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Introduction
ML/AI-based IoT application development is considered one of the hot topics among 
developers as well as academia. Among these IoT applications, location-based appli-
cations are critical. A few examples of location-based IoT services are locating people 
in a shopping complex, locating mobile robots on factory floors, attendance manage-
ment in smart campuses, etc. In indoor environments, finding the location of a mov-
ing object is quite challenging due to Non-Line of Sight (NLOS) environments and 
multipath fading [1–3]. In indoor wireless localization, additional hardware is not 
required to get the location information. By employing the broadcasting signals from 
the sensor node can assess its position. Further, the already implemented Wireless 
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Sensor Network (WSN) for sensing purposes could be upgraded to know the loca-
tion without any additional cost. Radio signals from mobile sensor nodes are used 
as input for an algorithm to estimate the location. Generally, indoor positioning sys-
tems are based on wireless technologies such as Bluetooth Low Energy (BLE), Wi-Fi, 
LoRaWAN, UWB, Zigbee, etc. Each wireless technology has its pros and cons. For 
instance, BLE has less power consumption and a very short communication range, 
and LoraWAN has high power consumption and a long sensing range [4, 5].

Numerous of the prominent algorithms available in the study for indoor localiza-
tion are mainly focus on statistical, deterministic, or filter-based [6–8]. Such algo-
rithms are highly complex and impractical to deploy on real hardware setups. Further, 
various hardware devices are used in Indoor Positioning Systems (IPS) based on clas-
sical algorithms, increasing the cost and significantly limiting the location accuracy.

ML algorithms are mostly employed in localization to extract the signals’ essential 
properties. Based on these derived features, clustering is carried out using the finger-
print method. For NLOS identification and mitigation, feature extraction is also cru-
cial. Current research endeavors focus on advancing machine learning-based indoor 
localization techniques tailored for IoT systems, enabling their diverse application in 
innovative scenarios [9–12]. Some works are based on regressor types of algorithms, 
classifier-type algorithms, or deep learning-based algorithms. Yet, proposed ML mod-
els have limitations. Often, proposed methods for ML-based localization are limited 
to a single ML algorithm, and no comparison of performances with other algorithms 
is available. Also, few works are based on simulated datasets, and no experimental 
testbed is implemented and evaluated. Further, there is less or no consideration of 
hyper-parameter tuning in algorithms.

The main contribution of this study is as follows:

•	 The RSSI measurement values are gathered using a Wi-Fi-based testbed featuring 
anchor nodes and target nodes designed using Espressif(ESP) 12 devices, operat-
ing on the IEEE 802.11 b/g/n protocol within an indoor environment.

•	 We introduce a pseudo-linear solution (PLS) as an innovative approach, offering 
a closed-form solution that approximates the original system of nonlinear RSSI 
measurement equations with a set of linear equations.

•	 To effectively manage measurement errors, our PLS method employs a weighted 
least-squares approach, with the weights carefully determined by considering the 
statistical properties of errors in both RSSI measurements and reference node 
locations.

•	 Finally, the received RSSI data is subjected to training with a selection of ML mod-
els: linear regression, polynomial regression, support vector regression, random 
forest regression, and decision tree regression, followed by a comparative evalua-
tion of their respective performances.

This paper is organized as follows. Section  “Related works” explains the recent 
works available; Section “Experimental testbed design” presents the details of design-
ing the experimental testbed, Section  “System model” expresses the details of ML 
models used and how they were trained; and finally, the results and conclusions.
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Related works
Several studies have been conducted to estimate the precise location of a sensor node 
in indoor environments with various localization techniques using numerous machine 
learning algorithms. This section briefly describes the recent studies and highlights the 
fundamental methodology used for Machine Learning-based indoor localization: In the 
article [13], the authors have investigated using an ML regressor for indoor localization. 
The authors of this paper used neural network technologies to carry out localization 
procedures based on the RSSI parameter. We compared the location estimate outcomes 
with two approaches (the ANN and the Decision tree) and the RSSI dataset. In order to 
evaluate the location for each triplet of RSSI, they initially used an artificial neural net-
work with three inputs. We calculated the means error value for each location acquired 
for this ANN architecture. The same task is done for the ANN architecture with four 
inputs, where they estimate the location for each of the four inputs and determine the 
means error value for those estimates.

