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Introduction
Electrical hotspot is a major issue in electrical substations whenever they occur. It 
can lead to inefficient power flow, power outage, and even serious accident. Hotspot 
faults tends to degenerate with time. Like most problems follows the basic concept as 
recalled by Adedigba et al. [1] that early problem identification is vital to limit its further 

Abstract 

Hotspots in electrical power equipment or installations are a major issue whenever it 
occurs within the power system. Factors responsible for this phenomenon are many, 
sometimes inter-related and other times they are isolated. Electrical hotspots caused 
by poor connections are common. Deep learning models have become popular 
for diagnosing anomalies in physical and biological systems, by the instrumentality 
of feature extraction of images in convolutional neural networks. In this work, a VGG-
16 deep neural network model is applied for identifying electrical hotspots by means 
of transfer learning. This model was achieved by first augmenting the acquired infrared 
thermographic images, using the pre-trained ImageNet weights of the VGG-16 algo-
rithm with additional global average pooling in place of conventional fully connected 
layers and a softmax layer at the output. With the categorical cross-entropy loss func-
tion, the model was implemented using the Adam optimizer at learning rate of 0.0001 
as well as some variants of the Adam optimization algorithm. On evaluation, with a test 
IRT image dataset, and a comparison with similar works, the research showed 
that a better accuracy of 99.98% in identification of electrical hotspots was achieved. 
The model shows good score in performance metrics like accuracy, precision, recall, 
and F1-score. The obtained results proved the potential of deep learning using com-
puter vision parameters for infrared thermographic identification of electrical hotspots 
in power system installations. Also, there is need for careful selection of the IR sensor’s 
thermal range during image acquisition, and suitable choice of color palette would 
make for easy hotspot isolation, reduce the pixel to pixel temperature differential 
across any of the images, and easily highlight the critical region of interest with high 
pixel values. However, it makes edge detection difficult for human visual perception 
which computer vision-based deep learning model could overcome.
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degeneration, enhance adequate intervention program, improve chances of success for 
such intervention, and reduce rate of permanent damage.

Hotspot faults in electrical systems as noted by Oluseyi et al. [2] can result from many 
factors, such as poor connections, corroded joints, overload, mechanical vibrations, 
insulation failure, and poor cooling system. The effect is mainly severe at high voltage 
high current installations where special procedure is required to address the issue. In 
the works of Sousa et al. [3], Usamentiaga et al. [4], Aidossov et al. [5], and Ng [6], the 
authors observed that infrared (IR) thermal imaging systems are one of the most effec-
tive means of detecting hotspots in electrical power installations because of their non-
invasive nature, low risk to personnel, ease of use, ability to produce a good thermal 
distribution of the equipment in service, cost efficiency, etc. However, Epperly et al. [7] 
inferred that they require expert power system analysts to interpret the images and for 
best results.

According to Balakrishnan et  al. [8], computer vision-based deep learning applica-
tions are being developed to aid the system experts in the interpretation of the thermal 
images. Ukiwe et al. [9] perceived that efficient imaging systems provides the bedrock 
for effective computer vision applications that aids human operators. The human visual 
system may not accurately discriminate the boundaries of equipment shown by their 
thermal images and the pixel-wise progression of heat profile across the equipment. So, 
the process of feature extraction using deep convolutional neural network  is impera-
tive, and a lot of information can be acquired from the pixel values of the IR images, as 
shown by Gao et al. [10].

Choi et al. [11] saw that deep learning-based applications are better suited to opera-
tions with images because they apply convolutional operation on patches of the image 
for inputs to certain nodes of the model with recognition of spatial correlation between 
pixels in the images than artificial neural networks that usually takes each pixel as a sep-
arate input to all nodes in the input layer of the model and have been found to be adapt-
able to different optimization algorithms and easy to implement on wide variety of linear 
and nonlinear problems, according to Ahmed et al. [12]. Hotspots can be detected, pre-
vented, and removed, if found early. IR thermography (IRT)-based method is the stand-
ard method to detect it in operational electrical equipment. To observe the progression 
of the hotspots and flag them as an anomaly in certain equipment would need knowl-
edge of the power system. System analysts without requisite experience would have 
problem flagging issues at the installations. We are therefore motivated to apply a com-
puter vision-based deep learning model because of the flexibility and numerous options 
it affords in terms of different features or architectures therein as shown by Wang et al. 
[13] that it would assist power system operators for identifying hotspots as anomalies 
in electrical installations before they could lead to catastrophic incident. Balla et al. [14] 
pointed out that the deep learning model can be integrated into SCADA systems for 
requisite annunciation, control, and protection actions.

Most computer vision applications often incorporate practical units for image acqui-
sition, image preprocessing, image segmentation, feature extraction, classification, or 
detection as noted in the works of Soni [15], Wiley and Lucas [16], Rybchak and Basys-
tiuk [17]. And the major issue as seen by Acquaah [18] is how to extract the features 
from thermographic images using suitable model to capture the extracted features in 
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order to identify the area of defect. The challenge lies in this process, in the sense that 
adopting a good model to pinpoint important information from the thermal images 
could require mathematical analysis for optimization of any applied activation, objec-
tive or loss functions, according to Mustapha et al. [19]. Sometimes, the choice is made 
through rigorous experimentation or as presented by [20] through automatic tuning of 
requisite hyperparameters.

