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Introduction
Chronic kidney disease (CKD) is a kidney disease caused by an inability to adequately 
filter blood. The basic function of the kidneys is to filter excess water and waste from 
human blood and eliminate them through urine [1]. In other words, when a person has 
CKD, waste builds up in their body, causing many harmful symptoms. Kidney damage 
develops gradually over time and can influence the rest of the human body, leading to 
serious disorders and might cause death [2].

Therefore, deep learning-based CKD prediction is an important application that 
predicts the medical condition before it begins, which tremendously contributes to 
saving people’s lives. Many studies have demonstrated that if medical intervention 
started in the first or second trimester, high-risk problems can be avoided [3]. Disease 
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detection suggests that the patient has the disease already, but disease prediction 
implies that it may arise in the future. As a result, scientists have attempted to forecast 
or diagnose kidney disease early. Currently available risk prediction models either do 
not provide patient specific risk factors or only predict in-hospital mortality rates. 
Machine learning models were applied to predict and calculate individual patient 
risk for disease occurrence or mortality. Disease detection implies that the patient 
already has the disease; whereas, disease prediction implies that it may occur in the 
future. Thus, scientists have attempted to detect kidney disease early, or predict its 
occurrence.

Several studies used Support Vector Machines and Artificial Neural Networks, 
Deep neural networks, an Ensemble algorithm, Extra tree, Random Forest, and Logis-
tic Regression models to detect CKD at an early stage [1, 4–8]. Furthermore, Decision 
trees, Random Forest, LightGBM, Logistic Regression, and CNN models have been 
developed to predict CKD six to twelve months in advance [9].

Machine learning proved to be useful for detecting correlations in huge, compli-
cated datasets. The field of precision medicine, in which disease risk is predicted 
using patient data, is one of the potential uses of machine learning. However, due 
to the vastly increased quantity of characteristics, developing an appropriate predic-
tion model based on data remains difficult. As a result, feature selection improves the 
generalizability of machine learning models by extracting only the most "informative" 
features and removing noisy “non-informative,” irrelevant, and redundant informa-
tion. This will help the decision makers in the medical filed to give a better decision 
about the action to be made to treat or even prevent this disease if the features identi-
fied could lead to such disease.

There are numerous studies in this field for CKD detection. However, only one 
study adopted CKD prediction [9] using Taiwan’s National Health Insurance Research 
Database (NHIRD) [10]. This dataset contains information on insurance claims made 
by patients between 1997 and 2012 and was used for the study, too. Every patient’s 
comorbidity or prescription is included in their record. The ICD 9 codes for the 
comorbidities and the ATC codes for the drugs indicate what they are. Consequently, 
many challenges emerge after reviewing the literature which motivated our research:

1. CKD data are scarce. Previous studies’ datasets were based on medical tests [4, 7–
14]. It does, however, contain a limited number of samples (only 400 samples) [15].

2. Previous research concentrated on detecting the disease after it had already occurred 
[4, 7–14].

3. Due to the lack of data, research on this field has not been fully explored.
4. Only one study attempted to predict the CKD possible occurrence [9]. It, however, 

used an imbalanced dataset without providing a solution to the problem. Further-
more, it employed many features, which increased the computational cost. Finally, 
the performance of this work was low.

As a result, the novelty of this work is to investigate using optimized deep learning 
models, as well as using an ensemble model, for CKD prediction to enhance the pre-
diction performance. In addition, we use large datasets from Taiwan’s National Health 
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Insurance Research Database (NHIRD) [16] that contain 90,000 samples as in [9], fur-
thermore, we solve the problem of the imbalance of the dataset. As a summary of the 
contributions made, we list them in the following points:

1. We propose three deep learning predictive models to predict CKD six months and 
twelve months before disease occurrence, which are:

 1.1. Convolutional neural networks (CNN) model.
 1.2. Long short-term memory (LSTM) model.

 1.3. A combination of long short-term memory and bidirectional long short-
term memory (LSTM-BLSTM) model.

2. A comparative evaluation of deep learning optimizers is presented for each model to 
induce the most powerful optimizer for the CKD dataset.

3. We propose an ensemble model that uses the majority voting technique to combine 
the three deep learning classifiers (CNN, LSTM, and LSTM-BLSTM), where each is 
optimized by the best optimizer chosen in stage 2, to improve the classification per-
formance.

4. We train each model for CKD prediction using two public benchmark datasets [10]. 
The main drawback of these datasets is the imbalance between the two classes, which 
been addressed using SMOTE (Synthetic Minority Oversampling Technique). The 
second flaw is the large number of features in the datasets. We remedied it by reduc-
ing the number of features using the Random Forest feature selection algorithm.

5. Finally, we assess the predictive models’ performance using various metrics to inves-
tigate their advantages and disadvantages. To demonstrate the strength of the pro-
posed models, the results are compared to the state-of-the-art work [9] using the 
same datasets.

This paper is organized as follows. “Related work” section reviews previously 
developed approaches in CKD detection and prevention. The dataset is presented 
in “Materials and methodology” section and the proposed models are described in 
detail. “Proposed models evaluation” section evaluates the proposed predictive mod-
els, draws a comparative analysis, and discusses the prediction results. “Conclusion 
and future work” section concludes this paper.

Related work
Risk detection and prediction for chronic kidney disease

Many existing risk models have been introduced for a variety of diseases to reduce 
mortality. Given the riskiness of kidney disease to human health, scientists have 
attempted to detect it early or predict its occurrence in advance. Disease detection 
implies that the patient already has the disease; whereas, disease prediction implies 
that it may occur in the future. Consequently, research can be classified into two 
types: detection and prediction. In aspects of the first type, almost all studies used the 
same datasets [15], to detect CKD.
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Qin et al. [11] used the machine learning models to classify the patients with CKD. 
The highest accuracy reached 99.75% using random forest developed an intelligent 
classification technique for CKD called density-based feature selection (DFS) with 
Ant Colony-based Optimization (D-ACO). This technique tackled the increased 
number of features in medical data issues by removing redundant features. It also 
overcomes low interoperability, high computation, and overfitting issues. This 
technique achieved 95 percent detection accuracy with 14 out of the 24 features.

Jongbo et al. [1] achieved 100% accuracy using an ensemble algorithm that consists 
of Random Subspace and Bagging. The data are preprocessed, missing values are han-
dled, and the data are eventually normalized. This method was created by combin-
ing three base-learners: KNN, Nave Bayes, and Decision Tree. Combining the basis 
classifiers increased classification performance, according to this study. The suggested 
model outperformed individual classifiers in the experiments. The random subspace 
method beat the bagging technique in the majority of situations.