In [10], Ultra-Wide Band(UWB) has been used as the wireless technology for the 
Indoor Positioning Systems(IPS). For the UWB IPS system, an ML-based algorithm built 
on Naive Bayes(NB) principles has been developed. The suggested techniques exhibit 
a considerable improvement in localization precision. The outcome shows that as the 
distance between the anchors and tags grows, so does the error between the measured 
and actual distance. The area under the curve for the NB method is 87%, demonstrating 
that it has high classification properties. The suggested algorithm will also retain good 
placement accuracy in both Line of Sight (LoS) and NLoS environments. In work [14], 
authors analyzed contemporary resolution technologies to locate objects inside build-
ings accurately. Then, they showed how positioning errors increased when training and 
testing fingerprinting techniques on various platforms and devices. Received Signal 
Strength (RSS) computations produce varied results when multiple platform types and 
devices are used for the precise location and time. The model was trained using Support 
Vector Machine (SVM) combined with Error-Correcting Output Codes (ECOC) One-
Versus-One and Long Short-Term Memory (LSTM) models. To determine the accu-
racy of the model, Root Mean Square Error (RMSE) was performed to show an error in 
meters between the true position and the predicted position.

In work [15], detailed comparison of LR, PR, DTR, SVR, and RFR performances for a 
Wi-Fi-based IPS. According to their findings, the DTR algorithm fared the best as com-
pared with the other algorithms examined. The number of forests in DTR significantly 
minimizes error and improves location estimation accuracy. It was noted that the accu-
racy and error were greatly enhanced once the test-reference bed’s nodes were increased. 
Our research predicts that supervised machine learning algorithms will produce better 
outcomes than deterministic localization.

On the contrary, proposed ML-based methods in related works can provide good 
accuracy in estimation over classical localization algorithms. However, it can be 
observed that RSSI is highly fluctuating and needs to apply string filtering techniques 
and linearization methods over the RSSI dataset before it trains using ML models.
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Experimental testbed design
We designed and implemented the testbed using two sensor nodes: the target node 
and the reference node. The target node is required to evaluate the position and ref-
erence nodes positioned in a fixed position in the indoor location. The experimental 
setup is established in an electronics engineering laboratory, as shown in Fig. 1. The 
location is about 8.02 square meters, spanning an open area surrounded by walls, and 
also consists of some furniture. The IoT architecture used in the RSSI data collec-
tion systems is denoted in Fig. 2. Both the target node is implemented using ESP-12E 
and the anchor nodes are implemented using ESP-01 modules. ESP modules incor-
porate the IEEE 802.11 standard employed in completely indoor locations (Fig.  3). 
This system supports IPv4, TCP, MQTT protocol, UDP, and HTTP in communication 
between nodes. A self-regulating 3.3  V DC power source through an ADP7158 lin-
ear regulator was used to power up the nodes, as depicts in Fig. 4a, b. Also, ESP-12E 
employs a lithium polymer secondary battery source for the storage.

In the testbed arrangement, 34 known location is identified with their x and y axis. 
Before taking RSSI readings, all the Wi-Fi-enabled devices, such as Wi-Fi access 
points, were turned off in the environment. During the data collection, the references 
were fixed on the wall at 2 feet height from the ground level, and the mobile node was 
kept on marked the places. During the experiment, the mobile node was kept in all 34 
locations for one minute, and recorded the RSSI values via an IoT cloud architecture. 
The actual image of the testbed is shown in Fig. 1.

The RSSI data collection and publication to a cloud storage server are done using 
the IoT cloud architecture, is shown in Fig. 3. The mobile node’s private Wi-Fi net-
work data collection for RSSI is made public on the internet, which is a public net-
work. The hardware platform and the online RSSI data gathering are linked through 
the IoT cloud. The Internet of Things cloud is a widely dispersed mosquito MQTT 
broker that publishes the information collected to a distant server. Wi-Fi and internet 
technologies are used to send the acquired data between the hardware platform and 
the distant server, respectively. Figure 5 demonstrate the process of location estimat-
ing with reference nodes.

