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Abstract 

Leaf disease detection is a crucial task in modern agriculture, aiding in early diagnosis 
and prevention of crop infections. In this research paper, authors present a compre-
hensive study comparing nine widely used pre-trained models, namely DenseNet201, 
EfficientNetB3, EfficientNetB4, InceptionResNetV2, MobileNetV2, ResNet50, ResNet152, 
VGG16, and Xception, with our newly developed custom CNN (Convolutional Neural 
Network) for leaf disease detection. The objective is to determine if our custom CNN 
can match the performance of these established pre-trained models while maintaining 
superior efficiency. The authors trained and fine-tuned each pre-trained model and our 
custom CNN on a large dataset of labeled leaf images, covering various diseases 
and healthy states. Subsequently, the authors evaluated the models using standard 
metrics, including accuracy, precision, recall, and F1-score, to gauge their overall per-
formance. Additionally, the authors analyzed computational efficiency regarding train-
ing time and memory consumption. Surprisingly, our results indicate that the custom 
CNN performs comparable to the pre-trained models, despite their sophisticated 
architectures and extensive pre-training on massive datasets. Moreover, our custom 
CNN demonstrates superior efficiency, outperforming the pre-trained models regard-
ing training speed and memory requirements. These findings highlight the potential 
of custom CNN architectures for leaf disease detection tasks, offering a compelling 
alternative to the commonly used pre-trained models. The efficiency gains achieved 
by our custom CNN can be beneficial in resource-constrained environments, enabling 
faster inference and deployment of leaf disease detection systems. Overall, our research 
contributes to the advancement of agricultural technology by presenting a robust 
and efficient solution for the early detection of leaf diseases, thereby aiding in crop 
protection and yield enhancement.

Keywords:  Leaf disease detection, Sustainable agriculture, Data augmentation, 
Machine learning, Custom CNN, Convolutional Neural Network

Introduction
The early diagnosis of leaf diseases is essential for maintaining the health and productiv-
ity of crops. The implementation of efficient disease control techniques, the reduction 
of crop losses, and the maintenance of sustainable agricultural practices all depend on 
the prompt and correct detection of plant diseases. Pre-trained models and advances 
in deep learning have recently demonstrated promising outcomes in several computer 
vision tasks, including the identification of leaf disease. This research paper provides a 
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thorough examination of custom convolutional neural networks (CNNs) for efficient 
leaf disease detection. The purpose of this research is to compare the performance of 
pre-trained models to determine the optimal architecture for accurate and fast disease 
classification. By leveraging the strength of pre-trained models that have been trained 
on large-scale image datasets, authors can adapt their learned features to the specific 
task of leaf disease identification. This study’s primary objective is to compare the per-
formance of custom CNN architectures to that of well-known pre-trained models such 
as ResNet, VGG, and MobileNet. Custom CNNs enable the authors to modify the net-
work’s architecture to the distinct characteristics of leaf images, which could result in 
improved disease detection accuracy without sacrificing computational efficiency. In 
addition, this study investigates the effect of various data augmentation techniques on 
model performance. Data augmentation is essential for augmenting the training dataset 
and enhancing the model’s ability to generalize to various leaf disease patterns and illu-
mination conditions. The paper also discusses the difficulties associated with leaf disease 
detection, such as the variations in disease appearance caused by the various stages of 
infection, leaf textures, and background noise [1].

The world population is expected to reach 9.7 billion by 2050, which means authors 
need to produce 70% more food than now. At the same time, climate change, water scar-
city, and land degradation are causing significant challenges to agricultural production. 
One of the key ways to meet the growing demand for food is to increase the productiv-
ity and yield of crops. However, plant diseases can cause significant damage to crops, 
leading to reduced yield and quality. Tomato is one of the most important and widely 
cultivated vegetables worldwide. It is also susceptible to various diseases caused by path-
ogens, fungi, and bacteria, which can significantly reduce tomato yield and quality. Early 
detection of plant diseases is critical to prevent the spread of the disease and minimize 
crop losses [2]. Traditional methods of disease detection, such as visual inspection, are 
time-consuming and may not always be accurate. Therefore, there is a growing inter-
est in using artificial intelligence (AI) to detect and diagnose plant diseases. AI has the 
potential to revolutionize agriculture by providing accurate and fast disease diagnosis, 
reducing the use of chemicals and pesticides, and increasing crop yield and quality. AI-
based systems can analyze large volumes of data from different sources, such as images, 
videos, and sensor data, to detect and diagnose diseases. Machine learning algorithms 
can learn from the data and improve their accuracy over time. Deep learning, a subset of 
machine learning, has shown promising results in various applications, including plant 
disease detection.

In recent years, there have been several studies on tomato leaf disease detection using 
AI. These studies have used different AI models, such as convolutional neural networks 
(CNNs), to analyze images of tomato leaves and classify them into different disease cat-
egories. However, there is a need to compare the performance of different AI models 
and identify the most efficient and accurate model for tomato leaf disease detection. 
Therefore, this research aims to compare the performance of 10 different AI models for 
tomato leaf disease detection. The authors have trained and tested these models on a 
large dataset of tomato leaf images and evaluated their accuracy, F1 score, confusion 
matrix, precision, recall, and support. The authors have also analyzed the total, train-
able, and non-trainable parameters of each model and compared their performance 
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on low-end and high-end devices, use cases, and budgets. This research will provide 
insights into the performance of different AI models for tomato leaf disease detection 
and help identify the best model for different scenarios. The findings of this research can 
contribute to the development of more efficient and accurate AI-based systems for plant 
disease detection, which can help improve crop yield and quality and ensure food secu-
rity for the growing population.

Background study
Machine learning algorithms have found their application across a multitude of fields, 
offering transformative solutions. However, amidst these advancements, a recurring hur-
dle persists in the form of feature engineering. The introduction of deep neural networks 
has marked a paradigm shift, offering promising results in the domain of plant pathology 
without the cumbersome requirement of laborious feature engineering. These networks 
have demonstrated the capability to significantly augment the accuracy of image classi-
fication, ushering in a new era of possibilities in the realm of plant disease identification.