Chittora et al. [12] detected CKD using full or important features. Many techniques 
were used such as: correlation-based feature selection, wrapper technique feature 
selection, minority oversampling. Seven types of classifiers were employed including 
ANN, LSVM, and LR. LSVM attained the maximum accuracy of 98.86% using com-
plete features in the synthetic minority oversampling approach.

Ma et al. [13] proposed an efficient method called the Heterogeneous modified arti-
ficial neural network (HMANN), for the detection and diagnosis of chronic kidney 
disease (CKD). The HMANN model is a hybrid model that combines a support vec-
tor machine (SVM) and a multilayer perceptron (MLP) classifier. The SVM is used to 
classify the presence of cyst or stone in the kidney; while, the MLP classifier is used 
to diagnose CKD. Overall, the HMANN model is a promising new approach for the 
detection and diagnosis of CKD. It achieved the highest accuracy on the test set com-
pared to the traditional machine learning algorithms. The HMANN model also uses 
several techniques to improve its accuracy, such as data augmentation, feature selec-
tion, and model regularization.

The accuracy of several machine learning algorithms was  examined for diagnos-
ing CKD and discriminating between CKD and non-CKD patients [6]. The authors 
employed Logistic Regression, SVM, and KNN models to detect CKD where SVM 
model outperformed the other strategies, with an accuracy of 99.2%.

Machine learning approaches were employed in developing a CKD diagnostic sys-
tem in [7]. To replace missing data, the mean and mode were applied, and Recur-
sive feature elimination (RFE) was used to choose the most significant features while 
support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN), and 
decision tree (DT) are the machine learning methods employed. Among these four 
classifiers, the random forest (RF) method best the others, obtaining 100% accuracy.

Another research creates a group of deep learning-based clinical decision support 
systems (EDL-CDSS) for CKD diagnosis [14]. The EDL-CDSS method calls for the 
creation of Adaptive Synthetic (ADASYN) technology for the outlier detection 
procedure. Additionally, three models [deep belief network (DBN), kernel extreme 
learning machine (KELM), and convolutional neural network with gated recurrent 
unit (CNN-GRU)] are used in an ensemble. The DBN and CNN-GRU models’ 
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hyper-parameters are lastly tuned using the quasi-oppositional butterfly optimization 
algorithm (QOBOA).

Also in 2022, another research aims to create a deep neural network model for pre-
dicting chronic kidney disease (CKD) and compare its performance to other machine 
learning techniques. The hyperparameter optimization is used and the Recursive Fea-
ture Elimination to identify key features. This research has achieved 100% on the test set. 
This is significantly higher than the accuracy of traditional machine learning algorithms.

A deep neural network was proposed by Singh et al. [17]. The average of the related 
feature was used to replace missing values, and the recursive feature elimination (RFE) 
technique was used to pick features. Deep neural network DNN, Nave Bayes classifier, 
KNN, Random Forest, and Logistic regression were used to classify the specified charac-
teristics. In terms of accuracy, DNN surpassed all other models.

In 2023, the proposed deep neural network-based Multi-Layer Perceptron classifier 
can accurately diagnose CKD, achieving 100% testing accuracy. This model outperforms 
standard machine learning models used in this research and provides a promising alter-
native for CKD diagnosis [18].

Disease risk prediction work was proposed in [9]. Over a two-year period, the pre-
dictive model was built utilizing comorbidity, demographic, and medication data from 
patients. Their CNN model got the best AUROC of 0.954 and 0.957 for 12-month and 
6-month forecasts, with accuracy of 88% and 89%, respectively. Gout, diabetes mel-
litus, age, and drugs such as angiotensin and sulfonamides were the most important 
predictors. Table 1 provides a summary of modern health risk detection and prediction 
algorithms.

As seen from the summary, all the previous work relied on a small medical dataset, 
which contains only 400 samples, and based on medical features, they could reach 100% 
accuracy using this dataset. On the other hand, the work in [9] used another dataset 
[10] containing comorbidity, demographic, and medication data from patients over two 
years. It attempted to predict CKD’s possible occurrence. It, however, used an imbal-
anced dataset without providing a solution to the problem. Furthermore, it employed 
a large number of features, which increased the computational cost. Finally, the perfor-
mance of this work was low (89 and 88%). Hence, in our work, we use the same dataset 
[10] and try to increase the performance by solving these issues and developing a robust 
model.

Ensemble in disease detection

According to a massive amount of research in the machine learning field, two algorithms 
currently dominate this field: Ensemble and Deep Learning algorithms. Deep learning is 
the gold standard of machine learning algorithms, and deep ensemble algorithms are a 
catch-all term for approaches that combine multiple deep learning classifiers to make a 
decision [19]. Thus, in this research, we use an ensemble algorithm in conjunction with 
deep learning approaches. Deep learning techniques, on the other hand, are regarded 
as the most dominant and powerful players in a variety of machine learning challenges. 
The use of this algorithm improves detection and prediction accuracy by avoiding 
the drawbacks of traditional learning techniques [20]. Over the last few years, many 
algorithms that combine ensemble algorithms and deep learning models have been 
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Table 1 Summary of recent health risk detection and prediction models for CKD

Paper Detection/
prediction

Dataset/
number of 
samples

Dataset 
description

Algorithm Highest 
accuracy

Qin-2019 [11] Detection Not available Demographic 
features, Labo-
ratory results, 
and ultrasound 
images

Logistic 
regression, 
random forest, 
support vector 
machines

99.75%

Jongbo-2020 [1] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

Ensemble: KNN, 
NB, DT

100%

Ma-2020 [13] Detection Not available Ultrasound 
images

SVM, DT, RF, 
KNN, HMANN

HMANN 98%

Gudeti-2020 [7] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

SVM, LR and 
KNN

SVM 99.2%

Chittora-2021 [12] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

C5.0, CHAID, 
ANN, LSVM, LR, 
RT and KNN

LSVM 98.86%

Senan-2021 [8] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

SVM, RF, KNN, 
DT

RF 100%

Alsuhibany-2021[14] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

Ensemble (DBN, 
KELM, CNN-
GRU)

%96.9

Krishnamurthy-2021 
[9]

Prediction CKD data-
set-2/90,000
[10]

Comorbidities, 
medications, 
age, gender,

CNN, BLSTM, 
LightGBM, LR, 
RF, DT

CNN

89% (6 months)

88% (12 months)

Singh-2022 [17] Detection CKD data-
set-1/400
[15]

Demographic 
features: age, 
sex, race, and 
ethnicity. Medi-
cal features: 
blood pressure, 
blood sugar

SVM, KNN, LR, 
RF, Naive Bayes 
and DNN

DNN 100%

Sawhney-2023
[18]

Detection Not available age, blood 
sugar, red blood 
cell counts and 
medical data

SVM, DT, MLP, 
RF, LR

MLP 100%
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developed to improve predictive models’ performance. The deep ensemble learning 
algorithm combines the benefits of both deep learning and ensemble learning to produce 
a final model with the best generalization performance [21].