Reference 
Node 1

Reference 
Node 1

Target Node

Fig. 1  Experimental testbed location
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System model
The RSSI-based localization of the target node is estimated by using multiple reference 
nodes. Let the target node is denoted as 

(
xb, yb

)
 with the fixed reference node locations at (

xi, yi
)
, i = 1, 2, . . . ,M . i.e., M ≥ 3. The target node’s RSSI measurement is included with 

noise due to signal fluctuation. The noisy reference location at the target node is repre-
sented as 

(
x̃i, ỹi

)
 and the subsequent RSSI estimation is represented as p̃i . An additive 

Fig. 2  Arrangement of reference nodes and mobile nodes

Fig. 3  The RSSI-based localization system



Page 6 of 20Maduranga et al. Journal of Electrical Systems and Inf Technol           (2024) 11:10 

independent with zero-mean Gaussian noise affects the anchor node location informa-
tion with a standard deviation indicated as σai [16]. There is variation of σai values due to 
the multiples reference nodes. On the other hand, it considers the identical for both the 
x and y coordinates of a targeted node.

(1)x̃i = xi + nxi

Fig. 4  a Reference sensors node, b 3.3 V DC

Reference 

Node 1

Reference 

Node 2

Reference 

Node M

Mobile Node

Publish RSSI

MQTT Broker

Subscribe RSSI to 

internal storage

Training ML model

x,y position 

Publish & 

Subscribe 

RSSI over

Internet

Processing 

and

positioning 

Fig. 5  Process of location estimating
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nxi , nyi ∼ N
(
0, σ 2

ai

)

Similarly, the RSSI measurement by log-normal shadowing system model of radio signal 
path-loss is also employed [17]. So that the target node of the transmitted signal from the 
ith reference nodes is represented as p̃i (dBm). The perturbation nσpi in p̃i is denotes an 
additive noises with independent zero-mean Gaussian and standard deviation is denoted as 
σpi (dB), such that.

Moreover, the shadowing path loss system model represents the correlation between 
the ith mean of the power and the distance among the target source and the ith reference 
nodes, i.e.,

as

where  d0 defines the reference nodes distance, p0 defines received source power value at 
the reference distances, and η is the pathloss exponent value, respectively. Assumed the 
perturbed value pi , the RSSI-caused measure of the distance amongst the target source 
and the ith reference nodes is represented by d̃i , and it is computed as

This study considers the challenges of computational efficiency and energy resource 
constraints for location estimation of the target node by using the reference nodes. In 
this manner, the RSSI location measurement from every reference node is accessible to 
the target node at any period for localization. To cope with the challenges mentioned as 
above, this study proposed a PLS to solve the autonomous-localization issue described 
below:

The basic idea of the proposed algorithm is to find the near-optimal position of the 
target node that decreases the sum of the squared error values. As denoted earlier, the 
reference nodes position 

(
xi, yi

)
 and its subsequent distances di, i = 1, 2, . . . ,M , the tar-

get node location is computed by intersecting the circles described as

To cope with the system’s nonlinearization nature of Eqs. (6), subtraction of the equa-
tion regarding from the i = 1 to the other outcomes in a system of linearization equa-
tions is defined as

(2)ỹi = yi + nyi

(3)
p̃i = pi + nσpi

nσpi ∼ N (0, σ 2
pi
)

(4)di =
√
(xi − xb)

2 +
(
yi − yb

)2

pi = p0 − 10η log10
di

d0

(5)d̃i = d010
p0−p̃i
10η

(6)(x − xi)
2 −

(
y− yi

)2 = d2i , i = 1, 2, . . . ,M.

(7)2As = b
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here

xc = 1
M

M∑
i=1

xi,yc = 1
M

M∑
i=1

yi,dc = 1
M

M∑
i=1

d2i , and kc =
1
M

M∑
i=1

ki,

It is observed that Eq. (7) is an over-determined set of nonlinear equations, thus the 
objective is to find a solution s by decreasing the subsequent sum of the square-error 
function

The solution of (8) is

It is noted that, only noisy information  x̃i, ỹi, and d̃i are accessible rather than actual 
xi, yi, and di . To factor in the change of the scale as well as numerical attribute val-
ues that included with multiple reference node’s location and distance estimations of 
Eq. (8), the minimization of the sum of square errors as

where

and W denoted as M ×M weighted matrix. Then, the explanation ŝ  of (10) is

To evaluate the weight matrix (W), it is noted that the error vector b̃− Ãs in (10) 
contains two noise elements, one is in the reference node’s location and another one 
is in distance measurement. The vector b̃ comprises the squares of the noise elements, 
which basically lead the impact of noise in Ã to the error vector covariance. Thus, it is 
considered that the W represents the covariance matrix of b̃ . Thus, b̃ is simplified as

A =



x1 − xc y1 − yc
x2 − xc y1 − yc
· · · · · ·

xi − xc y1 − yc


, b =




dc − d21 + k1 − kc
dc − d22 + k2 − kc

· · ·
dc − d2M + kM − kc


, s =

�
x

y

�
, ki = x2i + y2i

(8)J (s) = arg min
s

[∥∥b− As
∥∥2
2

]

(9)s =
1

2

(
ATA

)−1
ATb.