In this research, we have implemented a VGG-16 network using transfer learning 
approach for recognizing hotspots in electrical power system. A pre-trained VGG-16 
network as an expert learning model is trained to identify anomalies in IRT images of 
power installations. VGG-16 is a deep learning model useful for many object classifica-
tion and detection models and used in this work for hotspot detection as anomalies in 
IR images. The VGG-16 model was trained using digital IRT images of equipment in 
power substations and obtained 99.98% accuracy. The result shows the prospect of the 
computer vision-based model for identification electrical hotspots in the field electrical 
installation inspections, and on general electrical power system analysis. Prospect exists 
for further research to determine the root causes of the anomaly based on knowledge of 
thermal signature of the equipment where the hotspot occurs.

Rest of the paper gives a detailed explanation of the process. Section two gives insight 
on the reviewed literature in relation to the research. The third section discusses the the-
oretical concepts deplored for implementing the deep learning model. It succeeding sec-
tion describes the overall design of the proposed hotspot detection system. And the last 
part before the conclusion provides details of the results of experiments conducted with 
associated evaluation of each applicable model.

Literature review
As research into the area of infrared imaging matures, authors widens their works to 
accommodate and apply new techniques of image processing. Hence, computer vision 
and deep learning tools become the choice platform to enhance the research work. This 
can be attributed to the different and numerous ways deep learning networks can be 
implemented, as well as creating building blocks for further research.

Review of anomaly detection in infrared thermography using deep learning and other 

novel techniques

The field of infrared technology for condition monitoring of electrical installation can 
be challenging because the thermal images in most cases are not easy to interpret and 
they come loaded with lots of information which can be decomposed using different 
image transformation techniques. Hotspot detection is one area that has benefitted from 
these novel image processing methods and convolutional neural networks have become 
invaluable tools for extracting such critical features of interests from the images. The 
convolutional layers are the major building blocks of deep learning models which can 
be used to detect anomalies in diverse areas not limited to electrical engineering. For 
instance, Yang et al. [21] developed a deep learning model to that is capable of detecting 
cracks in steel elements after excitation with an external heat source. The temperature 
variation regions of normal and abnormal state were observed and compared. Faster 
Region-based CNN (Faster-RCNN) was applied with a test accuracy of 95.54% and a 
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mean average precision (mAP) of 92.41%, whereas Ding et al. [22] presented a technique 
for identifying hotspot in a dataset characterized by a dynamic non-homogenous space, 
such as a road traffic using a novel ensemble learning approach. Usually, the inves-
tigations are conducted in a practical environment, however Fang et  al. [23] designed 
an automatic dep learning defect detector using opto-exciter to identify anomalies in 
plexiglass, steel, and carbon-fiber-reinforced material in a simulated environment using 
YOLO-V3, Faster RCNN, center-mask, U-net, Res-U-net, and Mask RCNN. Choud-
hary et al. [24] discovered that different defects in rotary parts of an electric machine 
can be diagnosed using LeNet-5 which the authors found to be better than Artificial 
Neural Network (ANN). Infrared sensors are excellent surface temperature detecting 
devices and hence can be deployed to monitor temperature profile across the periph-
ery of equipment. Thus, Das et al. [25] developed a metal-oxide surge arrester surface 
contamination detector using ResNet50 model that was trained with IR images through 
transfer learning. Chandra et  al. [26] proposed a DL method for analyzing concrete 
pavement structures considering seasonal changes in weather and found the model 
yielding up to 96.47% accuracy, which the authors said outperformed a comparative 
surge arrester monitoring model based on ResNet. Janssens et al. [27] investigated the 
process of application of DL to IR thermal video for independent condition monitor-
ing of electric machine with 95% accuracy for fault identification and 91.675 for oil level 
forecasting using VGG network. Fanchiang et al. [28] presented a real-time fault con-
dition monitoring of dry-type transformer using Wasserstein Autoencoder Reconstruc-
tion in series with a differential image classifier (DIC) that is a light weight model when 
compared with other models like VGG-16, ResNet50, LeNet-5, SqueezeNet, ShuffleNet, 
and MobileNet v1. Jiang et al. [29] researched on faults in transformer bushings using a 
combination of Mask RCNN and improved PCNN with 98% accuracy. Fanchiang and 
Kuo [30] deployed a generative model based on Variational Autoencoder Generative 
Adversarial Network (VA-GAN) for identifying thermal anomaly in cast resin dry-type 
transformer with impressive performance with respect to accuracy, AUROC, F1-score 
and mean accuracy. Fang et al. [31] applied a partial supervised learning using synthesis 
based on GAN for hotspot fault detection in transformers. The author applied a feature 
extraction scheme that produced up to 82.2% accuracy for ordinary machine defect and 
86.2% for overheating effect. Mlakic et al. [32] analyzed defects in 10/0.4kV distribution 
transformer using DL-based CNN model IR thermography. Jangblad [33] researched on 
the use of IR images for DCNN-based object detection network.