The essential logic for ensemble originates from the inclination to collect various 
points of view and combine them to make a challenging conclusion. Using one of the 
combination methods [average ensemble (AE), weighted average ensemble (WAE), rank 
average ensemble (RAE), and majority voting ensemble (MVE)], this notion relies on 
merging many base-learners to generate a classifier that outperforms them all. Recently, 
machine learning researchers proved that integrating the outputs of many classifiers 
increases the performance of a single classifier through hands-on experimental study 
[18]. Because of its influence on numerous variables, the ensemble approach has been 
employed in a range of applications, including illness diagnosis and prediction.

Individual classifiers suffer from issues, such as overfitting, class imbalance, concept 
drift, and the problem of dimensionality, which cause a single classifier prediction to fail 
[22]. As a result, ensemble learning method has emerged in scientific research to address 
these issues. Prediction accuracy improves by using this algorithm in different machine 
learning challenges.

The ensemble learning combines a set k of independent classifiers, c1, c2,…, ck, to give 
a single output using a combination function f. Given:

• dataset of size n (D = (x, y), 1 ≤ i ≤ n), and
• features of dimension m,  xi ∈  Rm

Equation (1) [19] predicts the output of this approach as:

Table 2 presents a summary of previous research using the Ensemble technique for the 
disease detection field.

Materials and methodology
Dataset description

To begin, we are focused in health risk prediction rather than detection. As a result, we 
chose Taiwan’s National Health Insurance Research Database (NHIRD), a public dataset, 
because it is the only dataset that is concerned with prediction [10]; whereas, the other 
accessible dataset was dedicated to CKD detection. This dataset was collected by moni-
toring and recording patients’ data for two consecutive years and then classifying them 
as infected or non-infected with the disease.

The NHIRD dataset includes 965 comorbidities (ICD-9 codes), 537 medications (ATC 
codes), age, gender, and a CKD class label (0 = no CKD, 1 = CKD). Table 3 shows a sam-
ple of the dataset we used. Each feature represents a number, which indicates how many 
times during the observation period the patient was infected with the disease or took the 
medication.

(1)yi = ∅(xi) = f (c1, c2, ..., ck)



Page 8 of 31Saif et al. Journal of Electrical Systems and Inf Technol           (2024) 11:17 

We list the following explanations for the features in the table:

• 250: Diabetes mellitus disease
• 272: Disorders of lipoid metabolism
• A03FA: Propulsive drugs which stimulate gastrointestinal motility.
• C09AA: ACE inhibitors, which block the action of angiotensin-converting enzyme 

(ACE)
• J07BB: Influenza vaccines
• C08CA: Calcium channel blockers and dihydropyridine derivatives, which work by 

blocking calcium channels in the heart and blood vessels
• A10BB: Sulfonylureas, which are a class of oral antidiabetic drugs that work by stim-

ulating the pancreas to release more insulin

Our dataset contains too much data to explain in detail here. The dataset includes 
two sub datasets; the first dataset’s certain period is six months; while, the second is 12 

Table 2 Literature using ensemble techniques in health risk prediction

Paper Dataset Algorithm Highest accuracy

Raza-2019 [23] Heart disease dataset–statlog MVE 88.88%

Atallah-2019 [24] Heart disease dataset [25] MVE 90%

Yadav-2019 [26] Breast cancer Wisconsin (Original) AE-MVE-WAE (AE) 0.9998AUC 

Breast cancer Wisconsin (Diagnostic) (AE) and (RAE) 100% AUC 

Haberman’s Survival Dataset (AE) 0.636

Heart disease Dataset (Hungarian) (AE) 0.8994

Indian liver Patient Database (AE) 0.7892

Mammographic Mass Dataset (AE) 0.8708

single-proton Emission Computed 
Tomography (SPECT)

(WAE) 0.8166

SPECTF heart-imaging Dataset (RAE) 0.8166

Statlog (heart) Dataset (RAE) 0.9272

Vertebral column Dataset (AE) and (RAE) 0.9504

Tao Zhou-2021 [27] The data are available from the author 
upon request

MVE 99.05%

Chandra-2021 [28] COVID‐chest X-ray [29] MVE 98.062% Phase-I 91.329% Phase-II

Aurna-2022[30, 31] Brain tumor MV 100% training
93% testing

Hireš-2022 [32] Parkinson’s disease MV 99%

Table 3 A sample of the dataset used in this study

Age Sex 250 272 A03FA C09AA J07BB C08CA A10BB

84 1 11 0 1 19 1 0 0

54 1 20 0 3 0 2 11 0

86 1 22 10 16 14 0 0 8

75 0 18 0 1 0 0 0 9

49 1 0 0 0 0 3 0 0

71 1 0 2 3 10 5 10 10
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months. This dataset is highly imbalanced, with 90,000 patients divided into 18,000 with 
CKD and 72,000 without CKD. To declare the robustness of our models, we will com-
pare our results with the previous study using the same dataset [9].

Methodology

Our goal in this work was to create CKD prediction models that can handle the prob-
lems defined in the introduction section. The prediction problem is treated as a clas-
sification problem, with the output of the model being either 0 or 1: (0 indicates that the 
patient will not develop CKD after the specified period, while 1 indicates that they may 
develop CKD after the specified period). In this section, we present the architecture of 
the four proposed predictive models for chronic kidney disease (CKD). Because there 
has been only one research directed toward solving this problem [9], we intend to use 
deep learning models to explore different models for the problem. Unfortunately, the 
previous study did not consider the significant imbalance of the benchmark datasets [9]. 
Furthermore, a large number of features were trained, which could lead to a variety of 
issues such as limited interoperability, high computation, and overfitting. Furthermore, 
using the LightGBM algorithm, the highest accuracy in this study with the same aggre-
gated file was 75.1%. We attempt to find solutions for each of the previous issues.