(10)J̃ (s) = arg min
s

[∥∥∥W
1
2 (b− As)

∥∥∥
2

2

]

�A =




�x1 − �xc �y1 − �yc
�x2 − �xc �y1 − �yc
· · · · · ·

�xi − �xc �y1 − �yc


, b =




�dc − �d21 + �k1 − �kc
�dc − �d22 + �k2 − �kc

· · ·
�dc − �d2M + �kM − �kc


, �s =

��x
�y

�
, �ki = �x2i +�y2i

x̃c =
1

M

M∑

i=1

x̃i ,̃yc =
1

M

M∑

i=1

ỹi, d̃c =
1

M

M∑

i=1

d̃2i , and k̃c =
1

M

M∑

i=1

k̃i,

(11)ŝ =
1

2

(
ÃTW−1Ã

)
ÃTW−1b̃
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where

Hence, we have

where

Reflecting the assumptions mentioned above is independent features of the noises of 
the reference node’s location and RSSI-induced distances, () is defined as

It is notable that the k̃i represent the summation of the square with independent nor-
mal distributed random variable x̃i, and ỹi as well as a non-zero mean. Thus, variance k̃i

σ 2
ai

 

is defined as

And consequently

Thus Var
(
d̃2i

)
 is computed as [11]

where

The noisy values of x̃i, ỹi, and d̃i are used to compute Eqs. (13) and (14) because of the 
actual values xi, yi, and di are not accessible.

Moreover, it is noted that Eq. (11) has multiple sources of bias. The matrix Ã contains 
noise, the errors in b̃ are not additive as well as zero-mean, and there is a relationship 
among the errors in Ã and b̃ . To evaluate the bias into the system model algorithm tak-
ing an additive error, Eq. (9) is simplified as

(12)b̃ =
(
I −

1

M
11T

)
b1

b1 =
[
k̃1 − d̃21 , k̃2 − d̃22 , . . . , k̃M − d̃2M

]

W =
(
I −

1

M
11T

)
cov(b1)

(
I −

1

M
11T

)

Cov(b1) = dig
(
Var

(
k̃1 − d̃21

)
, Var

(
k̃2 − d̃22

)
, . . . . , Var

(
k̃M − d̃2M

))

Var
(
k̃i − d̃2i

)
= Var(k̃i)+ Var(d̃2i )

Var

(
k̃i

σ 2
ai

)
= 2

(
2+ 2

x2i + y2i
σ 2
ai

)

(13)Var
(
k̃i

)
= 4σ 2

ai

(
σ 2
ai
+

(
x2i + y2i

))
.

(14)Var
(
d̃2i

)
= exp

(
4µdi

)[
exp

(
8σ 2

ai

)
− exp

(
4σ 2

ai

)]

µdi = In di and σpi =
In 10

10η
σpi
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By using Eqs. (15) and (11), the E [̂s] is written as

In Eq. (16), the expansion of ÃTW−1Ã to (A+ N )TW−1(A+ N ) , to make the equa-
tion simpler has been avoided. It is assumed that part I in Eq. (16) is the correspond to 
the target node location ŝ  and the remaining of the parts, II, III, and IV are the bias parts 
owing to estimation errors.

Part II provides the bias owing to the noise in Ã . Part III provides the statistical 
dependence among Ã and b̃ i.e., E

[
NTe

]
 = 0 . Moreover, part IV provides the non-addi-

tive nature of perturbation in d̃i i.e., E[e]  = 0 . To compensate of the bias parts II, III, 
and IV, the expectation for concerning noise covariance is then subtraction in Eq. (11) is 
written as

To compute E
[
NTW−1N

]
 and E

[
NTW−1b̃

]
 , N can be written as

where

nxc = 1
M

M∑
i=1

nxi , and nyc = 1
M

M∑
i=1

nyi

Thus. We have

Representing (i, j)th is the element of W−1 by w′
ij , and the entries of (19) are estimated 

as

(15)Ã = A+ N , b̃ ≈ b+ e

(16)