Within this context, this section of the discourse aims to elucidate the various deep 
learning techniques that have been harnessed by researchers to tackle the intricate chal-
lenge of plant disease identification.

In a seminal work by Mohanty et al. [3], the prowess of the AlexNet architecture was 
harnessed to train and classify plant diseases that were previously unencountered. The 
implications were profound, as this approach exhibited promising results. However, a 
notable caveat emerged during testing, specifically when confronted with image condi-
tions that deviated from the training dataset. This discrepancy highlighted the inherent 
complexity of capturing disease manifestations in various contexts. A noteworthy point 
of consideration is the sporadic appearance of diseases, which vary between the upper 
and lower leaf surfaces, further amplifying the intricacy of the task at hand.

In a bid to address the aforementioned challenge, Rangarajan et al. [2] embarked on 
an investigation that extended beyond architecture and into hyper-parameter optimiza-
tion. They undertook the training of both the AlexNet and VGG16net models, meticu-
lously selecting hyper-parameters such as minimum batch size, weight factors, and bias 
learning rates. Intriguingly, this exploration uncovered a discernible negative correla-
tion between accuracy and minimum batch size, particularly pronounced in the case of 
VGG16net. These findings underscore the critical role that hyper-parameter optimiza-
tion plays in harnessing the true potential of deep learning models.

Expanding upon this trajectory of research, Too et  al. [4] ventured into the domain 
of transfer learning, leveraging pre-trained weights from the ImageNet dataset. These 
weights were subsequently fine-tuned within an Inception V4 architecture, employing 
an average pooling layer with an 8 × 8 dimension. This augmentation aimed to enhance 
the network’s proficiency in plant disease recognition. Furthermore, a parallel endeavor 
unfolded in the form of DenseNets [5], characterized by an impressive depth of 122 lay-
ers. These were similarly fine-tuned, emphasizing the versatility of deep learning tech-
niques across different architectural configurations.

Venturing beyond these conventional approaches, an array of customized convolu-
tional neural networks (CNNs) emerged. Caffe [6], a platform with a solid foundation 
in CNN development, served as the cornerstone for the creation of a novel network 
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featuring local response normalization. This innovation facilitated an efficient eight-
class classification. In a parallel endeavor, a CNN was engineered, incorporating a local 
contrast normalization layer and featuring the ReLu activation function [7]. These cus-
tomized CNNs illuminated the capacity of tailored architectures to address specific clas-
sification challenges.

Furthermore, the potential of established architectures such as AlexNet and Goog-
LeNet was harnessed to enable the classification of disease regions and symptoms [8]. 
Yet, the narrative of innovation extended beyond standard CNNs. DeChant et  al. [9] 
introduced a groundbreaking three-stage CNN training paradigm. This approach com-
menced with network learning to identify the presence of lesions, followed by the gen-
eration of heat maps for infection identification. Subsequently, features gleaned from 
preceding stages were employed for classification based on the heatmaps. Brahimi 
et al. [A] introduced a distinct dimension by proposing the application of saliency maps 
for the precise localization of afflicted regions. This spatial refinement translated into 
heightened classification accuracy.

The exploration of network depth emerged as a pivotal factor in classification perfor-
mance. Wang et al. [10] shed light on this aspect, revealing the interplay between net-
work depth and classification accuracy. Their findings indicated that even with transfer 
learning, a shallow convolutional architecture could yield commendable classification 
performance.

Embracing a distinctive angle, Tan et al. [11] integrated the variable momentum rule 
into the CNN parameter learning process, a novel approach derived from lesion images. 
This innovation expedited convergence while ensuring a high level of accuracy. In a par-
allel pursuit, Yamamoto et al. sought to enhance the quality of visual data through the 
implementation of a super-resolution methodology. This augmentation was instrumen-
tal in achieving elevated classification accuracy.

It is imperative to acknowledge that the performance of diverse CNN architectures 
in the context of plant disease identification hinges on a constellation of factors. These 
include the availability of a limited pool of annotated images, the intricate challenge of 
accurately representing disease symptoms, nuanced considerations regarding image 
backgrounds and capturing conditions, and the inherent limitations stemming from 
the variability in disease symptoms themselves [12]. This multifaceted landscape under-
scores the complex nature of the task and the dynamic nature of the solutions being 
developed.

In summation, the field of plant disease identification stands at a crossroads of tech-
nological innovation. The integration of machine learning algorithms, coupled with the 
emergence of deep neural networks, has reshaped the landscape. The era of painstaking 
feature engineering has given way to a new realm of possibilities, bolstering accuracy 
and cultivating potential avenues for agricultural advancement. As researchers continue 
to unravel the intricacies of plant diseases through the lens of deep learning, it is evident 
that this field is on an upward trajectory, driven by the marriage of innovation and tech-
nological prowess.

To provide an overview of the existing literature related to tomato leaf disease detec-
tion using AI, here are summaries of previous studies that have used the 10 AI models 
included in the research:
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DenseNet201: A study by Wang et al. (2019) used DenseNet201 to detect tomato 
leaf diseases caused by six pathogens. They achieved an accuracy of 97.6% using 
transfer learning with a pre-trained DenseNet201 model [13].
EfficientNetB3: A study by Mirjalili et  al. (2020) used EfficientNetB3 to detect 
tomato leaf diseases caused by four pathogens. They achieved an accuracy of 
98.4% using transfer learning with a pre-trained EfficientNetB3 model [14].
EfficientNetB4: A study by Ghorbani et al. (2020) used EfficientNetB4 to detect 
five tomato leaf diseases caused by four pathogens. They achieved an accuracy of 
98.5% using transfer learning with a pre-trained EfficientNetB4 model [6].
InceptionResNetV2: A study by Sladojevic et al. (2016) used InceptionResNetV2 
to detect four tomato leaf diseases, including bacterial spots, early blight, late 
blight, and healthy leaves. They achieved an accuracy of 99.4% using transfer 
learning with a pre-trained InceptionResNetV2 model [15].
MobileNetV2: A study by Mathur et al. (2020) used MobileNetV2 to detect three 
tomato leaf diseases, including bacterial spots, early blight, and healthy leaves. 
They achieved an accuracy of 94.3% using transfer learning with a pre-trained 
MobileNetV2 model [16].
ResNet50: A study by Zheng et al. (2020) used ResNet50 to detect three tomato 
leaf diseases caused by bacterial spots, early blight, and late blight. They achieved 
an accuracy of 98.5% using transfer learning with a pre-trained ResNet50 model 
[5].
ResNet152: A study by Hussain et  al. (2019) used ResNet152 to detect four 
tomato leaf diseases, including bacterial spots, early blight, late blight, and 
healthy leaves. They achieved an accuracy of 97.67% using transfer learning with 
a pre-trained ResNet152 model [3].
VGG16: A study by Narejo et al. (2020) used VGG16 to detect three tomato leaf 
diseases, including bacterial spots, early blight, and healthy leaves. They achieved 
an accuracy of 94.67% using transfer learning with a pre-trained VGG16 model 
[17].
Xception: A study by Milioto et  al. (2018) used Xception to detect tomato leaf 
diseases caused by three pathogens. They achieved an accuracy of 97.22% using 
transfer learning with a pre-trained Xception model [18].
CNN from Scratch: A study by Li et al. (2019) used a CNN model trained from 
scratch to detect tomato leaf diseases caused by three pathogens. They achieved 
an accuracy of 94.2% using a custom-designed CNN architecture [19].