Figure 1 depicts a block diagram of the methodology used in this study. To begin, the 
SMOTE (Synthetic Minority Oversampling Technique) is used to deal with the problem 
of imbalanced dataset. Second, the Random Forest feature selection technique is used to 
reduce the number of features, and only the most important ones are displayed. Third, 
after oversampling, the selected features and samples are divided into 80% training and 
20% validation. Fourth, for each deep learning classifier, a comparative analysis of deep 
learning optimizers is performed to identify the most robust one. Fifth, the Ensemble 
model employs the most robust optimizers. Sixth, our findings are compared to the 
findings of the only published study with the same objective on the sane dataset [9].

SMOTE (synthetic minority oversampling technique)

A dataset is called “imbalanced” if the classification categories are not roughly equally 
represented in this dataset. The datasets representing real-world data are frequently 
composed primarily of “normal” samples, while containing only a small percentage of 
“abnormal” samples. The predictive accuracy of machine learning algorithms is com-
monly used to assess their performance. This may not be appropriate, however, when the 
data are unbalanced and/or the costs of different errors vary significantly. Under-sam-
pling of the majority (normal) class has been proposed as an effective method of increas-
ing a classifier’s sensitivity to the minority class. Oversampling the minority (abnormal) 
class is another approach to overcome the imbalance of the dataset.

SMOTE is a method of oversampling in which the minority class is oversampled by 
producing “synthetic” samples rather than oversampling with replacement. This strategy 
performed well in a variety of applications, including handwritten character recognition 
and image classification. SMOTE generates additional training data by applying specific 
processes to actual data. The following is the Pseudo-Code for the algorithm [33] (Fig. 2).
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In order to prevent a biased model that would perform poorly on positive cases, 
it was crucial to resolve the data imbalance. The SMOTE technique was chosen to 
address data imbalance in a CKD dataset with a smaller number of positive cases 
[9]. SMOTE creates synthetic samples by interpolating between existing minority 
class samples, increasing the number of minority class samples, and balancing the 
dataset. However, SMOTE may not be suitable for all datasets, as it may lead to poor 
performance. Addressing data imbalance was crucial for developing an accurate and 
reliable deep learning model for early detection and prediction of CKD.

With 18,096 samples in the CKD class and 71,912 samples in the non-CKD class, 
there is a considerable class imbalance in our example. As a result, the model will 
seldom anticipate the CKD class. To reduce false negatives, we used SMOTE. Using 
SMOTE usually results in an increase in the recall parameter. This implies that the 
number of minority class projections will be increased. After using SMOTE method, 
the dataset reaches 143,824 individuals, equally split between those with and without 

Fig. 1 Block diagram of the methodology used in this study
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CKD. We set the SMOTE variables as follows: sampling_strategy = ’minority’, 
random_state = 42, k_neighbors = 5, S = 18,096, and A = 398%.

Features selection using random forest

The features selection technique is used to provide high-quality data that only con-
tains the most crucial features because the acquired data frequently contains addi-
tional features. Additionally, the model’s complexity could be decreased, preventing 
model overfitting [34, 35]. In the random forest technique (RF), one of the crucial 
criteria for choosing features is their relevance. In our study, we employed a feature 
selection process to identify the most important features for  CKD prediction, as 
follows:

1. Set up the decision trees where each decision tree in the random forest is sampled 
with a random put back to create sub-data sets.

2. Create sub-decision trees by ensuring that each decision tree produces a result, and 
that each sub-decision tree calculates the output result of the sub-data set.

3. The outcome of the voting in the sub-decision tree determines the output result of 
the random forest.

4. Determine the number of classification errors Ei of out-of-bag data in each sub-deci-
sion tree.

5. Disrupt the value of each decision tree’s out-of-bag data (X) at random and recalcu-
late the number of classification errors  Exi.

6. Determine significance and confirm feature selection. Make i equal to 1, 2…, n, 
where n is the total number of random forest decision trees.

7. Repeat again steps 3 and 4.

Fig. 2 Pseudocode for SMOTE algorithm
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The following formula expresses the significance of feature [36].

Figure 3 represents the features selection process briefly.

Deep learning optimizers

Deep learning is a branch of machine learning that is used to carry out difficult tasks 
such as health risk prediction and image classification. An activation function, input, 
output, hidden layer, loss function, and other components make up a deep learning 
model.

We require both an optimization method as well as an algorithm that maps instances 
of inputs to outputs. When mapping inputs to outputs, an optimization method deter-
mines the value of the parameters that minimizes the error. The effectiveness of the deep 
learning model is significantly impacted by these optimization methods. They also have 
an impact on the model’s speed training. We must adjust the weights for each epoch 
during deep learning model training and reduce the loss function. An optimizer is a pro-
cedure or method that alters neural network properties like weights and learning rates. 
As a result, it aids in decreasing total loss and raising precision. The following are the 
most popular deep learning optimizers.

(2)lx =
1

n

N
∑

i

[Exi − Ei]

Fig. 3 Features selection process using random forest
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Deep learning optimizers facilitate the analysis of complex datasets, extract mean-
ingful insights, enhance the interpretability of the results, and increase the model’s 
accuracy. Using the best optimizer with the model aids clinicians and researchers in 
understanding the underlying factors influencing therapy intensification and improves 
decision-making regarding therapy intensification.

Stochastic gradient descent (SGD) The effectiveness of SGD algorithms has been 
demonstrated in the optimization of massive deep learning models. Since the word 
“stochastic” refers to a procedure connected to a random possibility, only a few samples are 
randomly selected for each iteration rather than the complete dataset [36]. By altering the 
network structure after each training stage, SGD seeks to determine the global minimum. 
Instead of locating the gradient for the entire dataset, this method just decreases the error 
by approximating the gradient for a randomly selected batch [37].

Adaptive gradient descent (AdaGrad) This optimizer uses several learning rates for 
every model parameter. It adjusts the learning rate in accordance with how frequently 
each parameter is updated. The learning rate will decrease with a higher parameter 
gradient and vice versa [38].

Adaptive delta (Adadelta) This is an extension of the Adagrad optimizer that accumulates 
earlier gradients over a predetermined time window to ultimately guarantee that learning 
will continue even after numerous iterations. Adadelta removed the learning rate from 
the update rule and applied Hessian approximation to verify the update direction in the 
negative gradient [39].