E [̂s] = E

[(
ÃTW−1Ã

)−1
]
ATW−1b

︸ ︷︷ ︸
I

+E

[(
ÃTW−1Ã

)−1
NT

]
W−1b

︸ ︷︷ ︸
II

+ E

[(
ÃTW−1Ã

)−1
NTW−1e

]

︸ ︷︷ ︸
III

+E

[(
ÃTW−1Ã

)−1
ATW−1e

]

︸ ︷︷ ︸
IV

(17)
ŝbc =

1

2

(
ÃTW−1Ã− E

[
NTW−1N

])−1
×

{
ÃTW−1

(
b̃− E

[
b̃
])

− E
[
NTW−1b̃

]}

(18)N = N1 − N2

N1 =




nx1 ny1
nx2 ny2
· · · · · ·
nxM nyM


,N2 =



nxc nyc
nxc nyc
· · · · · ·
nxc nyc




(19)
L = E

[
NTW−1N

]

= E
[
NT
1 W−1N1

]
+ E

[
NT
2 W−1N2

]
− E

[
NT
2 W−1N1

]
− E

[
NT
1 W−1N2

]

E
[
NT
1 W−1N1

]
= diag

{
M∑

i=1

w′
iiσ

2
nxi

,

M∑

i=1

w′
iiσ

2
nyi

,

}
,
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And

The bias owing to the dependence of noises in the  Ã and b̃ can be written as

where

and

To compensate of the bias provided by the non-additive feature of the perturbation in 
the d̃i [part IV in Eq. (16)], E

[
b̃
]
 with its i-th entry can be computed as

It can be considered that the noise is independent of the reference ’s location and 
RSSI-induced distances; thus Eq. (21) is expressed as

To compute E
[
d̃2i

]
 , it is noted that the d̃2i  employing in Eq. (5) is equal to

where

E
[
NT
2 W−1N2

]
= diag

{
1

M2

M∑

i=1

w′
iiσ

2
nxi

,
1

M2

M∑

i=1

w′
iiσ

2
nyi

,

}
,

E
�
NT
2 W−1N1

�
= diag





1

M

M�

i=1

σ 2
nxi




M�

j=1

w′
ji


,

1

M

M�

i=1

σ 2
nyi




M�

j=1

w′
ji






,

E
�
NT
1 W−1N2

�
= diag





1

M

M�

i=1

σ 2
nxi




M�

j=1

w′
ij


,

1

M

M�

i=1

σ 2
nyi




M�

j=1

w′
ij






,

(20)E
[
NTW−1b̃

]
= E

[
NT
1 W−1b̃

]
− E

[
NT
2 W−1b̃

]

E
�
NT
1 W−1�b

�
=




2

M

M�

i=1

xiσ
2
nxi




M�

j=1

w′
ji




2

M

M�

i=1

yiσ
2
nyi




M�

j=1

w′
ji







E
�
NT
2 W−1�b

�
= −




2

M2

M�

i=1

x1σ
2
nxi

1TW−11

2

M2

M�

i=1

y1σ
2
nyi

1TW−11




(21)E
[
b̃i

]
= E

[
b̃c − d̃2i + k̃i − k̃c
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Therefore,

It is noted that the value of u2σ 2
npi

 always small even though values of σnpi is high. In 

this manner, by employing the second-order expansion of the Taylor-series for the 
function exp

(
u2σ 2

npi

)
 near to zero, (23) is estimated as

By considering the assumption, E
[
d̃2c

]
 is correspond to

The term E
[
k̃i

]
 in (22) corresponds to

And mentioned assumption E
[
k̃c

]
 develop into

Employing (24) and (25) E
[
b̃
]
 is expressed as

here the ith entry for the t is

It is noted that the di is not available, thus the subsequent noise measurement val-
ues are employed in the estimation of the t.

Computation estimation shows that evaluation of the bias owing to the included 
of the noise in the Ã and b̃ employing (20) is approximate actual value only when 
low noise exists in the reference node’s location. Thus, it is dependent on the bias on (
xi, yi

)
 and becomes the poor evaluation performance is provided with higher values 

of the σai . The target node estimated location, that is bias compensated in the pre-
sented PLS algorithm, the bias-compensated solution ŝbc in (17), is computed as a 
closed form equation as:

u =
In 10

5
√
2η

(23)
E
[
d̃2i

]
= d2i E

[
exp

(√
2unpi

)]

= d2i exp
(
u2σ 2

npi

)