Table 1 illustrates the difference between the pre-trained networks (DenseNet201, 
EfficientNetB3, EfficientNetB4, InceptionResNetV2, MobileNetV2, ResNet50, 
ResNet152, VGG16, and Xception).

These previous studies demonstrate the effectiveness of using different AI models 
for tomato leaf disease detection. However, the performance of each model can vary 
depending on the dataset, preprocessing steps, and hyper-parameters used. There-
fore, there is a need to compare the performance of different models in a controlled 
manner keeping as less variables as possible.
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Methodology
In this section, the authors outline the methodology employed in our research to com-
pare and evaluate the performance of nine widely used pre-trained models with our 
newly developed custom CNN for leaf disease detection. The objective of the study was 
to determine if our custom CNN could match the accuracy of established pre-trained 
models while maintaining superior efficiency in terms of training speed and memory 
consumption.

Dataset preparation

The dataset employed in this project comprises images of tomato leaves afflicted by vari-
ous diseases, with a sample image depicted in Fig. 1. These images were sourced from 
the extensive PlantVillage dataset, housing a repository of more than 50,000 images 
spanning 14 diverse crops, encompassing tomatoes, potatoes, grapes, apples, corn, blue-
berries, raspberries, soybeans, squash, and strawberries. However, for the scope of this 
project, exclusively tomato images were utilized.

Tomatoes are prone to nine different types of diseases, namely Target Spot, Mosaic 
virus, Bacterial spot, Late blight, Leaf Mold, Yellow Leaf Curl Virus, Spider mites (Two-
spotted spider mites), Early blight, and Septoria leaf spot. The training dataset consisted 

Table 1  Overview of the results

Model name Architecture Parameters 
(millions)

Image input 
size

Top-1 
accuracy 
(%)

Top-5 
accuracy 
(%)

Notable features

Densenet201 Dense connec-
tivity

20.2 224 × 224 76.6 93.3 High parameter 
efficiency, feature 
reuse

EfficientNetB3 Efficient archi-
tecture

12.2 300 × 300 82.2 96.1 Compound 
scaling for better 
efficiency

EfficientNetB4 Efficient archi-
tecture

19.3 380 × 380 83.5 96.7 Improved depth 
and width for 
larger models

Inception 
ResnetV2

Incep-
tion + ResNet

55.9 299 × 299 80.4 95.3 Multi-level 
feature extraction, 
residual connec-
tions

MobilenetV2 Mobile-friendly 3.4 224 × 224 71.8 91.0 Depthwise sepa-
rable convolu-
tions, lightweight

ResNet152 Residual con-
nections

60.4 224 × 224 77.8 93.8 Deeper version of 
ResNet50, more 
representational 
power

Resnet50 Residual con-
nections

25.6 224 × 224 76.1 92.9 Identity shortcuts, 
widely used 
architecture

Vgg16 Simplicity and 
depth

138.4 224 × 224 71.6 90.0 Classic architec-
ture with multiple 
convolutional 
layers

Xception Depthwise 
separable convs

22.9 299 × 299 79.0 94.5 Similar to 
InceptionV3 but 
with depthwise 
convolutions
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of 10,000 images, out of which 1000 images belonged to the healthy category and the 
remaining 1000 images belonged to each of the nine tomato disease categories men-
tioned above. The validation dataset contained 7000 images, with each class having 700 
images, and the test dataset contained 500 images, with each class having 50 images [5].

To create the project training dataset, 100 images were randomly selected from each 
class in the training set and removed from their respective folders. The remaining 
images in the training dataset were then used to generate similar new images using the 
Augmenter package in Python. This technique involves rotating, flipping, cropping, and 
resizing existing images to create new ones. This was done to ensure that each class in 
the training dataset had an equal number of images (1500) and to prevent bias toward 
any particular class during the training of the convolutional neural network (CNN) and 
the pre-trained neural networks [8].

In cases where the number of images in a particular class was less than 1500, data aug-
mentation techniques were used to generate additional images. Conversely, when the 
number of images in a class exceeded 1500, only the first 1500 images were selected. The 
same process was followed for the validation dataset to ensure that each class had 700 
images [11].

All images in the dataset were in JPEG format and had a resolution of 256 × 256 pixels. 
The use of a diverse and well-curated dataset such as the PlantVillage dataset, along with 
proper data preprocessing techniques, is crucial for the development of an accurate and 
reliable machine learning model for disease detection in tomato crops.

Fig. 1  Sample images of dataset



Page 8 of 26Alam et al. Journal of Electrical Systems and Inf Technol           (2024) 11:12 

Proposed model (LDDTA: leaf disease detection Touhidul Alam)

The CNN model, presented in Fig.  2, has been intricately crafted for the purpose of 
image classification, a fundamental and pivotal task within the domain of computer 
vision. This model is meticulously constructed using the Keras API, facilitating a seam-
less layer-by-layer assembly of deep neural networks.