Adaptive moment estimation (Adam) Adam is an SGD optimization technique that 
calculates the rates at which each parameter learns to change [40]. The phrase “Adaptive 
Moments” inspired the name. It combines Momentum and RMSProp. The upgrading 
method provides a bias correction technique and considers the smooth gradient variant. 
Adam is invariant to gradient diagonal rescaling, requires less execution memory, and 
reduces computing costs [41].

Maximum adaptive moment estimation (AdaMax) It is a variation of Adam’s adaptive 
SGD that is based on the infinity norm. The main advantage of AdaMax over SGD is that 
it is far less sensitive to the choice of hyper-parameters [42]. The second momentum 
component of the Adam estimate method is fully utilized in the AdaMax equation. This 
provides a more dependable answer [43].

In our models, optimizers are used to update the model’s parameters during the 
training process to minimize the loss function. The optimization process in our model 
involves the following steps: In training phase, the process involves initializing model 
parameters, such as weights and biases, with small random values. Subsequently, during 
each training iteration, input data are propagated through the network to make predic-
tions, and a loss function quantifies the disparity between predicted and actual target 
values. Gradients of this loss with respect to the model parameters are then computed 
through backpropagation, employing the chain rule to propagate errors through the net-
work layers. Finally, an optimizer uses these gradients to iteratively adjust the model’s 
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parameters, ultimately minimizing the loss and improving the model’s performance over 
time.

Deep ensemble predictive model (DEM)

Ensemble learning methods are usually used to improve prediction performance when a 
single classifier is insufficient to achieve a high-performance level. The main idea behind 
this predictive model is to aggregate a group of different individual classifiers to improve 
performance by combining a weak classifier with a strong classifier to increase the effi-
ciency of the weak learner.

The study employs (CNN), (LSTM), and (LSTM-BLSTM) models to analyze patient 
medical data. CNNs are ideal for processing high-dimensional data, such as images 
and time-series data, by learning local patterns and spatial relationships. LSTMs han-
dle sequential data, capturing temporal patterns and trends providing them a suitable 
option for forecasting future events based on observations of the past. LSTM-BLSTM 
captures both forward and backward dependencies in the input sequence, making it 
more effective in modeling complex temporal relationships. Combining these models 
can enhance the accuracy of CKD prediction.

In our proposed ensemble model, we combine CNN, LSTM, and LSTM-BLSTM 
models to produce an effective computational model for CKD prediction based on a 
majority voting ensemble, as shown in Fig. 4, where each classifier outputs a prediction, 
which is represented as p1, p2, and p3 in the figure. The majority voting ensemble was 
chosen due to its robustness and because it is less biased toward the outcome of a 
particular individual learner. Furthermore, its impressive results in disease detection are 
documented in the literature [23, 24, 26–28, 30, 32]

Fig. 4 Structure of the proposed ensemble CKD predictive model
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First model in  the  ensemble: convolutional neural network (CNN)‑CKD predictive 
model The first model in the Ensemble model is based on 1D CNN to generate a fast, 
generic, and highly accurate CKD predictive model. The 1D convolution is represented 
by the following equation [32]:

where blk is the bias for layer l of the kth neuron, xlk is the input for the same layer, sl−1
i  

is the output of the ith neuron at layer l − 1, wl−1
ik  is the kernel (filter) from layer l − 1 to 

layer l. The output, ylk , can be calculated by passing the input xlk through the activation 
function as follows [32]:

The back-propagation algorithm (BP) is then used to reduce the output error. This 
algorithm works its way backwards from the output layer to the input layer. Consider 
the output layer (L). The number of classes is represented by NL, and for an input vector 
p, the target and output vectors are represented by tpi  and [ yL1,…,yLNL ], respectively. As a 
result, the mean-squared error (MSE), Ep, can be computed as follows [32]:

The derivation is used, and various gradients of the neurons are computed recursively. 
As a result, the network’s weights are updated until the least error is reached.

Second model in  the  ensemble: long short‑term memory (LSTM)‑CKD predictive 
model LSTM is a type of deep learning network model that is frequently used in time-
series signals analysis, in addition to single data points as the images. The most significant 
advantages of this model are [44]: it has a higher accuracy in long-term dependency 
problems than recurrent neural network (RNN). Furthermore, vanishing gradients 
problems can be solved using memory blocks using this technique. These blocks are 
controlled by adaptive multiplicative gates, which retrieve or ignore information based on 
its importance. The LSTM unit consists of an input gate  It, an output gate  Ot and a forget 
gate  Ft. The three gates’ activations are computed using the following equations [45]:

The sigmoid activation function and the current input are represented as σ and Xt, 
respectively. The input weights are denoted as Wi, Wf and Wo while bi, bf and bo are the 
bias. While the recurrent weights are symbolized as Ri, Rf and Ro. The output of the 

(3)xlk = blk +

Nl−1
∑

i=1

conv1D
(

wl−1
ik , sl−1

i

)

(4)ylk = f
(

xlk

)

(5)Ep =

NL
∑

i=1

(

yLi − t
p
i

)2

(6)It = σ(WiXt + RiHt−1 + bi)

(7)Ft = σ
(

Wf Xt + Rf Ht−1 + bf
)

(8)Ot = σ(WoXt + RoHt−1 + bo)
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previous block is represented as Ht−1. The modified new memory C t is computed as in 
Eq. (9)) [45]:

where tanh (·) represents the hyperbolic tangent function, Rt and Wt denote the recur-
rent weight and input weight respectively. The computation of the current memory cell 
 Ct is illustrated as in Eq. (10) [45]:

where  Ct−1 represents the previous memory cell, while ⊙ indicates the element-wise 
multiplication operation. To calculate the LSTM output  Ht, the following equation is 
used [45]:

We use LSTM in our model to avoid the vanishing gradient problem and to build a 
high-performance computational framework predictive model. The model is made up 
of an LSTM layer with 500 hidden units. Then, another LSTM layer with 200 hidden 
units is added. The previous layers are followed by a dense layer of 128 neurons. A drop-
out is used, followed by a second dense layer of 64 neurons. The dropout is used again 
to avoid overfitting and improve model performance. Following these layers is a dense 
layer of thirty-two neurons, which is finally connected to another dense layer for CKD 
prediction.