Jaffery and Dubey [34] developed a color dependent segmentation method to mark 
high temperature areas within thermograms of power equipment. The authors used 
a RGB and grayscale histograms of equipment during energized and off-line states to 
gauge the degree of increase or decrease in temperature of the. Kumar and Ansari [35] 
used a non-intrusive IR monitoring method to assess thermal profile of ZnO surge 
arrester using watershed transform for isolating features in images in order to identify 
link between heat profile of the equipment and its leakage current. Novizon et al. [36] 
proposed an artificial neural network (ANN)-based classification model for condition 
monitoring of metal-oxide surge arresters using heat profile of equipment together with 
the associated third harmonic component of its leakage current. Alvarado-Hernandez 
et al. [37] observed the faulty condition of rotary elements in an induction motor like the 
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bearing and gearing system using IR image acquisition system together with intelligent 
system based on deep neural network with accuracy of up to 96.1% when interfaced with 
Principal Component Analysis. Balakrishnan et  al. [8] explained the basic process of 
IRT for monitoring state of electric equipment. The authors underscored and explained 
two common methods of hotspot detection to include quantitative approaches involv-
ing taking specific temperature profile of equipment, and qualitative methods entail a 
comparative thermal measurement of a particular point or area with respect to similar/
comparable area under similar operating condition. Parashar et al. [38] inferred that IRT 
remains a valuable tool for detection or identification of faults/defects and would also 
serve for fault prediction and suggested that morphological reconstruction of images 
such as sharpening to remove noise therein, would aid improve the intelligent models. 
And, Liu et al. [39] noted the impact of human factor for recognizing faults in equipment 
from analysis of their IR images using smart systems based on feature extraction. The 
author pointed out that uncertainty in the ability of IR system to differentiate between 
various types of faults in the mechanical parts of rotary machines and presented an 
IRT-based CNN technique for tracing the type of rotary part defects like abrasion, loose 
bearing, shaft misalignment and combination of abrasion and misalignment, responsible 
for the manifested overheating parts with 95.8% accuracy.

Review of condition monitoring techniques for anomaly detection literature using VGG‑16

Due to its ease of use and efficiency, as shown in the work of Simonyan and Zisserman 
[40], the VGG-16 network has been applied by researchers in solving most problems 
in different areas of life. Liu and Wang [41] proposed a power system diagnostic tool 
based on VGG-16 feature extraction of line graph data obtained from converted syn-
chro-phase measured data of the system, whereas Younis et al. [42] proposed a VGG-
16-based model for detecting anomalies in the magnetic resonance images (MRI) of the 
human brain occasioned by tumors therein. The method produced up to 98.5% accu-
racy better than a comparable Ensemble and CNN-based models. Piekarski et  al. [43] 
interest in visible wideband radiation and far-field-IR absorption spectrometry led them 
to observe anomalies in high-powered synchrotron light beam caused by inefficient or 
ineffective optical sensors over a given period, using VGG-16-based neural network with 
92% accuracy. Dang et al. [44] used VGG-16-based neural network to investigate faults 
in power transformers glimpsed from acoustic signals generated by the equipment dur-
ing periods of normal and mal-operation using Gammatone Filters to derive the associ-
ated Gammatone Frequency Cepstral Coefficients (GFCC) that would be recognized by 
the VGG-16 network. The method was able to achieve 95% accuracy for different states 
of a test 10kV dry-type transformer. The VGG-16 network has been effective for detect-
ing anomalies in monochrome images. Due to the public health issue associated with 
pneumonia, Sharma and Guleria [45] implemented a DL model based on VGG-16 to 
identify pneumonia with up to 95.4% accuracy, in a dataset containing anterior and pos-
terior chest X-ray (CXR) monochromatic image of patients. Du et al. [46] showed that 
GoogleNet and VGG-16 can produce good classification accuracy for smart classifica-
tion of Silicon PV Cell anomalies. Alatawi et al. [47] applied VGG-16 to identify diseases 
in plants by monitoring their leaf conditions with 95.2% accuracy on the test dataset. 
Similarly, Ahmad et al. [48] developed different classification and identification models 
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for tomato leaf diseases using four deep learning methodologies like ResNet, Inception 
V3, VGG-19, and VGG-16 for feature extraction as well as for tuning the hyperparam-
eters of the networks and noted good performance across the deep learning networks 
even though the Inception V3 came tops with 99.6% accuracy.

In most cases, the VGG-16 algorithm is applied independently, but have proven to be 
just effective when used alongside other algorithms as Rasyid et al. [49] used VGG-16 
with cosine similarity algorithm to develop an image-based electronic device recom-
mender system to complement the traditional word-based systems. The model achieved 
up to 94.38% mean average precision in one of the test categories. Sheriff et al. [50] pro-
posed a VGG-16-based web application model for diagnosing lung carcinoma to aid 
early detection and reduce error in diagnosis. Rezaee et al. [51] applied VGG-16 to rec-
ognize specific species of trees with an accuracy of 92.13% which was better than the 
Gradient Boosting (GB), and Random Forest (RF) algorithms that produced accuracy 
scores of 83.57 and 80.12%, respectively. Zhao et  al. [52] demonstrated that the faster 
RCNN model for detection of insulator in power lines can be enhanced using anchor 
generation technique based on VGG-16 neural network. The enhanced performance 
was evident in the average precision (AP) of 0.818. Li and Guo [53] developed a VGG-
16-based anomaly detection in printed circuit boards (PCB) with a best average preci-
sion (AP) score of 90% in one of its test cases. Lin and Wei [54] used a combination of 
the Efficient and Accurate Scene Text (EAST) algorithm and the VGG-16 deep learning 
network to capture information on electric pole identification plate. The proposed script 
recognition model recorded 83.2% accuracy. Ye et al. [55] implemented a low parameter 
model of VGG-16 that segmented remotely sensed images with 13% improved accuracy 
of the original model from 85 to 98% by reducing the input image pixel size to 64 × 64 
pixels, and transforming the original RGB images into grayscaled images. The VGG-16 
model is quite flexible to modification for better performance as can be seen in the work 
of Sitaula and Hossain [56]. The authors presented an attention-based VGG-16 model to 
detect COVID-19 in CXR images with accuracies of 79.58, 85.43, and 87.49% for three 
different CXR datasets, outperforming other comparable models.