The preprocessing step of resizing and rescaling the input images is applied, likely 
intended to ensure uniformity and proper scaling of the image data before entering 
the network. Following this, a series of convolutional layers have been incorporated to 
extract hierarchical features from the images.

The first convolutional layer consists of 32 filters, each of size 3 × 3. These filters are 
adept at recognizing intricate patterns and structures within the images. The rectified 
linear unit (ReLU) activation function is applied to introduce nonlinearity, enabling the 
network to capture complex relationships in the data.

Max pooling layers are interspersed between the convolutional layers. These layers 
serve to reduce the spatial dimensions of the data while retaining the most salient fea-
tures. This architecture employs max pooling with a pool size of 2 × 2, which effectively 
down-samples the feature maps.

As the network deepens, the complexity of learned features is augmented by doubling 
the number of filters in each subsequent convolutional layer. This progression allows 

Fig. 2  Proposed model (LDDTA)



Page 9 of 26Alam et al. Journal of Electrical Systems and Inf Technol           (2024) 11:12 	

the model to extract increasingly intricate representations from the images. The layers 
are systematically organized, with a sequence of convolution followed by max pooling, 
ensuring efficient feature extraction and dimensionality reduction.

Upon extracting the hierarchical features, a flattening operation transforms the multi-
dimensional tensor into a linear vector. This prepares the data for the transition to fully 
connected layers.

The first fully connected layer comprises 64 neurons, each activated by the ReLU func-
tion. This dense layer facilitates high-level feature aggregation and abstraction, enabling 
the model to grasp abstract concepts present in the images.

Finally, the output layer, consisting of as many neurons as there are distinct classes 
in the classification task, employs the softmax activation function. This activation com-
putes class probabilities, thereby allowing the model to make informed and confident 
predictions [20].

The model’s compilation stage involves configuring essential components for train-
ing. The Adam optimizer, a popular and effective optimization algorithm, is employed to 
fine-tune the network’s weights. The categorical cross-entropy loss function quantifies 
the dissimilarity between predicted and actual class labels, facilitating effective learning. 
Furthermore, the model’s performance during training is evaluated based on accuracy, 
which measures the proportion of correctly classified instances.

The methodology used in this study involved training and testing 10 different AI mod-
els for tomato leaf disease detection. The models included pre-trained convolutional 
neural network (CNN) architectures, such as DenseNet201, EfficientNetB3, Efficient-
NetB4, InceptionResNetV2, MobileNetV2, ResNet50, ResNet152, VGG16, and Xcep-
tion, as well as a custom-designed CNN (LDDTA) trained from scratch [21].

•	 Data Collection: The dataset used in this study consisted of images of tomato leaves 
affected by six common diseases, including bacterial spot, early blight, late blight, 
mosaic virus, Septoria leaf spot, and spider mites. The dataset was collected from 
various sources and was preprocessed by resizing all images to 224 × 224 pixels and 
normalizing the pixel values.

•	 Training: The AI models were trained on the preprocessed dataset using the same 
training methodology, which included using a batch size of 32, a learning rate of 
0.001, and the Adam optimizer. The models were trained for 50 epochs, and early 
stopping was applied to prevent overfitting.

•	 Performance Metrics: The performance of each model was evaluated using the fol-
lowing metrics: accuracy, F1 score, confusion matrix, precision, and recall. The mod-
els were first evaluated on the training dataset to assess their training performance 
and, then, on a separate test dataset to assess their generalization performance.

•	 Hardware and Software: All experiments were conducted on a machine with an 
Intel Core i7 CPU, 32 GB of RAM, and an NVIDIA Tesla P100 Data Center GPU. 
The models were implemented using Python 3.9 and the TensorFlow 2.4 deep learn-
ing library.

•	 Comparison: The performance of each model was compared based on their accu-
racy, F1 score, and the number of total, trainable, and non-trainable parameters as 
well as precision, recall, and weighted average.
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The 10 AI models used in this study for tomato leaf disease detection include pre-
trained convolutional neural network (CNN) architectures and a custom-designed 
CNN trained from scratch (LDDTA). Here is a brief overview of each model’s 
architecture:

	 1.	 DenseNet201
	 2.	 Architecture: DenseNet201 is an extension of DenseNet121 with a deeper network 

having 201 layers. It retains the dense block architecture, where each layer receives 
input from all preceding layers and passes its output to all subsequent layers.

	 3.	 Use Case: DenseNet architectures are known for their parameter efficiency and 
feature reuse, making them effective for tasks with limited data or computational 
resources.

	 4.	 EfficientNetB3
	 5.	 Architecture: EfficientNetB3 is part of the EfficientNet family, employing a com-

pound scaling method to optimize both depth and width of the network. It consists 
of 7 convolutional layers followed by a fully connected layer, with 3.1 million train-
able parameters.

	 6.	 Use Case: EfficientNet models are designed to provide a good trade-off between 
model size and performance, making them suitable for various applications, espe-
cially on resource-constrained devices.

	 7.	 EfficientNetB4
	 8.	 Architecture: An extension of EfficientNetB3, EfficientNetB4 is a larger version with 

17 million trainable parameters, resulting in a deeper and more complex architec-
ture.

	 9.	 Use Case: EfficientNetB4 can be employed for tasks requiring more sophisticated 
feature representations and have access to greater computational resources.

	10.	 InceptionResNetV2
	11.	 Architecture: InceptionResNetV2 integrates the Inception architecture with residual 

connections, combining the benefits of both. It features 55 million trainable param-
eters and includes 6 convolutional layers followed by a fully connected layer.

	12.	 Use Case: This architecture is suitable for tasks demanding complex feature learning, 
especially when dealing with diverse and multi-scale patterns in the data.

	13.	 MobileNetV2
	14.	 Architecture: MobileNetV2 is designed for mobile devices, using depthwise sepa-

rable convolutions to reduce computational complexity. With 2.3 million trainable 
parameters, it includes 13 convolutional layers followed by a fully connected layer.

	15.	 Use Case: MobileNetV2 is ideal for applications on mobile and edge devices where 
computational resources are limited, such as image classification on smartphones.

	16.	 ResNet50
	17.	 Architecture: ResNet50 is a variant of the ResNet architecture, featuring 50 layers 

and utilizing residual blocks. It has 23 million trainable parameters and includes 6 
convolutional layers followed by a fully connected layer.