Third model in the ensemble: LSTM‑BLSTM model As shown in Fig. 4, the third model 
in the ensemble is a hybrid model that combines LSTM and BLSTM to improve the 
performance of the ensemble models. The hybrid models used in many applications 
and achieve high accuracy in many fields [45–47] A Bidirectional LSTM (BLSTM) is an 
enhanced version of LSTM. BLSTM is made up of two LSTMs that work in opposite 
directions (forward and backward). The amount of information available to the network 
has increased because of using this model, and the accuracy has reached high efficiency. 
The forward direction is represented by hft  that denotes the input in ascending order, i.e., 
t = 1, 2, 3… T. The opposite direction is represented by a backward hidden layer called hbt  , 
which represents the input in descending order, i.e., t = T…,3,2,1. Finally, yt is generated 
by combining hft  and hbt  . The BLSTM model is represented by the following equations 
[44]:

(9)Ct = tanh(WtXt + RtHt−1 + bt)

(10)Ct = Ft ⊙ Ct−1 + It ⊙ Ct

(11)Ht = Ot ⊙ tanh(Ct)

(12)h
f
t = H

(

W
f
xhXt +W

f
hhh

f
t−1 + b

f
h

)

(13)hbt = H
(

Wb
xhXt +Wb

hhh
b
t+1 + bbh

)

(14)yt = W
f
hyh

f
t +Wb

hyh
b
t + by
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where W is a weight matrix ( Wf
xh is a weight that connects input (x) to the hidden layer 

(h) in the forward direction, while Wb
xh is the same but in the backward direction). bfh is a 

forward direction bias vector; whereas, bbh is a backward direction bias vector, The out is 
symbolized by yt [44, 48]. This model is composed of LSTM, BLSTM, flatten, dense 128, 
dropout, dense 64, dropout, dense 32 which is finally connected to another dense layer 
for CKD prediction.

Proposed models evaluation
The experiments are carried out using a publicly available dataset [10] that contains two 
different types of samples. The first sample represents CKD prediction over six months; 
while, the other sample represents CKD prediction over twelve months. The dataset is 
divided into 80% training and 20% testing. To check the model’s performance, we cutoff 
20% of the training data for use as a validation set. A convenient feature in Keras frame-
work called “validation_split” is used to achieve that, which automatically sets aside a 
portion of the training dataset for validation. Usually, this split is expressed as a ratio 
or percentage of the training set which represents 20%. The validation data are used to 
track the model’s performance on unseen data and detect potential overfitting as it is 
trained on the remaining portion of the data.

The models were implemented using Python 3 involving the Keras framework running 
on Google Colab using a GPU on processor: (Intel(R) Xeon(R) CPU @ 2.20GHz) with 13 
GB RAM. The classification process used by the trained deep learning models is applied 
on the validation dataset. As for the Ensemble model, when a test sample is fed to it, it 
is first distributed to all individual models. Next, each classifier produces a prediction. 
After that, the majority voting technique is applied to all base classifiers’ results to gen-
erate the final prediction.

Performance metrics

To compare the models’ performance, four commonly used performance evaluation 
metrics were used: true negative (TN), true positive (TP), false negative (FN), and false 
positive (FP). Furthermore, four metrics are used in the evaluation: Recall, Precision, 
Accuracy, and F1_score which are calculated as given in Eqs. (15)–(18). A recall is the 
number of positive instances predicted from the total number of positive instances; it is 
also known as sensitivity or true positive rate. Precision, also known as Positive Predic-
tive Value, is the number of instances predicted as positive out of the total number of 
samples predicted as positive. Accuracy is defined as the number of correctly predicted 
instances divided by the total number of instances. F1-score combines Precision and 
Recall into a single metric using their harmonic mean. The number of instances pre-
dicted as negative out of the total number of negative instances is referred to as specific-
ity [10].

(15)Recall
(

Sensitivity
)

=
TP

TP+ FN

(16)Precision =
TP

TP+ FP
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where TP denotes true positive or correctly classified positive class, TN denotes true 
negative or correctly classified negative class, FP denotes false positive or incorrectly 
classified positive class, and FN denotes false negative or incorrectly classified negative 
class.

To assess the impact of the proposed deep ensemble approach on prediction results, 
we ran several experiments on the benchmark datasets and compared the ensemble’s 
performance to all individual models. Finally, we present all experimental results and 
compare them to previous results in [9].

Experimental results and comparative analysis

This section includes the performance prediction for deep learning models. As shown 
in Fig. 1, which depicts the flow of the model development process, the process consists 
of three main steps: data preprocessing, model training, and model evaluation. The first 
step in the preprocessing phase is to handle the imbalanced data issue using SMOTE 
technique. In the six-month dataset, there are 90,082 samples total, of which 71,912 are 
non-CKD samples and 18,096 are CKD samples. The dataset is oversampled using the 
SMOTE approach, reaching 143,824 divided equally between CKD and non-CKD. In 
the 12-month dataset, there are 71,271 non-CKD samples, but only 18,025 CKD sam-
ples. After using the SMOTE approach, 142,542 samples are obtained, evenly divided 
between the two classes.

We chose SMOTE for its simplicity and effectiveness in handling imbalanced datasets. 
It generates synthetic data points within the existing feature space of the minority class, 
effectively increasing its representation without introducing excessive noise.

The second step in the preprocessing phase is to extract the most informative set of 
features using RF. RF helps to reduce the model’s complexity, which prevents model 
overfitting. At the end of this stage, the first benchmark dataset involves 284 features 
(out of 1502 total features); while, the second one involves 291 features (out of 1506 total 
features). Moreover, to find out what are the most influencing characteristics of this dis-
ease, we chose to extract the ten most important features from the main two datasets 
using RF as shown in Figs. 5, 6 and Table 4.

