over 2000 images from 51 stations in China, 
a batch size of 2, number of epochs and iterations per epoch set to 30 and 100, respec-
tively; the work used validation steps of 50 and simulated with an XEON-W3 processor 
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running Nvidia GTX 1080 graphics on Ubuntu 16.04 LTS operating system installed on 
64  GB memory. Nevertheless, the use of the PCNN could become cumbersome with 
respect to the complexity and number of parameters required to be set for optimum 
performance according to Huang, et al. [44]. In the same way, the author’s use of SLIC 
though commendable based on its preeminence over other methods could come with 
more challenges at the grouping stage of the K-means process, any improperly classified 
pixels may be transferred to yield undesirable superpixels and little regions are joined 
adjoining neighbor irrespective of the semblance in terms of the color Kim et al. [45].

Rotating machines

Electric machines constitute the main engine driving the power sector. Whether AC 
or DC-operated, they can be deployed as power generators or motors. Hence, they can 
function as sources of power or loads. The work by Phuc et al. [46] developed a ther-
mal model independent of exact motor identification. The authors presented a Lumped-
Parameter Thermal Network (LPTN) and Dual Kalman Filtering (DKF)-based technique 
to monitor the temperature profile of Rotors in Induction Machines. And stated that the 
accuracy of the system depends on the thermal parameters, low computational effort, 
and rotor temperature observed with IRT and applied to a dual Kalman filter for review-
ing the evolution of thermal model parameters.

However, Zarghani et al. [47] revealed that the LPTN requires lots of human expertise 
to model the circuit especially when a large number of parameters are present, thereby 
making it more challenging to debug errors. Also, there could be a lack of clarity on 
the uncertainty concerning the requisite model of the power loss. Therefore, it would 
be very difficult to model the temperature using deep learning-based algorithms in line 
with the little number of model parameters that can fit easily with the LPTN to give the 
same estimation accuracy Kirchgässuer et al. [48].

Resendiz-Ochoa et  al. [49] proposed automatic Infrared thermography for analyz-
ing faults in induction motors. The proposed technique detects the concerned area 
with an automatic image segmentation based on Otsu thresholding process. The goal 
is to accomplish features extraction of temperatures for thermal analysis of the defec-
tive induction motor. The technique has the potential for automatic fault classification 
in pattern recognition to be applied in image segmentation applications. Anurag Choud-
hary et al. [50] diagnosed defects in the bearings of rotating machines by observing their 
operational thermal images and developed a Convolutional Neural Network better than 
the associated ANN. Six conditions of bearings including a good state were reviewed and 
compared, employing ANN and LeNet-5-based CNN structure. The suggested method 
consists of bearing thermal image data collection, extraction of features, and training 
of the ANN and CNN model, each used as the classifier to classify the different bearing 
conditions. The authors tested the CNN method on large datasets with up to 99.80% 
classification accuracy which significantly outperforms the ANN. The technique was not 
designed for a particular fault, hence Padmanabhan et al. [51] presented a method for 
identifying inter-turn faults in the status of operational electric machines. The authors 
applied Thermal and Magnetic Sensor Arrays to the Stator Ends of the winding, thereby 
obtaining the distribution of the heat and magnetic flux throughout the region encom-
passed by the end-winding. During abnormal conditions, it would be easy to observe 
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the asymmetry in the thermal and magnetic signature caused by inter-turn short cir-
cuits. The presented HESA technique offered better versatility and early fault identifica-
tion than the comparable IRSA method when viewed within a 1.5-kW induction motor 
test set. The potential of the techniques lies in their reliability, fast fault detection, and 
scalability to different types of machines. Moreover, there is an opportunity for future 
research into an estimation of the extent or expected severity of defects for different 
operating conditions.

Power electronics

As the power system becomes more sophisticated, demand for improved performance 
grows, and the need for automatic and fast-switching electrical devices becomes critical. 
Moreover, the need to ensure optimal performance of the power system makes power 
electronics systems vital for optimum system operation. Weifei Li et al. [52] presented 
a method of predicting in real-time the temperature at the PN junctions of an IGBT-
based inverter with a concise specified model of the power loss. The model combines 
dual-impedance temperature model of the inverter with considerations for the results of 
computation fluid dynamics (CFD) analysis. CFD-based techniques are usually complex 
models that take more computing resources that impact on cost and simulation time. 
Also, they are generally built on approximations of practical models thereby limiting the 
accuracy of the models. They can be prone to errors due to factors like boundary condi-
tions, mesh size, etc.