(24)E
[
d̃2i

]
= d2i + d2i

(
u2σ 2

npi
+

u4σ 4
npi

2

)

E
[
d̃c

]
=

1

M

M∑

i=1

E
[
d̃2i

]

(25)E
[
k̃i

]
= x2i + y2i + 2σ 2

npi

E
[
k̃c

]
=

1

M

M∑

i=1

E
[
k̃i

]

E
[
b̃
]
= b+ t

ti =
(
u2σ 2

npi
+

u4σ 4
npi

2

)(
d2c − d2i

)
+ 2

(
σ 2
nai

− 1

M

∑
σ 2
nai

)



Page 13 of 20Maduranga et al. Journal of Electrical Systems and Inf Technol           (2024) 11:10 	

Data collection and pre‑processing
The CloudMQTT IoT server is used as an IoT cloud platform in this experiment. The 
MQTT broker delivers a lightweight mode to perform message. MQTT employs a differ-
ent model called pub-sub instead of the more common Request/Response for communi-
cation on networks that protocols like HTTP use. The Req/Res model’s foundation is the 
server/client architecture. In this architecture, clients communicate by addressing a par-
ticular server with a request. The server then responds by giving the client the requested 
data or service. In this architecture, the client should ask a certain server directly. For 
web or mobile apps that require one or more strong servers to fulfill client requests, the 
Req/Res architecture works perfectly [18]. The MQTT protocol has certain advantages, 
such as using certain Quality of Service (QoS) settings that can ensure delivery; regard-
less of the condition of the subscribing server, a device can publish its data. When it is 
ready, the subscribing server can connect and receive the data. The mobile nodes pub-
lish RSSI data from the three reference nodes to the MQTT broker over the internet 
and subscribes to a remote storage server for the RSSI data. The collected raw data set 
is illustrated in Fig. 6 in both the time and frequency domains. Where normalized fre-
quency values provide valuable insights in frequency content analysis, noise and inter-
ference detection and allows to compare results and findings in a standardized manner.

Machine learning models development
Supervised ML methods are used to predict the position of the mobile sensor node. 
Generally, these ML algorithms are applied in two stages. Data acquired and deliv-
ered to the algorithm in the initial step, the training stage, so it may learn patterns and 
build a model to categorize data or forecast its attributes. A new dataset is compared 
to the model created at time of training phase in the second step, known as the test-
ing phase, to determine the model’s efficacy. Supervised learning algorithms are a type 
of two-phase learning algorithm. In this work, it has trained SVM, LR, PR, DTR, and 
RFR. All the machine algorithms are implemented using Python 3 on Jupiter’s Notebook 

(26)ŝbc =
1

2

(
ÃTW−1Ã− L

)−1
ÃTW−1

(
b̃− t

)

Fig. 6  Time-domain and frequency-domain representation of RSSI signals
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using Sci-kit-learn machine learning library on Intel(R) Core (TM) i5-10210U CPU @ 
1.60 GHz 2.11 GHz. For visualizations, MATLAB 2020R is used.

Linear regression (LR)

Linear regression (LR) could consider the simplest ML algorithm available. In LR, it 
is the best-fit linear line between the independent and dependent variables. Defining 
the best-fit linear line and the ideal intercept and coefficient value so that the error is 
decreased is the major aim of a LR model. The first variable is the independent variable, 
whereas the second is regarded as a dependent variable. Moreover, this algorithm is easy 
to implement and requires less computational power to train the model [19, 20].

Polynomial regression (PR)

Polynomial regression is the improved version of the LR. As a specific case of multiple 
LR, PR is a kind of linear regression that assess the connection as a nth-degree polyno-
mial. PR is suitable for scenarios such as when the dataset consists of nonlinear data. In 
such scenario, LR fails to create a best-fit line. Consider the accompanying graphic, it 
depicts a nonlinear correlation, and the outcomes of LR, which accomplish poorly and 
are not at all realistic. To cope this challenges, PR is used, which identifies the curvilinear 
correlation between the independent and dependent variables. Moreover, this model is 
also less complex and easy to implement in even low-power hardware devices [21, 22].

Support vector regressor (SVR)

SVR is a powerful ML algorithm used in indoor localization. It is more effective since 
SVM models linear and nonlinear relations with superior generalization performance 
and adopts the kernels technique to detect the difference among two points of the two 
distinct classes. However, when the number of SVs increases, SVM-based approaches 
become time-consuming and memory-intensive [23, 24].