In this work, the deep learning model would not be focused on a specific type of 
equipment, rather would provide a bird-eye-view of a substation to identify hotspots in 
the installation. This would be achieved by careful setting of the thermal range of the IR 
image acquisition system and applying the acquired images for the training of a VGG-16 
deep neural network (DNN).

Methodology
VGG‑16 architecture

The VGG-16 is a deep learning network developed by the Visual Geometry Group 
(VGG) of University of Oxford in 2014. The associated research paper by [40] came first 
and second in object detection and classification, respectively, of the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) that same year.

As the name implies, it is made of 16 weighted layers, consisting of 13 convolutional 
layers and 3 fully connected layers. Both convolutional and dense layers used the ReLU 
activation function due to its ability to zero-out any negative neurons in the network, 
curtail issues of vanishing gradients, reduce amount of required computing resources, 
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and improve the overall efficiency of the neural network. The first layer is only for data 
input and has no updatable weights. It is followed by two successive convolutional layers 
of 64 filters each before a max pooling layer and then another two successive convolu-
tional layers but with doubled filter size of 128. Again, a pooling layer is applied before 
three successive convolutional layers, this time with a filter size of 256. Another pooling 
layer is used as well as three convolutional layers with 512 filters.

The next three convolutional layers came after yet another pooling layer, but retains 
the same 512 number of filters. The last pooling layer is a 7 × 7 pixel matrix with 512 
channels and follows two fully connected or dense layers containing one-dimensional 
4096 channels. Another dense layer with one-dimensional 1000 channels is required 
before the last layer. The last layer of the VGG-16 network is also a one-dimensional 
softmax layer with 1000 outputs as specified in the ILSVRC. The one-dimensional 
sizes are to ensure matching between the dense and the softmax layer. The last output 
layer, which is the softmax layer is not counted for the network description, because 
it does not have trainable weights. For an RGB, the VGG-16 performs best with an 
input image with a tensor size of 224 × 224 and remains one of the most popular deep 
neural networks. It is represented in Fig. 1.

The filters in the VGG-16 use same padding for convolutional and maxpooling opera-
tions and are 3 × 3 filters, with stride of 1, also a 2 × 2 filters in the maxpool layer with 
stride of 2. The thirteen convolutional operations are performed in five stages. The first, 
second, third, fourth, and fifth stages have 2, 2, 3, 3, and 3 convolutional layers, respec-
tively. The maxpooling layers are placed immediately after each convolutional block. The 
last three dense layers mean that there is a total of 21 layers in the VGG-16 architecture.

Hyperparameters

Hyperparameters in neural networks are the configurable parameters that determines 
the effectiveness and efficiency of the neural network model. They can be adjusted to 
enhance the model’s performance. Types of hyperparameters include the batch size, 
number of hidden layers, number of neurons in the input and output layers. Oth-
ers are the learning rate, loss function, number of iterations in each epoch, optimiza-
tion technique, activation function, etc. The effect of each parameter to any model 
depends on the nature of the algorithm been used to develop its mathematical model, 
so all hyperparameters would not have same level of significant impact on a model.

In this work, the hyperparameters that played major role in the model are the 
number of hidden layers, loss function, activation function, batch size, optimization 

Fig. 1  The standard VGG-16 deep learning model
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algorithm, etc. The impact of the optimization algorithm also depends on other 
hyperparameters like the learning rate, as the case may be.

Activation functions

They are designed to bring in some measure of nonlinearity in the deep learning net-
work so as to improve the aptitude of the model to comprehend complicated configu-
rations inside the dataset, as inferred from the work of Khlongkhhoi and Kanbua [57], 
thereby enabling it to solve both linear and nonlinear problems. As the name implies, 
activation function controls the manner of activating a particular neuron in the neural 
network, similar to the manner of ignition of neurons in the human nervous system. 
The weighted sum of inputs and biases are effectively transformed to an output signal 
and transferred to succeeding layers in the model, thereby enabling network to decipher 
complicated arrangement in datasets that show nonlinear characteristics.

Epoch, batch size, and number of iteration

An epoch is the number of times required to complete a full forward and backpropa-
gation of all the data elements through a neural network. So, in a dataset made of 500 
images, setting the number of epochs to one would mean that all 500 images must be 
finish a full cycle of forward and backpropagation through the network. Similarly, if the 
number of training epoch is set as ten, then all dataset must be passed ten full cycle 
across network to finish the training.

Akhtar et al. [58] observed the impact of batch size in optimization algorithms. The 
concepts of batches and batch size, stems from the issue that most times a neural net-
work with lots of data elements will need too much memory and computing resources to 
be able to process all the data during an epoch. Hence, the data are better fed to the net-
work in specific smaller batches. The batch size is therefore the number or set of training 
examples in a given batch.