Leppänen et  al. [53] proposed how to mitigate failure in power diodes used in con-
verters by investigating humidity-induced failure in power diodes. Bearing in mind the 
adverse conditions such as high humidity, extreme temperature, and elevated reverse 
voltage profiles most power converters are regularly exposed during operation. Boost 
stage power semiconductor modules from two vendors were investigated. The leakage 
current measurement of the modules used for the study was monitored on-site dur-
ing the test for two types of passivated modules, viz., glass passivation and polyimide 
passivation. And water treeing was found to dissolve lead in particular areas, and glass 
passivation could lead to multi-modal failures when exposed to the H3TRB-HVDC test 
conditions and appear as hotspots in the panels. The hotspots could stem from volt-
age-blocking degradation that finally causes short circuits. According to the authors, a 
“lock-in” thermography above the glass passivation enclosing the high voltage edge ter-
mination elements is susceptible to challenging humidity conditions, this is where the 
hotspots were observed. Further analysis using a scanning electron microscope (SEM) 
confirmed that the edge termination contained several tree-like structures growing from 
both ends of the edge termination on top of the passivation film. The use of SEM could 
be costly in many ways based on the price paid for the power electronic unit.

Surge arresters

Arup Kumar Das et  al. [54], were interested in using IRT for the assessment of surge 
arresters (SA) using a transfer learning approach to gauge the extent and presence of sur-
face contaminants such as dust, salt, etc. on metal oxide surge arrester (MOSA) to moni-
tor the condition of the device in power installation and counteract the tendency of the 
SAs to fail before its lifespan. The authors applied IRT and studied the third harmonic 
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leakage current drain by the device. Thereafter analyzed the relationship between the 
third harmonic leakage current and the temperature of the arrester using a neural net-
work. The neural network was trained with three input parameters of arrester tempera-
ture, ambient temperature, and relative humidity of the environment, whereas its output 
is the third harmonic resistive current. IR thermal images of metal oxide surge arrester 
at different levels of pollution were observed, preprocessed, and its features of interest 
were extracted when applied to the ResNet50-based CNN. And, produced up to 98% 
testing accuracy on simulation with an 11 kV arrester. The authors applied the extracted 
features to classifiers like k-nearest neighbor, support vector machine, naïve Bayes, and 
random forest observing that the random forest showed the best performance. In terms 
of monitoring different pollution levels, the proposed technique shows the capacity 
to identify the severity of contamination of the surface of the surge arrester with good 
accuracy. The techniques give automatic, fast, reliable, and remote observation. As the 
SA ages, its leakage current increases with the deterioration of performance. The aging 
factor can also be monitored when the leakage current is observed with the temperature 
at the surface of the device. According to He et al. [55] the concept of ResNet for feature 
extraction was a game-changer in many computer vision applications as it has enabled 
the training of datasets with deeper neural networks without compromising the training 
error and addresses the issues of vanishing gradient, improved model accuracy and rela-
tively fast training time through identity mapping or skip connections.

Andrade et  al. [56] investigated the issue of heat transfer in ceramic surge arresters 
using thermography and computer simulations based on finite element analysis (FEA). 
Normally, the air gap within arresters could lead to more thermal resistance between 
the varistor’s column and the ambient. So, techniques for proper analysis of the phe-
nomenon are necessary and should include consideration for heat loss via conduction, 
convection, and radiation. The authors proposed the use of computational simulations 
in combination with thermography as a tool for a temperature-based estimate of the var-
istor’s state.

For the analysis, thermography measurements were performed in a 69-kV ceramic-
housed arrester subject to a thermal cycle and the results were compared with finite 
element simulations to picture the relationship between varistor’s temperature and the 
temperature of the outer part of the arrester to aid field assessment of the polymeric 
and porcelain-housed surge arrester. The work highlighted better results for varistors 
enclosed with polymeric than ceramic materials. And showing the potential of the tech-
nique to be applied for optimization of parameters of heat transfer mechanisms that 
most define the thermal behavior of the arrester. The authors saw the prospect of devel-
oping an equivalent mathematical expression that can relate external temperature and 
that of the internal components for predicting the temperature of the varistor column. 
However, this method would not be generic because issues of heat loss are related to the 
physical shape and geometry of the device, hence different arrester shapes would need 
specific simulations to be effective.