Decision tree regression (DTR)

A decision tree is a supervised machine learning method that could be employed to cope 
classification and regression challenges, although it is utmost frequently used when cop-
ing with classification challenges. It is a tree-structured classifier, in which internal nodes 
characterize the feature of a datasets, and branches shows the procedure of making deci-
sions, and each leaf node is the classification result. There are basically two nodes such 
as decision node and leaf node. When it comes to indoor localization, compared to 
other categorization techniques like K-NN and Neural Network, Decision Tree-based 
indoor localization performs better in terms of increasing localization accuracy. When 
the Decision Tree categorizes continuous numerical data, there is a chance that some 
information will be missed [25, 26].

Random forest regression (RFR)

A machine learning ensemble technique using many decision trees is called a random 
forest regression (RFR). A voting system is employed in RFR to raise the performance of 
numerous weak students (in this case, decision trees). The primary properties of random 
forests include random feature selection, bootstrap sampling, out-of-bag error estimates, 
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and full-depth decision tree growth. Random forest improves the performance of regres-
sion trees by combining several regression trees. Using a random forest eliminates the 
need for cross-validation because the forest is constructed using native out-of-bag error 
estimates. In some tests, the out-of-bag error estimation is considered impartial [27].

Result and discussion
Algorithms, DTR, LR, PR, SVM, and RFR are used to train supervised machine learn-
ing algorithms to estimate the x and y geographical coordinates of the target node. For 
all the models, the coefficient of determination (R2) and the Root Mean Squared Error 
(RMSE) were calculated. Firstly, the experiment taking place with three reference nodes, 
and step by step, the number of anchor nodes elevate to four and five, respectively, and 
new data sets were generated. Finally, RMSE and R2 were calculated under different 
hyper-parameter conditions.

Root mean squared error

Figure  7a, b denotes the RMSE values changes in the x coordinate as we change the 
number of anchor nodes for the x coordinate and y coordinate, respectively. In the 
experimental setup, we changed the number of anchor nodes to 3, 4, and 5, respectively. 
In each case, RSSI values were collected and trained using ML models. It observed that 
as the number of anchor nodes increases, there is a significant reduction in RMSE values 
for all the models. The LR and PR show the higher RMSE values and SVR, DTR, and 
RFR show relatively lower RMSE values. Where DTR outperformed in terms of RMSE. 
This trend is because the model trains very well when the number of trainable param-
eters increases.

Figure 8a, b denotes the RMSE value variation against the sample size for the x coor-
dinate and y coordinate, respectively. It is observed that RMSE decreases as the num-
ber of samples increases in all the models. LR and PR showed relatively high RMSE and 
SVR, while DTR and RFR showed the lowest RMSE values. Where DTR is outperformed 
for both coordinates, giving the lowest RMSE value. For all the models, the RMSE value 
decreases as the number of samples increases. In ML models, the standard deviation 
decreases as the number of samples increases.
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Coefficient of determination (R.2)

Figure 9a, b shows the change of coefficient value determination against the number 
of samples for the x coordinate and y coordinate, respectively. For machine learning 
models, the coefficient of determination, or R-squared value, ranges from 0.0 to 1.0 
and reflects the correlation of the variance proportionate to the real and estimated 
node position. All dataset points perfectly lie at the estimated line of best fit when the 
R-squared values are closer to 1.0, indicating that the estimated position is entirely 
defined concerning the higher accuracy. For all the models, R2 values rapidly increase 
till 1000 samples, and after 1000, it increases normally. DTR and RFR show better R2 
score, which is closer to 1. LR and PR show less than 0.5, meaning that models do not 
fit well with the data.

Hyper‑parameter of the ML models

Figure  10a shows the impact of the hyper-parameter and the number of forests in 
RFR against the accuracy of the estimation. It can be observed that as the number of 
forests increases, RMSE is significantly decreasing. In RFR as the number of forests 
increases, the model is well trained with the data and gives better accuracy. However, 
the model required a higher computational power in hardware devices with a high 
number of forests.