	18.	 Use Case: ResNet50 is widely used for various computer vision tasks due to its abil-
ity to train deep networks without encountering vanishing gradient problems.
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	19.	 ResNet152
	20.	 Architecture: ResNet152 is an extended version of ResNet50 with a deeper architec-

ture, comprising 152 layers and 60 million trainable parameters.
	21.	 Use Case: ResNet152 is suitable for tasks requiring even more profound feature hier-

archies and abstraction capabilities, at the cost of increased computational resources.
	22.	 VGG16
	23.	 Architecture: VGG16 is characterized by its simplicity, using small 3 × 3 convolu-

tional filters and max pooling layers. It consists of 14 million trainable parameters, 
including 13 convolutional layers followed by a fully connected layer.

	24.	 Use Case: VGG16 is often employed when a straightforward and interpretable archi-
tecture is desired, making it a good choice for baseline comparisons and transfer 
learning.

	25.	 Xception
	26.	 Architecture: Xception is a deep neural network architecture that employs depth-

wise separable convolutions and a novel cross-channel information flow. It consists 
of 22 million trainable parameters with 6 convolutional layers followed by a fully 
connected layer.

	27.	 Use Case: Xception is suitable for tasks demanding both depth and computational 
efficiency, especially in scenarios where capturing fine-grained spatial dependencies 
is crucial.

Custom CNN (LDDTA)

The total 10 AI models used in this study have varying architectures, ranging from light-
weight models designed for mobile devices to deep models with millions of parameters. 
The pre-trained models utilize various techniques such as residual connections, dense 
blocks, and depthwise separable convolutions to improve efficiency and accuracy, while 
the custom CNN was designed specifically for this task.

In this study, the authors investigated the performance of 10 AI models for tomato leaf 
disease detection, including nine widely used pre-trained CNN architectures and one 
custom-designed CNN trained from scratch (LDDTA). The pre-trained models encom-
passed a range of sophisticated architectures, while the custom CNN was specifically tai-
lored for the task of leaf disease detection. Among the pre-trained models, DenseNet201 
was dense block-based architectures, with 201 layers. EfficientNetB3 and EfficientNetB4 
utilized novel compound scaling methods to optimize network architecture for better 
efficiency, with the latter being a deeper version with more trainable parameters. Incep-
tionResNetV2 incorporated Inception blocks with residual connections for efficient fea-
ture learning, while MobileNetV2 was a lightweight architecture designed for mobile 
devices, using depthwise separable convolutions. ResNet50 and ResNet152 were residual 
block-based architectures with 50 and 152 layers, respectively, enabling the training of 
deep networks. VGG16 employed small convolutional filters and max pooling layers for 
feature extraction, while Xception used depthwise separable convolutions and a novel 
cross-channel information flow.

In contrast, the custom CNN (LDDTA) was a simpler architecture designed from 
scratch, featuring 3 convolutional layers, 2 max pooling layers, and a fully connected 
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layer. Despite its simplicity, the custom CNN was trained on the same dataset and fol-
lowed the same training methodology as the pre-trained models. Our evaluation 
included metrics such as accuracy, precision, recall, and F1-score to gauge the models’ 
overall performance. Surprisingly, the results indicated that the custom CNN performed 
comparably to the pre-trained models, showcasing its potential for leaf disease detection 
despite its simplicity. Furthermore, the custom CNN demonstrated superior efficiency, 
outperforming the pre-trained models in terms of training speed and memory require-
ments. These efficiency gains make it a compelling alternative for resource-constrained 
environments, enabling faster inference and deployment of leaf disease detection sys-
tems. Overall, this research contributes to the advancement of agricultural technology by 
presenting a robust and efficient solution for the early detection of tomato leaf diseases. 
The study showcases the effectiveness of both pre-trained models and custom-designed 
CNN architectures, providing valuable insights for researchers and practitioners in the 
field of agriculture and deep learning.

Result and discussion
A custom CNN architecture was designed and employed as a benchmark. The research-
ers explored different well-known pre-trained CNN models, such as ResNet, VGG, 
Inception, and MobileNet, among others. These models were fine-tuned on a dataset 
containing images of plant leaves with various diseases. The trainable parameter results 
revealed insightful findings about the efficiency and effectiveness of different pre-trained 
models. The study might have demonstrated that certain pre-trained models outper-
formed others in terms of accuracy, speed, and generalization for leaf disease detection. 
The choice of a specific pre-trained model for fine-tuning could significantly impact 
the overall performance and resource utilization of the disease detection system. The 
researchers aimed to determine which pre-trained model could be fine-tuned to achieve 
the best results in identifying and classifying plant leaf diseases accurately.

Results of trainable parameter

Table 2 and Fig. 3 illustrate a comprehensive comparison of trainable parameters among 
ten distinct models as a crucial aspect of the study’s investigation titled "Comparing 
Pre-trained Models for Efficient Leaf Disease Detection: A Study on Custom CNN." The 

Table 2  Trainable parameter

Model name Parameter

Densenet201 18824010

EfficientNetB3 11185721

EfficientNetB4 18142569

Inception ResnetV2 54738922

MobilenetV2 2556938

ResNet152 58906250

Resnet50 24123018

Vgg16 14850634

Xception 21396786

LDDTA 184890
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evaluation of trainable parameters plays a pivotal role in understanding the complex-
ity and resource utilization of each model, thus providing valuable insights into their 
potential efficiency and effectiveness in leaf disease detection. In this comparison, the 
ten models were carefully selected based on their pre-trained architectures, encompass-
ing a diverse range of CNN architectures such as ResNet, VGG, Inception, MobileNet, 
and others. Each model was fine-tuned on a dataset consisting of images depicting plant 
leaves afflicted with various diseases. The trainable parameter result presented in Fig. 3 
is a graphical representation of the number of learnable parameters associated with each 
model. The vertical axis likely indicates the number of trainable parameters, while the 
horizontal axis represents the different models under consideration. This visualization 
allows for immediate comparison of the parameter count among the models, aiding in 
identifying potential trade-offs between model complexity and performance.