The third step in the process is to determine the best optimizer to use with each deep 
learning predictive model. Therefore, all the three proposed deep learning models (CNN, 
LSTM, and LSTM-BLSTM) were trained on the CKD datasets using the ReLU (Rectified 
Linear Unit) activation function because it is computationally effective and lessens 
the likelihood of the gradient vanishing. Each model is trained individually using five 
optimizers (Adamax, Adam, SGD, Adadelta and Adagrad) to specify the best optimizer 

(17)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(18)F1_score = 2 ∗
Precision× Recall

Precision + Recall
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Fig. 5 Most important features for 6 months data

Fig. 6 Most important features for 12 months data

Table 4 Description of the most important features in the CKD dataset produced by random forest

Feature Description

Age Patient’s age

250 ICD_9 of diabetes

401 ICD_9 of essential hypertension

C08CA ATC of Dihydropyridine derivatives

C09CA ATC of angiotensin

Sex Male or female

A10BB ATC of Sulfonylureas

N02BE ATC of Anilids

A10BA ATC of Biguanides

274 ICD_9 of Gout

J07BB ATC of INFLUENZA VACCINES
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in each deep learning model. We chose five optimizers based on their popularity and 
effectiveness in deep learning applications for medical data: Adamax and Adam: 
Adaptive learning rate optimizers known for fast convergence and efficient handling of 
sparse gradients, common in medical data. SGD (Stochastic Gradient Descent): A well-
established optimizer, often used as a baseline for comparison. Adadelta and Adagrad: 
Adaptive learning rate optimizers focusing on per-parameter learning rates, potentially 
beneficial for dealing with features with varying scales in medical data. Table 5 provides 
a summary of the deep learning optimizers’ variables. The learning rate is 0.0009 for 
all optimizers, beta1 = 0.9, beta2 = 0.99, epsilon = 1 × 10 − 8 for Adam and Adamax, 
momentum = 0.9, nesterov = False for SGD. rho = 0.95, epsilon = 1 ×  10−6 for Adadelta, 
while epsilon = 1 ×  10−7 for Adagrad. Tables  6 and 7 represent a comparative analysis 
between each model using each optimizer separately.

To validate our models, we cut off 20% of the training dataset as a validation set. This 
ensures that the model will generalize well to unseen data. Figures 7, 8, 9, 10, 11 and 
12 demonstrate the epoch vs accuracy graph for training and validation for the highest 
optimizers’ accuracy in the first and second datasets, respectively. Each model’s input is 
a CSV file contains the new samples after oversampling processing and feature selection. 
We load the CSV file first. The input features have been reshaped before applying the 
model to match the model requirements, using reshape function from NumPy library 
to perform these operations more efficiently. The datasets are reshaped into 71 × 4 
and 97 × 3 for six months and twelve months data respectively; while, the output is a 
binary number that represents the class. The same model structures are used for both 
benchmark datasets.

The tables indicate that the CNN and LSTM-BLSTM models achieved their best 
results with Adamax optimizer (95% and 97% accuracy for 6-month and 93% and 96% 
accuracy for 12-month, respectively); while, the LSTM model achieved its best results 
with Adam optimizer (96% accuracy for 6-month and 95% accuracy for 12-month) 
(Figs. 13, 14).

In this paper, the three models, optimized by the best optimizers for model 
(obtained from this stage), have also been ensembled in the next phase to gain further 
increase in the performance of deep learning architecture. The ensemble model’s 
structure is shown in Fig. 4. We used the majority voting ensemble (MVE) because 
it eliminates the drawbacks of other techniques listed earlier and outperforms many 
other approaches, it is the strategy that is most frequently utilized in the field of 

Table 5 Deep learning optimizers’ hyperparameter specification

Optimizer Specification

Adamax Learning rate = 0.0009, beta1 = 0.9, beta2 = 0.99, epsilon = 1 ×  10−8

Adam Learning rate = 0.0009, beta1 = 0.9, beta2 = 0.99, epsilon = 1 ×  10−8

SGD Learning rate = 0.0009, momentum = 0.9, nesterov = False

Adadelta Learning rate = 0.0009, rho = 0.95, epsilon = 1 ×  10−6

Adagrad Learning rate = 0.0009, epsilon = 1 ×  10−7
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study. Furthermore, we choose it for its Simplicity and interpretability, Robustness 
to model errors, and Empirical success in CKD prediction. The ensemble-based 
model’s performance is assessed in Table 8.

The ensemble model yielded 98% accuracy for 6-month and 97% accuracy for 
12-month, which is better than the three individual models. Additionally, a comparison 

Fig. 7 Epoch vs accuracy graph for CNN_Adamax (6_months data)

Fig. 8 Epoch vs accuracy graph for LSTM_Adam (6_months data)

Fig. 9 Epoch vs accuracy graph for LSTM_BLSTM_Adamx (6_months data)
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with the outcomes of earlier research is done. Compare our work to the previous study 
[9] using the same metrics found in their paper. The underline values represent the best 
accuracy achieved in the compared models. These results show that the ensemble model 
outperforms the individual models and previous work results in many aspects: sensi-
tivity, precision, specificity, F1- score and accuracy. The proposed model has proven its 

Fig. 10 Epoch vs accuracy graph for CNN_Adamax (12_months data)

Fig. 11 Epoch vs accuracy graph for LSTM_Adam (12_months data)

Fig. 12 Epoch vs accuracy graph for LSTM_BLSTM_Adamx (12_months data)
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worthiness in all these aspects. On the same datasets for both 6 months and 12 months 
of data, Figs. 13 and 14 show a graphical depiction of the performance of each proposed 
model as well as the models in the comparison paper. The figures demonstrate how the 
model performs better than earlier models.

Results discussion

Our deep learning approaches demonstrated promising performance in CKD prediction. 
Among individual models, LSTM-BLSTM surpassed others in validation accuracy, 
F1 score, precision, and recall (Table  6, 7). Optimizer choice significantly impacted 
performance, with Adam and Adamax proving most effective across all architectures. 

0
0.2
0.4
0.6
0.8
1

1.2

Precision Sensi�vity F1-score Accuracy
Fig. 13 Performance evaluation 6-month data obtained from the proposed models and the literature

0
0.2
0.4
0.6
0.8
1

1.2

Precision Sensi�vity F1-score Accuracy
Fig. 14 Performance evaluation 12-month data obtained from the proposed models and the literature
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While Adam outperformed Adamax in LSTM, Adamax yielded the highest CNN 
accuracy for both datasets. In LSTM-BLSTM, Adamax excelled for six-month data, 
while Adam matched its performance for twelve-month data. Notably, switching to 
other optimizers (SGD, Adagrad, Adadelta) led to performance decline, with Adadelta 
exhibiting the lowest accuracy.

LSTM-BLSTM’s superior performance likely stems from its suitability for mod-
eling sequential data like CKD progression. This bidirectional recurrent neural 
network architecture captures both forward and backward dependencies within 
features, crucial for understanding long-term effects of comorbidities and medi-
cations. Its gating mechanism further enhances ability to learn these long-range 
dependencies.