500 1000 1500 2000 2500 3000 3500 4000 4500
Number of samples

20

30

40

50

60

70

80

90

100(a) (b)

R
M
SE

LR
PR
SVR
DTR
RFR

500 1000 1500 2000 2500 3000 3500 4000 4500
Number of samples

20

30

40

50

60

70

80

90

100

R
M
SE

LR
PR
SVR
DTR
RFR

Fig. 8  RSME value with number of samples a x coordinate, b y coordinate

500 1000 1500 2000 2500 3000 3500 4000 4500
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(a) (b)

D
et
er
m
in
at
io
n
of

co
ef
fic

ie
nt

LR
PR
SVR
DTR
RFR

500 1000 1500 2000 2500 3000 3500 4000 4500
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et
er
m
in
at
io
n
of

co
ef
fic

ie
nt

LR
PR
SVR
DTR
RFR

Fig. 9  Coefficient of determination with number of samples a x coordinate, b y coordinate



Page 17 of 20Maduranga et al. Journal of Electrical Systems and Inf Technol           (2024) 11:10 	

The number of tree hyper-parameters used in tree-based ensemble methods must be 
adjusted, directly affecting the computational cost. Sufficient trees must be chosen to 
find a trade-off between forecast accuracy and computational time. According to the 
foundations of tree-based algorithms, a model with more trees will be optimized and 
have the lowest possible prediction error. It shows that model performance depends on 
the maximum tree depth and that deeper trees perform better. Figure 10b illustrates the 
impact of the number of trees versus RMSE in the DTR algorithm. It can be observed 
that RMSE is significantly decreasing as the number of trees increases.

RMSE value with the epsilon for different kernel functions in SVR

Figure 11 illustrates the change of RMSE value against the epsilon for different kernel 
functions in SVR. Firstly, the input dataset forwarded into the kernels, which then trans-
forms it into the desired form. Various SVM algorithms use different kernel functions. 
There are several forms of these functions. For instance, linear, nonlinear, polynomial, 
sigmoid, and radial basis functions (RBF). Describe the kernel functions for vectors, 
text, pictures, graphs, and sequence data. RBFs are the utmost prevalent types of kernel 
functions. since it responds locally and infinitely throughout the entire x-axis. The ker-
nel functions return the inner product between two locations in an appropriate feature 
space. Thus, a notion of similarity is defined even in very high-dimensional areas with 
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low computational expense. The experimental results show that all the kernel functions 
are giving decrement RMSE from 0.1 to 0.2 and after ε > 0.2, RMSE is rapidly increasing. 
Based on the observations, the RBF kernel is outperformed.

RMSE value with the C parameter in SVR

Figure  12 illustrates the RMSE value change against the c parameter in SVR. Where 
gamma set 0.1 for RBF kernel. It is observed that when C is increasing, RSME is signifi-
cantly decreasing. For each erroneously classified data point, the C parameter provides a 
penalty value. In the event that c is low, selecting a decision boundary with a high mar-
gin comes at the expense of more misclassifications for the reason that the penalty for 
incorrectly classified points is low. SVM attempts to decrease the number of erroneously 
classified instances owing to a high penalty when C is large, which leads to a decision 
boundary with a narrower margin. Not all instances of misclassification get a similar 
penalty. It is contrarily relationship with the partition from the decision boundary.

Conclusions
This study presents an ML-based approach that could apply to robust indoor location 
scenarios. An experimental testbed was designed, including five reference nodes and one 
target node. The target node was placed at known geographic coordinates, and RSSI data 
were gathered using an IoT cloud architecture. The collected dataset was pre-processed 
using a PLS for a closed-form solution. It approximated the original system of nonlinear 
RSSI measurement equations with a system of linear equations. The dataset was trained 
using several ML algorithms. It is evident from the experiment with many supervised 
algorithms under various circumstances that the DTR outperformed the other algo-
rithms that experimented the best. Hyper-parameters, number of trees in DTR, number 
of forests in RFR, penalty parameter, and explosion in SVR significantly affect localiza-
tion accuracy. Moreover, accuracy and error were greatly improved once the reference 
nodes of the network are increased. Future research can delve into creating and refin-
ing ensemble-type machine-learning models designed to enhance indoor localization 
accuracy. These models can leverage the strengths of various algorithms and techniques, 
combining them synergistically to improve localization performance. Investigating 
novel ensemble strategies and assessing their effectiveness in real-world scenarios will 

Fig. 12  RSME value with C parameter in SVR



Page 19 of 20Maduranga et al. Journal of Electrical Systems and Inf Technol           (2024) 11:10 	

be crucial. Research efforts should focus on accommodating dynamic indoor environ-
ments, diverse IoT device types, and varying network conditions. This will help ascertain 
the adaptability of the models to a wide range of real-world settings.
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