The number of iterations for training a network corresponds to the number of batches 
needed to complete one epoch. So, for a network with say n number of data examples, 
and k amount of batch site, then the number of iterations to complete one epoch would 
be given Eq. (1):

And, the number batches reflect from the number of iterations as shown in Eq. (2):

Learning rate and optimizers

During any minimization or maximization processes, gradients are used to dictate the 
route of optimization of the network as it tries to converge to its optimal weights and 
biases by minimizing its error function. Thus, optimizers are handy for updating these 
weights and biases in reaction to its computed gradients.

The learning rate provides the magnitude of steps to be taken while training the neural 
network model. The learning determines how fast or slow the weights and biases must 

(1)Number of Iterations = Number of data elements (n)/Batch Size (k)

(2)Number of Batches = Total Number of Iterations (in 1 epoch)
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be updated during the training process. Thus, the process of optimization entails seeking 
optimal points while traversing multi-dimensional, non-convex spaces.

In subsequent section of the work, we have evaluated the performance of the model 
with respect to popular and related gradient descent-based optimizers like Adam. AdaG-
rad, Adamax, Adadelta, and Nadam.

Adam optimizer

Adam is another name for adaptive moment estimation. It is a stochastic gradient 
descent (SGD) optimization technique found on an adaptive approximation of first-
order and second-order moments. The method was developed by Diederik Kingma and 
Jimmy Ba of OpenAI and University of Toronto, respectively, in the paper presented 
at the  International Conference on Learning and Representations 2015. In the work, 
the algorithm is computationally efficient, has little memory requirement, invariant to 
diagonal rescaling of gradients, and is well suited for problems that are large in terms of 
parameters.

The optimizer assesses the gradient mean as well as the squared gradient of each indi-
vidual member on exponential moving average and amends any of its bias. In principle, 
the last weight improvement exercise is made relative to the product of the learning rate 
and the 1st-order moment divided by the square root of 2nd-order moment.

Hence, the algorithm uses only the learning rate, the rate of decay the gradient mean, 
and the rate of decomposition of the squared gradient. The authors further observed 
that it would be relatively easy to select the magnitude of the learning rate where the 
area of the best result can be predetermined, because the ultimate adjustment of the 
weight is roughly constrained by the learning rate. And that the exponential moving 
average (EMA) is skewed in the zero direction, if initialized at no value, and hence, it is 
divided by a definite value depending on the decomposition rate in order to arrive to a 
fair estimate. Adam uses the mean of the second moments of the gradients, instead of 
the parameter learning rates based on the average first moment as in the RMSProp.

Equation of the Adam optimizer

The Adam optimizer uses a combination of the momentum and the RMSProp.  The 
momentum in the algorithm is applied to hasten the optimization process through the 
application of the exponential moving average of the gradients. The use of the mean 
ensures that the algorithm would converge faster toward the minima.

For the optimization of a loss function (L) with respect to its weights ω, using the tra-
ditional Stochastic Gradient Descent algorithm (SGD), whose initial weight is ωt, its 
updated weight, ωt+1 would be computed in Eq. (3) as:

where α is the learning rate and ∂L/∂ωt is the rate of change of the loss function with 
respect to the weights wt.

However, the single gradient can be replaced with an aggregation of multiple gradients 
made of exponential moving average of the previous and current gradients up to time t, 
called momentum, mt.

(3)ωt+1 = ωt − α

[

δL

δωt

]
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Hence, we have SGD with momentum (SGD-M) written in Eq. (4) as follows:

where the momentum mt is computed in Eq. (5) as:

where β is the moving average parameter; mt−1 is the previous aggregate of gradients 
at time t−1; and ∂L/∂ωt is the rate of change of the loss function with respect to the 
weights wt.

In the RMSprop-based optimizer, Eq. (6) shows that the learning rate depends on the 
EMA of the gradients

where ε is a small positive constant (10–8) to prevent any division by zero and Vt is the 
sum of square of past gradients [i.e., sum (∂L/∂Wt−1)] at time t. It is initialized at Vt = 0 
and is calculated in Eq. (7):

And Vt−1 represents the previous the sum of square of past gradients [i.e., sum 
(∂L/∂Wt−1)] at time t−1.

In the Adam optimizer, the EMA of the gradients (as in the case of SGD-M) is com-
bined with the EMA of the squared gradient (as in the case of RMSprop) to obtain a dif-
ferent weight updating scheme of Eq. (8)

where m̂t and v̂t are bias-corrected values of the momentum, mt represented in Eq. (9), 
and past squared gradients, vt which is likewise computed in Eq. (10):

Also, it is expressed in terms of β1 and β2 as per Eqs. (5) and (7), respectively, to obtain 
Eqs. (11) and (12)

(4)

ωt+1 = ωt − αmt

(5)mt = βmt−1 + (1− β)

[

δL

δωt

]

(6)ωt+1 = ωt −
(

α√
vt + ε

)[

δL

δωt

]

(7)vt = βVt−1 + (1− β) ∗
[

δL

δωt

]2

(8)ωt+1 = ωt −
(

α
√

v̂t + ε

)

m̂t

(9)m̂t =
mt

1− βt
1

(10)v̂t =
vt

1− βt
2

(11)mt = β1mt−1 + (1− β1)

[

δL

δωt

]
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where β1 is the exponential decay rate for the first moment estimates (e.g., 0.9), and β2 
represents the exponential decay rate for the second-moment estimates (e.g., 0.999). 
These values are best set close to 1 on problems with sparse gradient (e.g., NLP and 
computer vision problems).