Solar photovoltaic modules

Condition monitoring of Solar Photovoltaic systems is one area that has attracted the 
interest of researchers in power system analysts in recent years. The growing interest 
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could be a result of a worldwide policy shift toward renewable sources of energy by the 
year 2030. There is a compelling need to optimize available sources of renewable energy 
by preventing or reducing energy loss. And, as solar PV systems become the easy focus 
of researchers, with hotspots known to contribute up to 49% of faults in PV modules. 
The concept of IRT has become a veritable choice technique for monitoring their perfor-
mance. Pramana and Dalimi [57] were interested to identify hotspot faults in PV Mod-
ules with the hope of classifying them appropriately. Table 2 depicts the main cause of 
hotspot faults in PV panels. The hotspot faults can manifest due to internal or external 
factors in the PV modules. The external hotspots are caused by the prevalence of adverse 
environmental conditions within which the modules are operated, whereas the internal 
issues are usually linked to power diode failure.

Simons and Meyer [67], presented a method for Detecting and analyzing the occur-
rence of hotspots in PV solar cells by scanning the face of the modules to observe the 
thermal profile of the cells in reverse bias. Heterogeneous thermal distribution across 
the modules indicates hotspots. Thereafter, the authors used a scanning electron 
microscope (SEM), to further observe microscopic images of areas where the hotspots 
manifested and identified irreparable damage to the cells due to the heating effect. The 
work highlighted the relationship between contaminated portions of cells, especially 
by transition elements along with oxygen, carbon, iron, and platinum, and the hotspot 
phenomenon.

Pallavi et al. [68], highlighted the effect of hotspots on the energy output from solar 
PV modules. Localized heating within a solar cell gives rise to hotspot formation, 

Table 2  Root cause analysis of hotspots in pv panels

Type of Fault Parts/location Process Activity Cause of hotspot 
fault

Cracking Protective Glass & 
Active solar cells

Production, packag-
ing, transport, 
Installation

Mismatch of bolts, 
poor tightening, 
External
force, falling 
objects[58]

Water penetration, 
create shading[59]

Poor Interconnec-
tion (series & parallel 
cells or panels)[60]

Conducting por-
tions

Production, packag-
ing, transport, and 
Installation [61]

Mechanical stress, 
Imperfect solders

High resistance of 
junction conductor

Corrosion [62]-
increased humidity 
in modules causes 
corrosion

Delamination, 
cracks, and encapsu-
lation [63]

Moisture penetrates 
modules via the 
edge of the module 
frame

Reduce conductiv-
ity, cause leakage 
currents

Reduce power
produced, high resist-
ance, hotspots

Bypass Diode Fault String (series of 
cells) shadowed by 
object

String output 
voltage less than 
adjacent strings

The reverse bias of 
shaded string due 
to current flow from 
good to bad string

A bad bypass diode 
not blocking the 
reverse bias current 
flow [64]. Heating in 
PV module
hotspots

Shading, Soiling 
(External Factors)

Dark (100%
cover) [65]/transpar-
ent shading (< 100%
cover [66]. (home, 
tree/smoke, fog,
dried liquid
film, and bird drop-
pings)

trigger moss on the 
surface of PV panels

Bad bypass diode 
not blocking the 
reverse bias current 
flow

Heating in PV module
hotspots
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which further leads to module damage and system degradation. A detailed model 
encompassing non-uniform temperature distribution across a series of connected PV 
cells is presented and is seen to give high accuracy with respect to the experimental 
measurements as compared to the average temperature and the standard conditions-
based output prediction.

In this work, the output performance of such PV modules is estimated based on 
non-uniform temperature distribution and is shown to match well with the exper-
imental results with 98% accuracy. The proposed method performs better than the 
average temperature-based approach with more than 5% improvement in maxi-
mum power point prediction accuracy. The proposed method would be inefficient 
for monitoring large-scale PV installation. And, there is a need for the acquisition 
and auto-processing of numerous IR images. And, the need to apply modern deep 
learning methods would entail the acquisition of numerous IR images which would 
be quite challenging. So, artificial intelligent solar panel monitoring systems would 
be appropriate as proposed by Wang et al. [69] whose work deployed a combination 
of U-Net neural network and a supervised machine learning model-like decision tree 
to achieve 99.8% fault diagnosis ability of PV panel faults. However, U-Net’s use of 
a large number of parameters as a result of more layers and skip connections could 
cause overfitting when used on limited images.