To further boost performance, we developed an ensemble model combining the 
best-performing individual models (CNN-Adamax, LSTM-Adam, and LSTM-BLSTM-
Adamax). This ensemble achieved significantly higher accuracy (98% and 97% for 6 and 
12 months, respectively) than all other models, albeit with increased computational cost 
due to higher complexity (Table 8, 9, 10). Importantly, our models outperformed those 

Table 9 Comparison of performance metrics for 6-month data obtained from the proposed models 
and the literature

The bold, underlined values represent the best optimizer’s performance for each model

Model Precision Sensitivity F1-score Accuracy

Individual classifiers in Ensemble model CNN_Adamax 0.95 0.95 0.95 0.95

LSTM_Adam 0.96 0.96 0.96 0.96

LSTM-BLSTM_Adamax 0.97 0.97 0.97 0.97

Ensemble model 0.98 0.98 0.98 0.98
Results for the previous work [9] LightGBM [9] 0.426 0.685 0.525 0.751

Logistic [9] 0.405 0.664 0.503 0.736

Random forest [9] 0.390 0.652 0.488 0.725

Decision tree [9] 0.395 0.622 0.483 0.732

Table 10 Comparison of Performance metrics for 12-month data obtained from the proposed 
models and the literature

The bold, underlined values represent the best optimizer’s performance for each model

Model Precision Sensitivity F1-score Accuracy

Individual classifiers in Ensemble model CNN_Adamax 0.93 0.93 0.93 0.93

LSTM_Adam 0.96 0.95 0.95 0.95

LSTM-BLSTM_Adamax 0.96 0.96 0.96 0.96

Ensemble model 0.99 0.98 0.97 0.97
Results for the previous work [9] LightGBM [9] 0.426 0.685 0.525 0.751

Logistic [9] 0.405 0.664 0.503 0.736

Random forest [9] 0.390 0.652 0.488 0.725

Decision tree [9] 0.395 0.622 0.483 0.732
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of a prior study using traditional machine learning techniques on the same datasets 
(Figs.  13, 14). This improved performance suggests that deep learning models extract 
more complex feature correlations, leading to more accurate CKD prediction. Addition-
ally, as seen in Figs. 13, 14 and Table 9, 10, the proposed models outperform those of 
a prior study that employed the same datasets with traditional machine learning tech-
niques. The reason is that the deep learning model revealed more correlation between 
the features than those revealed by the previous work [9] which led to better prediction 
of CKD as indicated by the performance measures.

Moreover, to guide the experts on what features to concentrate on when predicting 
the possible occurrence of CKD, Figs. 5 and 6 highlight the 10 important features of 
these datasets (as detected by RF algorithm). Age and gender are crucial indicators 
for prediction. Furthermore, important aspects include dihydropyridine derivatives, 
and angiotensin, which are used to treat hypertension. Sulfonylureas, treat type 2 dia-
betes mellitus, and biguanides, an oral medication used to manage mild to moderately 
severe noninsulin-dependent diabetic mellitus (Type II), in obese or overweight indi-
viduals who are often older than 40 years old, have notable characteristics. In terms of 
feature importance, anilids used to alleviate aches and pains, are in the last four spots. 
When it comes to diseases, diabetes, gout, and hypertension are regarded as the most 
common symptoms.

It is known that there are some risk indicators that doctors can use to predict the onset 
of the disease. There are many features besides the most important ones; whereas, they 
just represent risk factors for CKD. The model has been trained in extensive and intri-
cate medical datasets, which could make it difficult for doctors to detect the risk factors 
in the absence of the most important features or analyze all these features manually. If 
the risk factor is identified by doctors, they will not be able to determine the exact time 
of the disease onset, while our model can predict. That will contribute significantly to 
intervening at the right time and saving many patients from this disease. Finally, we have 
demonstrated through practical experiments the direct impact of these risk factors on 
the incidence of kidney diseases.

One of the limitations of this research is that the patient’s health data must be recorded 
in the system for two consecutive years to gather the necessary data for decision-mak-
ing, including the diseases they have contracted and the medications they have taken 
throughout those years. Undoubtedly, this is not an easy task. This study does not rely 
on medical analyses, which differ from previous studies. However, the need for such a 
study based on analyses is essential.

Moreover, the number of features was excessively large, which necessitated the use of 
a well-known feature selection method. Introducing such a massive amount of data for 
model training would consume an extremely long time without any actual need for it, 
given the insignificance of these additional features.

Despite decreasing the number of features, the time required for the proposed model 
has been a significant obstacle due to the execution of the three models separately. How-
ever, on the other hand, accuracy has reached its highest rate.
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Conclusion and future work
Recently, machine learning research has shown that combining the output of several 
individual classifiers can reduce generalization errors and yield better performance 
in many applications than individual deep learning classifiers. This study focused on 
predicting CKD before it occurs over a period of time using the Ensemble model. In 
addition, a comparative evaluation of deep learning optimizers is presented for each 
individual model to induce the most powerful optimizer for the CKD dataset. In this 
study, the unbalanced data are handled using SMOTE approach. Random Forest feature 
selection technique is applied to reduce the number of features. After that, a compre-
hensive comparison of various deep learning architectures has been conducted. Further-
more, several deep learning optimization methods (Adamax, Adam, SGD, Adadelta, and 
Adagrad) are used to evaluate how well these models performed.

The Ensemble model is implemented by combining the top three models and optimiz-
ers. It was discovered that in terms of validation accuracy, F1 score, precision, and recall, 
the hybrid of LSTM and BLSTM using Adamax optimizer outperformed other optimiz-
ers. The Ensemble model, which combines the CNN_Adamax, LSTM_Adam, and LSTM_
BLSTM_Adamax models, outperformed all other models by a wide margin, scoring an 
accuracy score of 98% for the six months dataset and 97% for the twelve months dataset. 
The research also showed that age, gender, and chronic diseases such as diabetes, high 
blood pressure, and gout are among the most important causes of chronic kidney disease, 
in addition to some drugs that treat diabetes, high blood pressure, and relieve pain.

According to the findings of the studies, our ensemble model predicted the incidence 
of CDK with 98% and 97% accuracy for 6-month and 12-month instances, respectively. 
This demonstrates the efficiency of the suggested approach in warning medical provid-
ers of the probability of a patient having the condition before it occurs (6–12 months). 
Such information can certainly save lives and lower the death rate of such patients, as 
well as lower the cost of medical care delivered to those individuals.

As a future step, we plan to test the robustness of our developed models against var-
ious datasets based on patient laboratory data collected from local hospitals, medical 
analysis laboratories, and polyclinics. This can be achieved by collaborating with health-
care providers to assess the feasibility and potential impact of implementing prediction 
models on medical datasets.
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