The Adam optimizer inherits and builds upon the strengths of the SGD momen-
tum and the RMSProp to give a more optimized gradient descent. Since mt and vt are 
both initialized at 0 (based on the above methods), they have the tendency to be biased 
toward 0 as both β1 and β2 ≈ 1.

The optimizer fixes this problem by computing some bias-corrected weights m̂t and v̂t . 
This is also done to control the weights, while reaching the global minimum to prevent 
high oscillations when near it. The optimizer adapts to the gradient descent after every 
iteration so that it remains controlled and unbiased throughout the process, hence the 
name Adam.

Specific training parameters

Specifically, the algorithm calculates an exponential moving average of the gradient and 
the squared gradient, while the parameters β1 and β2 control the decay rates of these 
moving averages. The initial values of the moving averages β1 and β2 are recommended 
to be close to unity, resulting in a bias of moment estimates toward zero. This bias is 
overcome by first calculating the biased estimates before then calculating bias-corrected 
estimates.

(1)	 β1 = 0.9
(2)	 β2 = 0.999
(3)	 α = learning rate (0.001), it was later adjusted to 0.0001 for this work

Other settings used include 50 epochs, batch size of 16, verbose of 1, and image resized 
to 224 × 224.

Benefits of Adam optimization

One of the merits of using the Adam optimizer lies in its ease of implementation, low 
memory demand, and computational efficiency. Others include its ability to optimize 
non-stationary objects, good tendency to remain robust against diagonal rescale of 
objectives of the gradients, and potential to solve large-scale problems. Moreover, it is 
efficient for solution of sparse gradient-based optimization. Adam combines the benefits 
of both AdaGrad and RMSProp. RMSprop, Adadelta, and Adam are very similar algo-
rithms that do well in similar circumstances. However, with its bias-correction factor, 
Adam marginally outperform RMSprop and is usually preferred.

Developing the confusion matrix

The confusion matrix provides one of the best ways of accessing the performance 
of a classification or detection model. Also called an error matrix, it enables good 

(12)νt = β2νt−1 + (1− β2)

[

δL

δωt

]2
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visualization of the metrics of a model by presenting results in a square matrix in two 
dimensions which are the actual and the predicted classes. The number of rows and col-
umns of the matrix depends on the number of object classes involved. And the table 
contains variables whereby each variable represents a combination of class and dimen-
sion. A typical confusion matrix of a binary classifier is shown in Fig. 2.

The table can be arranged with the actual predictions on the row class and the predic-
tions on the columns and vice versa. However, they are commonly structured with the 
rows representing the actual values while the columns represent the predicted values. 
The true positive values (TP) are those predictions that the classifier correctly pointed 
as positive. According to Saif et al. [59], the true negative values (TN) are the ones that 
were correctly identified as negative by the model, whereas the false positive (FP) and 
false negative (FN) are the predictions that the model incorrectly labeled as positive and 
negative, respectively. The magnitude of the TPs, TNs, FPs, and FNs can be used inde-
pendently to judge whether the model is optimized or not. For instance, high TP and TN 
as well as low FP and FN are important characteristics of a good model.

One of the most commonly used metrics while performing classification is accuracy. 
The accuracy of a classifier can be represented in Eq. (13) using values of the confusion 
matrix is computed according to Jia and Meng [60], as follows:

The challenge of using accuracy to measure the performance of a model is that it could 
yield deceptive result especially on unbalanced datasets. So, we have balanced the data-
set to get full benefit of the accuracy metric.

Precision and recall (sensitivity)

Other metrics like precision and recall can provide additional insight on the perfor-
mance of a classification model. Precision indicates the model’s ability to predict positive 
events by measuring how often the model achieves a correct positive prediction. It can 
be computed as a ratio of number of correct predictions to the number of predictions 
made. The recall, also called sensitivity, is applied to record the ability of the model to 
predict all positive outcomes, and it is also known as the sensitivity of a model. It is pos-
sible for a model to be optimized by setting the objective function to increase the recall 
without jeopardizing the precision. The formulas for calculating precision and recall 
(sensitivity) are also given by Hama and Omer [61] in Eqs. (14) and (15):

(13)Accuracy = TP+ TN

TP+ TN+ FP+ FN

Fig. 2  Confusion matrix of a typical binary classifier
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Another important metrics for analyzing performance of classification model is the 
Fβ measures. The Fβ-score is computed with the recall and precision scores of the mod-
el’s confusion matrix, as presented by Tadist et  al. [62]. It is achieved by applying the 
weighted average of the recall and the precision, as shown in equation (16):

When the magnitude of β is set as 1, the result is referred to as the F1 measure and cal-
culated as in Eq. (17):

Global average pooling (GAP)

This is a type of pooling function made to replace fully connected or dense layers in a 
typical deep learning model. The essence is to generate one feature map for each cor-
responding category of the classification task at the last multilayer perceptron (MLP) 
like layer. So rather than introducing dense layers after the feature maps, the mean of a 
specific feature map is selected, and the resulting vector serves as the input to the soft-
max layer. In the breakthrough work of Lin et al. [63], the author noted that merit of the 
GAP operation against the dense layers lies in the fact that it is similar and more amena-
ble to the convolutional structure of the preceding layers, thereby streamlining interac-
tions between the feature maps and the output categories. Another benefit of the GAP 
layer is that overfitting is evaded with this layer in place because no parameter can be 
optimized therein. Moreover, the GAP operation is more vigorous to spatial translations 
of the input because it totals out spatial information of the feature map.