Power lines

Transmission and distribution lines, generally referred to as power lines are to the 
power system what arteries and veins are to the human body. They are the physical 
channels through which electrical power is conveyed from one node to the other. 
They are the most vulnerable part of the power system and can reach thousands of 
kilometers in length, passing through very challenging weather and terrain; and must 
be in good condition always. Hence, the need to monitor their operating state is para-
mount to linesmen and system operators. Jalil et  al. [70] proposed a technique for 
monitoring power lines using a FLIR A65sc IR camera mounted on an unmanned 
aerial vehicle (UAV) to acquire infrared and visible images of power lines, which 
they subjected to a fusion-based images processing algorithm. And passed through a 
canny edge detection model, before detecting the linear features in the images using 
the Hough transformation technique. The power lines were segregated from other 
portions of the pictures and a thresholding method based on histogram technique 
was used to profile and identify the hotspots in the lines. But Vozikis and Jansab [71] 
opined that one major issue with the Hough stems from the fact that it is highly sus-
ceptible to giving incorrect results when encountering complex geometric images as 
well as dark shadows in images.
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Table 3  Results of techniques used for infrared thermography

Reference Title of Paper Results / Analysis

Karvelis et al. [17] An Automated Thermographic Image 
Segmentation Method for Induction 
Motor Fault Diagnosis

The image segmentation method used 
with Naïve Bayes classification yielded 
100% accuracy, while C4.5 gave 91.48%

Eftekhari et al. [11] A novel indicator of stator winding 
inter-turn fault in induction motor using 
infrared thermal imaging

The Mahalanobis distance was used to 
measure changes in the IR image pixels. 
Also, forecast hot spots in the stator using 
Hullindex, Hotarea and Histogrammean values 
with RMSE error of 0.0097 translating to 
99.13% accuracy

Ali-Younus and Yang [9] Wavelet Co-efficient of Thermal Image 
Analysis for Machine Fault Diagnosis

Got the best result at the second level of 
decomposition

Fambrini et al. [33] GPU Cuda JSEG Segmentation Algorithm 
associated with Deep Learning Classifier 
for Electrical Network Images Identifica-
tion

The method resulted to 99.91% detection 
accuracy in transformers, 86.94% in knife 
wrenches, 84.88% in splice connectors, and 
71.49% in bushings

Najafi et al. [35] Fault diagnosis of electrical equipment 
through thermal imaging and interpret-
able machine learning applied on a 
newly-introduced dataset

The technique obtained 93.8% accuracy 
in 11 classes of equipment condition and 
95.6% for 9 classes

Jadin et al. [13] Thermal condition monitoring of electri-
cal installations based on infrared image 
analysis

The normalization cross-correlation 
method got 95.804% classification accuracy

Dutta et al. [26] Condition monitoring of electrical equip-
ment using thermal image processing

The highest Peak Signal-to-Noise Ratio 
of 63.13 dB and least MSE of 0.03 was 
observed when Otsu method was applied

Huda and Taib [14] Suitable features selection for monitoring 
thermal condition of electrical equipment 
using infrared thermography

The Multi-Layered Perceptron with Scale 
Conjugate Gradient and Levenberg–Mar-
quardt training got the highest identifica-
tion training degree of 82.89% and testing 
rate of 74.25% than other comparable 
methods

Huda and Taib [15] Application of infrared thermography for 
predictive/preventive maintenance of 
thermal defect in electrical equipment

The optimum result achieved with the 
second-fold training dataset were 97.75% 
accuracy, 95.89% specificity, and 98.88% 
sensitivity. Whereas on the testing dataset, 
the performance fell to 80.40% accuracy, 
75.29% specificity, and 83.98% sensitivity. 
And, the Discriminant Analysis classifier 
yielded the best accuracy of 82.40%

Zou et al. [19] Novel intelligent fault diagnosis method 
for electrical equipment using infrared 
thermography

Optimization of the classification accuracy 
up to 97.8495% was achieved with SVM by 
the application of a coarse-to-fine paramet-
ric model

Liu et al. [28] Infrared image combined with CNN-
based fault diagnosis for rotating 
machinery

The 6 layered directly trained convolutional 
neural network achieved the best testing 
accuracy of 95.8% using 60 × 60 pixel 
images, without feature extraction

Janssens et al. [18] Thermal image-based fault diagnosis for 
rotating machinery

Two image processing channels were 
processed by detecting rotor imbal-
ance irrespective of the type of bearing 
defect and then identifying bearing issues 
notwithstanding any rotor imbalance. The 
model was up to 88.25% accurate for 8 
machine anomalies

Singh et al. [22] Fault diagnosis of induction motor cool-
ing system using infrared thermography

The method obtained a correlation fac-
tor of 99.02% between the Hotindex with 
respect to the percentage of inter-turn 
short circuits. Hence, the Hotindex is propor-
tional to the stator coil inter-turn faults
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Results/analysis
The variety of methods applied and accompanying results in different works con-
cerning infrared thermography are presented in Table 3 shows the predisposition of 
researchers to adopt intelligent techniques over classical methods when developing 
their models.