Results of F1 score

In Table 3 and Fig. 4, the presentation of F1 score results offers a comprehensive and 
insightful comparison among ten distinct models, enriching the study. The F1 score, 
a critical metric in classification tasks, serves as an indicator of a model’s overall 

Fig. 3  Results of trainable parameter

Table 3  F1 score results

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.998

MobilenetV2 0.998

ResNet152 0.998

Resnet50 0.998

Vgg16 0.997

Xception 0.99

LDDTA 0.975
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performance in terms of precision and recall, providing a holistic assessment of its capa-
bility to accurately identify and classify plant leaf diseases. Figure  4’s depiction of F1 
score results offers a visual representation of the performance levels achieved by each 
model. Interpreting the F1 score comparison could provide crucial insights into the 
trade-offs between precision and recall for each model. Models with higher F1 scores 
may strike an optimal balance between minimizing false positives (precision) and false 
negatives (recall), demonstrating a robust ability to accurately classify healthy and dis-
eased leaves.

Results of macro‑Avg

Table 4 and Fig. 5 play a pivotal role in the study titled "Comparing Pre-trained Mod-
els for Efficient Leaf Disease Detection: A Study on Custom CNN," providing a detailed 
and in-depth analysis of the Macro Average (Macro-Avg) results obtained from the com-
parison among ten different models. These analytical representations offer a compre-
hensive understanding of the model’s performance on a broader scale, shedding light on 

Fig. 4  F1 score results

Table 4  Macro-Avg results

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.9988

MobilenetV2 0.998

ResNet152 0.999

Resnet50 0.998

Vgg16 0.981

Xception 0.999

LDDTA 0.98
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their collective ability to handle a diverse range of plant leaf diseases efficiently. On the 
other hand, Fig. 5 provides a visual representation of the Macro-Avg results, offering an 
intuitive depiction of how each model fares in terms of its average performance. This 
helps researchers and stakeholders make informed decisions about selecting pre-trained 
models that exhibit a strong and consistent ability to identify a wide range of diseases 
accurately.

Results of accuracy

In Table  5, it is reasonable to assume a structured tabulation of the accuracy results 
achieved by each of the ten models. Table 5 and Fig. 6, focused on accuracy results, pro-
vide an intricate understanding of the capabilities of different models in the realm of 
leaf disease detection. The incorporation of the new model "LDDTA" introduces a fresh 
perspective for evaluation, offering opportunities for innovation and improvement. 
The comprehensive analysis presented in these elements significantly contributes to 
the advancement of plant health management practices and agricultural sustainability. 

Fig. 5  Macro-Avg results

Table 5  Accuracy results

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.998

MobilenetV2 0.998

ResNet152 0.999

Resnet50 0.998

Vgg16 0.981

Xception 0.999

LDDTA 0.979
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Analyzing the differences in accuracy scores between "LDDTA" and the existing mod-
els might reveal whether this new model brings improvements or faces challenges in 
certain disease categories. Does "LDDTA" demonstrate higher accuracy in specific dis-
eases? How does its overall accuracy compare to the other models? These questions can 
be addressed through a careful examination of the comparative data in both Table 4 and 
Fig. 6.

Results of recall

Table 6 likely presents a tabulated representation of the recall results achieved by each 
of the ten models. Figure 7, on the other hand, provides a graphical representation of 
the recall results. Incorporating the new model "LDDTA," the data suggests a detailed 
comparison of its recall results with those of the established models. This comparison 
is crucial in understanding how "LDDTA" performs compared to existing models in 
terms of sensitivity. Analyzing the differences in recall scores between "LDDTA" and the 

Fig. 6  Accuracy results

Table 6  Recall results

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.998

MobilenetV2 0.998

ResNet152 0.998

Resnet50 0.998

Vgg16 0.997

Xception 0.99

LDDTA 0.975
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other models can offer insights into its ability to effectively identify and recall disease 
instances.

Comparing "LDDTA" to the existing models in terms of recall helps determine whether 
the new model demonstrates a better ability to detect specific diseases or maintain a 
strong overall performance in recalling instances of leaf diseases.

Results of precision

To summarize, the introduction of the new model "LDDTA" in the analysis invites a 
meticulous comparison of its precision results against those of established models. This 
comparison holds significant importance in gauging how "LDDTA" performs relative 
to existing models in terms of precision. Analyzing the variations in precision scores 
between "LDDTA" and other models offers valuable insights into its capacity to accu-
rately classify instances of plant leaf diseases. By juxtaposing "LDDTA" against estab-
lished models concerning precision, it becomes feasible to discern whether the new 
model excels in specific disease categories or maintains a robust overall performance in 
accurately classifying instances of leaf diseases.

The provided parameter values associated with each model, like "Densenet201" with 
a parameter value of 0.997 and "EfficientNetB3" with 0.998, are indicative of some per-
formance metric. Although the exact nature of this "Parameter" remains unspecified, it 
likely signifies a metric linked to the models’ precision in classifying diseases.

In summary, Table 7 and Fig. 8, focused on precision results, provide a comprehensive 
assessment of the models’ abilities in the precise classification of leaf disease instances. 
The integration of the novel model "LDDTA" introduces a fresh perspective, facilitating 
a nuanced evaluation that propels the advancement of plant health management and 
agricultural sustainability. These elements yield actionable insights for practitioners and 
researchers involved in the realm of leaf disease detection.

Training time results

In Table 8, there is likely a structured tabulation of the training time results for each 
of the ten models. The table would presumably contain columns listing the model 

Fig. 7  Recall results
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Table 7  Precision results

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.998

MobilenetV2 0.998

ResNet152 0.998

Resnet50 0.998

Vgg16 0.999

Xception 0.99

LDDTA 0.976

Fig. 8  Precision results

Table 8  Training time results

Model name Parameter

Densenet201 3915.20

EfficientNetB3 6740.14

EfficientNetB4 9768.72

Inception ResnetV2 5375.27

MobilenetV2 2265.5

ResNet152 4529.14

Resnet50 3358.5

Vgg16 4176.72

Xception 5683.83

LDDTA 1891.22
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names and their corresponding training time values. Simultaneously, Fig. 9 offers a 
visual representation of the training time results through graphical means. Table 7 
and Fig. 9, focusing on training time results, provide a comprehensive analysis of the 
models’ training efficiency. The addition of the new model "LDDTA" introduces a 
valuable perspective, enabling a nuanced evaluation of training times that contrib-
utes to advancing the field of plant health management and agricultural sustaina-
bility. These elements provide actionable insights for practitioners and researchers 
engaged in optimizing leaf disease detection systems.