Unlike Flattening operation that transforms a tensor of any dimension into a one-
dimensional array, and retaining each value of the array, GlobalAveragePooling2D 
(GAP-2D) executes average pooling on the spatial dimensions until each spatial dimen-
sion is one, and leaves other dimensions unchanged. The GAP is a technique for superior 
depiction of the vector. It can be applied in different dimensions and uses an unweighted 
kernel window to slide over each feature map and pools the pixel values therein, by com-
puting the mean. Padding is done to ensure pixels at the edges of the feature maps are 
not left-out.

Infrared image acquisition

Infrared images of live electrical equipment installed in Nigeria’s various 132/33 kV 
transmission substations were captured using the FLIR C5 compact infrared thermal 
camera. Typical images acquired with the device measures 640 × 480 pixel. The upper 

(14)Precision = TP

TP+ FP

(15)Recall = TP

TP+ FN

(16)Fβ = (1+ β2)× (precision× recall)

(β2 × precision)+ recall

(17)F1 = 2× (precision× recall)

(precision+ recall)
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thermal measuring range was set at 150 °C, while the lower thermal limit was kept at 
16.3 °C. The rainbow color palette was selected. According to FLIR Teledyne [64], 
renowned for manufacturing IR imaging systems, this color scheme begins with deep 
blue hues for the lower pixel values and progresses to the higher pixel values, indicated 
by the transition from dark to the brighter colors. It has more colors in its mix and offers 
good background for highlighting points therein with little thermal differential. Thermal 
images of power equipment were taken at various distances within the specified range 
of the IR camera. Since, each image were taken under same standard camera setting, the 
color bars accompanying them and the proprietary FLIR logo can be removed without 
altering the training result or interpretation by the computer vision-based deep learning 
model.

IR images of different rating of the same type of equipment were also obtained to 
improve the performance of the deep learning network. Moreover, the IR images were 
acquired at different weather conditions in order to counter issues of reflected tempera-
ture from the surfaces of the equipment. This is possible because the IR radiation is not 
affected by the amount of illumination around the object under observation. The FLIR 
C5 infrared imager comes with a zoom capability. This means that hotspots can be cap-
tured from safe distance by using the zoom function, thereby ensuring the safety of the 
operator. Figure  3 shows sample of images captured under the stated thermal camera 
settings, which highlights the occurrence of electrical hotspots of 114 and 97.2 °C on the 
bushings of a 15 MVA, 33/11 kV transformer with a 1.6 × zoom function.

The equipment affords the opportunity to lock the temperature range within a spe-
cific upper and lower limit during the image acquisition process as shown in Fig. 3. The 
padlock icon beside the color bar shows that the temperature range were restricted from 
changing during the process of image acquisition. The IR imaging device can last up to 4 
h on full battery charge based on the manufacturer’s specification, but due to the length 
of time required for seamless data acquisition, additional 2 nos. 20,000 mah Lithium 
powered power banks were used as backup for the built-in power supply.

The images were acquired at different times from diverse power substations with vari-
ous configurations within the national grid. The acquired raw IR image datasets were 
further processed by labeling, cleaning, grouping and augmenting the data within each 
group. The IR image augmentation were done using Keras-based Tensorflow libraries 
using python packages in Jupyter Notebook, to balance and enhance the amount of data 

Fig. 3  Sample IR image with set thermal limits
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available for the deep learning network. The process flow for implementation of the deep 
learning model is shown in Fig. 4.

The final dataset was made of 1000 IR images of power equipment in a transmission 
substation, evenly divided into 500 normal images without hotspots and 500 images 
with hotspots. And the test dataset of 100 images was used to test the model for hotspot 
identification by drawing a box around the region of interest containing the hotspot. The 
model was executed using different optimizers, with an instruction to identify (or not) 
up to five hotspots in an image and the results compared. The merit of this approach is 
the possibility of the human visual sense having difficulty in identifying the least mani-
festation of hotspot, which the computer vision-based application could easily achieve.

Results and discussion
The results of the hotspot identification using the VGG-16 deep learning network indi-
cates the ability of the global average pooling layer to segregate high pixel values out of 
the neighboring ones, thereby identifying them as an anomaly within the IR image, and 
taken those areas as the region(s) of interest. Different variants of the Adam optimizers 
were used to implement the model and the results were compared.

Results with Adamax optimizer

The Adamax optimizer yielded a good result as shown in Fig. 5.

Results with Adadelta optimizer

The Adadelta optimizer proposed by Zeiler [65] was used to execute the model, and the 
result is shown in Fig. 6.

Results with AdaGrad optimizer

The AdaGrad optimizer as proposed by Duchi et al. [66] was used to execute the VGG-
16 hotspot detection model. The result obtained is shown in Fig.  7. The model was 
instructed to identify up to five hotspots from randomly selected test IR images, and the 
result can be seen from Figs. 6 and 7.

Fig. 4  Process flow diagram of the hotspot detection research using VGG-16 deep neural network
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Fig. 5  Results of VGG-16 hotspot detection with Adamax optimizer

Fig. 6  Results of hotspot detection in power installation with Adadelta
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Results with Nadam optimizer

The Adam algorithm was combined with the Nesterov Momentum by Dozat [67] to 
yield a new optimizer called Nesterov-accelerated adaptive moment (Nadam). The opti-
mizer was also used to test the hotspot detection model with good result shown in Fig. 8.