Table 3  (continued)

Reference Title of Paper Results / Analysis

Mahami et al. [37] Induction motor condition monitoring 
using infrared thermography imaging 
and ensemble learning techniques

The proposed ensemble learning tech-
nique outperformed the SVM, Decision 
tree, K-nearest neighbor, Least Square SVM, 
and Deep Rule-Based methods by return-
ing 100% classification accuracy

Vidhya et al. [36] Transformer breather thermal image 
decomposition for fault diagnosis

Without image decomposition, the MAD 
of the Symlet wavelet transformations pro-
duced 99.68% for normal operation, 99.95% 
for mild faults, and 98.87% for severe 
winding faults. And, associated Standard 
deviations of 106.2, 106.6, and 106.5 of the 
respective three operational states
But, with image decomposition, the 
symlet wavelet transformation produced 
significant variation in MAD (8.154, 1.25 
and 3.677) as well as the standard deviation 
(12.66, 2.007 and 6.52) for each respective 
normal, mild and severe states

Zou Huang [72] An Intelligent Fault Diagnosis Method 
for Electrical Equipment Using Infrared 
Images

Classification accuracy of 95.6989% was 
achieved using SVM with bestc2 and 
bestg2 parameters set to 223.5126 and 
0.9639, respectively

Cui et al. [12] The Methods in Infrared Thermal Imaging 
Diagnosis
Technology of Power Equipment

The work used Radial Basis Probabilistic 
Neural Network to identify the level of 
contamination in string insulators with up 
to 91.12% accuracy

Fanchiang et al. [73] Power Electric Transformer Fault Diag-
nosis Based on Infrared Thermal Images 
Using Wasserstein Generative Adversarial 
Networks and Deep Learning Classifier

The proposed model is a Wasserstein 
Auto-encoder Reconstruction-based Dif-
ferential Image Classification (WAR-DIC). It 
is also a feather-weight network with only 
0.223 × 103 parameters, 1.837 MB of weight 
storage, and 1.781 × 103 floating point 
calculations. Overheating of conducting 
wires, inter-turn faults, and overheating 
in connecting points were investigated 
for eight fault conditions on a balanced 
dataset. The classification accuracies that 
were gotten for four different datasets were 
99.95%, 99.89%, 99.71%, and 99.46%

Fang et al. [74] Fault diagnosis of electric transformers 
based on infrared
image processing and semi-supervised 
learning

The application of GAN to synthesize sam-
pled IR images enhanced the classification 
of equipment defects with an accuracy 
of 82.2%, recall of 84.7%, and precision of 
83.1%. And, recognized overheating with 
an accuracy of 86.2%, recall of 84.8%, and 
precision of 83.5%

Fanchiang, Kuo [75] Application of thermography and adver-
sarial reconstruction anomaly detection 
in power cast-resin transformer

Overheating in 1MVA, 24/0.38 kV cast-resin 
transformers were investigated with Vari-
ational Autoencoder-based-GAN using the 
difference in the pixel-wise cosine between 
the real and synthetic images. The results 
achieved include: F1 score of 94.4%, AP of 
94.1%, and AUROC of 94.5%
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Conclusion
Infrared Thermography for the past two decades has continued to attract attention as 
a useful tool for monitoring electrical power equipment and installed system especially 
when in operation. There is no limit to areas they can be applied, whether biological 
or physical systems. Once heat is radiated from such objects above absolute tempera-
ture, then IR cameras can provide instantaneous images of the temperature distribution 
within that equipment. The focus of most research in IRT-based condition monitor-
ing lies in the development of intelligent systems and improving the accuracy of neu-
ral network-based models. There is a need for more work in comparative assessment 
of the response times for most of the models. And, the importance of more research in 
developing models that would not require lots of IR images to train, yet give very good 
results, because data acquisition in this research area takes a lot of time, energy, human 
expertise, and money. There is a need to develop more affordable IR cameras with good 
video recording and storage features which would greatly aid data acquisition of infrared 
images of equipment and installations.
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