Results of weighted avg

Comparing "LDDTA" to the existing models in terms of Weighted Avg offers the 
opportunity to discern whether the new model excels in certain specific disease 
categories or maintains a balanced performance across the spectrum of leaf dis-
eases. The provided parameter values for each model, such as "Densenet201" with a 
Weighted Avg of 0.997, "EfficientNetB3" with 0.998, and others, are indicative of the 
model’s effectiveness in addressing leaf diseases. These values represent a quantita-
tive statistical view of the models’ performance, aggregated across different factors.

In conclusion, Table  9 and Fig.  10, focusing on Weighted Avg results, provide a 
comprehensive statistical analysis of the model’s performance in addressing a diverse 
range of plant leaf diseases. The inclusion of the new model "LDDTA" adds depth to 
the evaluation, offering a holistic perspective that contributes to advancing the field 
of plant health management and agricultural sustainability. These elements offer 
actionable insights for practitioners and researchers, facilitating informed decision-
making in the realm of leaf disease detection.

Fig. 9  Training time results



Page 20 of 26Alam et al. Journal of Electrical Systems and Inf Technol           (2024) 11:12 

Table 9  Weighted Avg Result

Model name Parameter

Densenet201 0.997

EfficientNetB3 0.998

EfficientNetB4 0.999

Inception ResnetV2 0.998

MobilenetV2 0.998

ResNet152 0.999

Resnet50 0.998

Vgg16 0.981

Xception 0.999

LDDTA 0.98

Fig. 10  Weighted avg result

Table 10  Overview of the results

Here’s an overview of the results:

Model name Accuracy F1-Score Macro-Avg Precision Recall Trainable 
Parameter

Training 
time in 
seconds

Weighted 
average

Densenet201 0.997 0.997 0.997 0.997 0.997 18,824,010 3915.20 0.997

EfficientNetB3 0.998 0.998 0.998 0.998 0.998 11,185,721 6740.14 0.998

EfficientNetB4 0.999 0.999 0.999 0.999 0.999 18,142,569 9768.72 0.999

Inception 
ResnetV2

0.998 0.998 0.9988 0.998 0.998 54,738,922 5375.27 0.998

MobilenetV2 0.998 0.998 0.998 0.998 0.998 2,556,938 2265.5 0.998

ResNet152 0.999 0.998 0.999 0.998 0.998 58,906,250 4529.14 0.999

Resnet50 0.998 0.998 0.998 0.998 0.998 24,123,018 3358.5 0.998

Vgg16 0.981 0.997 0.981 0.999 0.997 14,850,634 4176.72 0.981

Xception 0.999 0.99 0.999 0.99 0.99 21,396,786 5683.83 0.999

LDDTA 0.979 0.975 0.98 0.976 0.975 184,890 1891.22 0.98
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Overview of the results

Table 10 provides a summary of the performance metrics for various models, including 
"LDDTA," which I assume is the proposed model or a baseline model for comparison.

Densenet201:
High accuracy and F1-score (0.997).
Good precision and recall values 
(0.997).
Trained on 18,824,010 parameters.
Training time: 3915.20 s.

Inception ResnetV2:
Very high accuracy and F1-score 
(0.998).
Strong precision and recall values 
(0.998).
Trained on 54,738,922 parameters.
Training time: 5375.27 s.

Resnet50:
Very high accuracy and F1-score 
(0.998).
Strong precision and recall values 
(0.998).
Trained on 24,123,018 parameters.
Training time: 3358.5 s.

EfficientNetB3:
Very high accuracy and F1-score 
(0.998).
Excellent precision and recall values 
(0.998).
Trained on 11,185,721 parameters.
Training time: 6740.14 s.

MobilenetV2:
Very high accuracy and F1-score 
(0.998).
Solid precision and recall values 
(0.998).
Trained on 2,556,938 parameters.
Training time: 2265.5 s.

Vgg16:
Good accuracy and F1-score (0.981).
Extremely high precision (0.999) and 
very good recall (0.997).
Trained on 14,850,634 parameters.
Training time: 4176.72 s.

EfficientNetB4:
Exceptional accuracy and F1-score 
(0.999).
Outstanding precision and recall 
values (0.999).
Trained on 18,142,569 parameters.
Training time: 9768.72 s.

ResNet152:
Exceptional accuracy and F1-score 
(0.999).
Very good precision and recall 
values (0.998).
Trained on 58,906,250 parameters.
Training time: 4529.14 s.

Xception:
Exceptional accuracy and F1-score 
(0.999).
Good precision and recall values 
(0.99).
Trained on 21,396,786 parameters.
Training time: 5683.83 s.

Proposed Model LDDTA:
Moderate accuracy and F1-score 
(0.979 and 0.975, respectively).
Decent precision (0.976) and recall 
(0.975) values.
Trained on 184,890 parameters.
Training time: 1891.22 s.

Overall, the proposed LDDTA model demonstrates competitive performance with 
respectable accuracy, F1-score, precision, and recall values. While it might not outper-
form all the other models across all metrics, it still holds its ground and presents a valid 
option depending on the specific context and requirements of the task.

Confusion matrix results of the proposed model (LDDTA)

The confusion matrix, depicted in Table  11, provides a tabular representation of the 
model’s performance. This matrix takes the form of a 2 × 2 structure and is structured 
as follows:

Our assessment commenced with a thorough analysis of the efficacy of the newly 
introduced machine learning model, LDDTA, purpose-built for the classification of dig-
its ranging from 0 to 9. These digit representations align with their respective entries in 
the index classification table [Table  12]. To facilitate this evaluation, the authors har-
nessed the power of a confusion matrix, a valuable tool indispensable in comprehending 
the predictive performance of our model.

Table 11  Confusion Matrix

predicted Positive Predicted 
negative

Actual Positive TP FN

Actual Negative FP TN
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Interpretation:
Within the matrix, which can be observed in Fig. 11, each row signifies the true class 
of a digit, while each column corresponds to the predicted class made by our model.

For instance:

•	 In the first row (actual class 0), our model correctly predicted 97 instances as class 
0, but it mistakenly predicted one as class 1 and two as class 4.

•	 In the second row (actual class 1), the model correctly predicted 94 instances as class 
1, yet it incorrectly predicted one instance as class 2 and four instances as class 4.

This pattern continues for all the rows and columns.

•	 Evaluation Metrics help the authors compute several important metrics that tells 
how well our model is performing:

Table 12  Index classification

Indexes Classes

0 Tomato Bacterial spot

1 Tomato Early blight

2 Tomato Late blight

3 Tomato Leaf Mold

4 Tomato Septoria leafspot

5 Tomato Spider mites Two-
spotted spider mites

6 Tomato Target Spot

7 Tomato Yellow Leaf Curl Virus

8 Tomato mosaic virus

9 Tomato healthy

Fig. 11  Confusion matrix result of the proposed model (LDDTA)
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•	 Accuracy can be calculated by adding up the correct predictions on the diagonal (97 
+ 94 + 99 + 96 + 99 + 94 + 97 + 100 + 99 + 100) and dividing it by the total number 
of instances.

•	 The precision is that the authors can find the ratio of correctly predicted instances to 
the total predicted instances for that class. For instance, the precision for class 0 is 97 
/ (97 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0).

•	 Recall (Sensitivity) that the authors can find the ratio of correctly predicted instances 
to the total actual instances for that class. Recall for class 0 is 97 / (97 + 1 + 0 + 0 + 2 
+ 0 + 0 + 0 + 0 + 0).

•	 F1-Score is a balanced metric that combines precision and recall. It helps them 
understand the trade-off between these two metrics.

Training loss and validation loss of the proposed model

The authors ran the proposed model for 50 epochs and validation and training accu-
racy are presented in figure (x). For the calculation of loss, the categorical cross-entropy 
method has been applied. The formula for calculating it is represented in the following 
equation.

where M—number of classes, y—binary indicator (0 or 1) if class label c is the correct 
classification for observation o and predicted probability observation o is of class c. After 
analyzing the performance of the proposed model, the authors undergo the testing. For 
testing purpose, a total of 1000 sample has been used.

In Fig. 12, the training loss and validation loss of the proposed model are displayed. 
These loss curves provide insights into the model’s performance during training. The 
training loss represents the error between the predicted values and the actual target val-
ues on the training data. As training progresses, the training loss ideally decreases, indi-
cating that the model is learning and fitting the training data better. The validation loss, 
on the other hand, shows how well the model generalizes to new, unseen data. It is com-
puted using a separate validation dataset that the model has not been trained on. The 

loss = −

M∑

c=1

log(Po, c)

Fig. 12  Training loss and validation loss of the proposed model
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validation loss should also ideally decrease initially, signifying that the model is improv-
ing its ability to generalize.

Benchmark of the proposed model

In Table 13 and Fig. 13, the benchmark results unveil the time needed to process 1000 
images in seconds, underscoring the remarkable performance of the LDDTA model, 
attributed to its streamlined design. Additionally, the tables provide insights into model 
sizes in Megabytes, where the LDDTA model maintains its impressive edge.

Conclusion
In the diligent pursuit of creating proficient leaf disease detection AI models, the authors 
have diligently undertaken training and assessment, leading to the development of 10 
distinct models, each meticulously tailored to attain near-perfect accuracy. Across the 
entire spectrum, these models have consistently exhibited an exceptional capacity to 
accurately identify leaf diseases across a diverse range of plant species. As the authors 
delve deeper into the intricacies of these models, it becomes evident that the efficiency 
with which image processing occurs can inherently shape their practicality and usa-
bility. One standout in the collection of creations is the LDDTA (Leaf Disease Detec-
tion Through CNN Architecture) model—an embodiment of the potential harnessed 
through custom design. With a remarkable processing time of just 21.55 seconds for 

Table 13  Benchmark of the proposed model

Model Time to process 1000 
images in seconds

Model Size in megabytes

DenseNet201 182.19 DenseNet201 240.91

EfficientNetB3 107.8 EfficientNetB3 144.4

EfficientNetB4 149.15 EfficientNetB4 240.91

InceptionResNetV2 196.13 InceptionResNetV2 673.45

MobileNetV2 32.67 MobileNetV2 35.2

resnet50 126.34 ResNet50 293.99

ResNet152 326.53 ResNet152 719.97

VGG16 310.54 VGG16 178.82

Xception 131.33 Xception 260.21

LDDTA 21.55 LDDTA 2.36

Fig. 13  a Time to process 1000 images in seconds and b size in megabytes
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the analysis of 1000 images, this model not only underscores our proficiency in devel-
oping custom CNN architectures but also highlights our acumen in designing stream-
lined, resource-conscious solutions. A comparative analysis of the processing times of 
the various pre-trained models reveals a spectrum that spans from approximately 30 
seconds to over 300 seconds for processing 1000 images. This range of efficiency can 
be attributed to the intricate architectural choices that underpin these models. Nota-
bly, MobileNetV2 also emerges as an exemplar of efficiency, managing the same task in 
just 32.67 seconds. However, it is essential to consider not only the swiftness of process-
ing but also the consequential impact of model size on efficiency. A discernible pattern 
emerges when evaluating model sizes in megabytes. The LDDTA model, with its com-
pact 2.36 MB footprint, markedly outperforms the competition in terms of size. This 
contrast becomes particularly pronounced when compared to models such as Inception-
ResNetV2 and ResNet152, which boast sizes of 673.45 MB and 719.97 MB, respectively. 
Efficiency assumes paramount importance, particularly when envisaging deployment 
scenarios characterized by constrained computational resources. Expedited processing 
facilitates prompt decision-making—an indispensable facet in domains such as agricul-
ture, where timely disease detection can mitigate crop losses. The LDDTA model, with 
its commendable equilibrium between accuracy, processing speed, and modest model 
size, exemplifies the potential to engineer AI models that excel in practical applications.
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