Results of Adam optimizer implementation with learning rate of 0.001

The model performance was not as good at learning rate of 0.001 proposed in the 
work of Kingma et al. [68] as shown in Fig. 9 at 51% accuracy. This validates the fact 
that some of the hyperparameters applied in some breakthrough research may not be 
exactly applicable to future works. There may be need for tuning of these hyperpa-
rameters for optimal result in peculiar works.

Results with Adam optimizer with learning rate of 0.0001

The model recorded spectacular performance of 99.98% accuracy when implemented 
with Adam using a learning rate of 0.0001 as presented in Fig. 10. This is because as 
per the literature, reducing the learning rate improves the pixel-to-pixel discriminat-
ing ability of the model.

Comparison with related research

The comparative result of the work presented in Table 1 shows that the Adam opti-
mizer yielded the best performance of 99.98% accuracy with learning rate of 0.0001, 
better than other similar optimizers for the hotspot detection model.

Fig. 7  Results of VGG-16 implementation of hotspot detection with AdaGrad
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Fig. 8  Results of VGG-16 implementation of hotspot detection with Nadam

Fig. 9  Adam implementation of hotspot detection model with 0.001 learning rate



Page 19 of 25Ukiwe et al. Journal of Electrical Systems and Inf Technol           (2024) 11:24 	

A comparison of results obtained from similar previous research is shown in 
Table 2.

Table 2 indicates that the work by Kayci et al. [69] utilized YOLOv3 with 97% accu-
racy but limited the work to only solar PV modules. But Zheng et al. [73] adopted the 
S-YOLOv5 method of hotspot detection also in solar PV modules with mean aver-
age precision (mAP) of 98.1%. However, Venkatesh and Sugumaran [75] used visual 
images only on VGG-16 model to segregate good and bad panels, whereas Pierdicca 
et  al. [76] applied the VGG-16 model for isolating faults in solar PV panels were 
geared toward classifying the panels into normal and damaged without identifying 
the region plagued by hotspot. Some of the merits in our implemented pre-trained 
VGG-16 DL-based hotspot detection model using GAP layer in place of the fully 
connected layer besides outperforming other similar models with a test accuracy of 
99.98%, resides in the prospect of actually identifying multiple hotspots in the system, 

Fig. 10  Adam implementation of VGG-16 hotspot detection model with 0.0001 learning rate

Table 1  Comparative analysis of VGG-16 model for hotspot detection using different optimizers

Metrics Comparative analysis of VGG-16 model for hotspot detection using different 
optimizers

Adamax Adadelta AdaGrad Nadam Adam

Accuracy % 99.50 87.00 95.49 98.50 99.98

Precision 0.9898 0.8529 0.9320 0.9798 1.0000

Recall 1.0000 0.8876 0.9796 0.9898 0.9898

F1-Score 0.9945 0.8699 0.9552 0.9798 0.9949
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Table 2  Comparison of results from previous related works

Title/Reference Doi Method/Results

Deep learning-based fault detec-
tion and diagnosis in photovoltaic 
system using thermal images 
acquired by UAV [69]

https://​doi.​org/​10.​2339/​polit​eknik.​
10945​86

The target equipment was Solar PV. 
YOLOv3 was applied with 97% accu-
racy detection of cell fault, 95% in 
detection of module fault, and 93% 
in detection of panel fault

A Comparative Study of MLP 
Networks Using Backpropagation 
Algorithms in Electrical Equipment 
Thermography [70]

https://​doi.​org/​10.​1007/​s13369-​
014-​0989-7

IR images of power distribution 
equipment were obtained with Fluke 
Ti25. MLP with backpropagation after 
training with RP showed best training 
and testing accuracy of 84.21% and 
76.20%, respectively. Best training 
sensitivity 80% and testing sensitivity 
of 67.50%. Also, the lowest FN of 20% 
and 32.50% for training and testing 
phases, respectively

Photovoltaic Hot-Spots Fault 
Detection Algorithm using Fuzzy 
Systems [71]

https://​doi.​org/​10.​1109/​TDMR.​2019.​
29447​93

Dataset of Solar PV came from Solar 
UK Database. FIS using Mamdani-
type fuzzy logic controller was 
modeled with three inputs: open 
circuit voltage, short circuit current, 
and percentage of power loss. Tested 
average accuracy of 96.7%.was 
obtained

Fault detection using thermal 
image based on soft computing 
methods: Comparative study [72]

https://​doi.​org/​10.​1016/j.​micro​rel.​
2017.​02.​013

FLIR SC4000 was used to get the 
dataset of integrated circuits. Study 
focused on fault detection in PCB 
with FEM. Extracted effective histo-
gram features of the ICs hotspots 
were minimized using PCA trained 
a classifier model. Results were 
compared with MLP, SVM, and ANFIS 
models. MLP (train 96.32 test 88.90); 
ANFIS (train 97.44 test 94.18); SVM 
(train 88.54 test 97.43)

Lightweight Hot-Spot Fault Detec-
tion Model of Photovoltaic Panels in 
UAV Remote-Sensing Image [73]

https://​doi.​org/​10.​3390/​s2212​4617 Study focused on Solar PV. 
ShuffleNetv2-YOLOv5 (S-YOLOv5) 
was used, and the original feature 
fusion method was abridged with 
mAP of 98.1%

Novel Photovoltaic Hotspotting 
Fault Detection Algorithm [74]

https://​doi.​org/​10.​1109/​TDMR.​2019.​
29101​96

Hot-spots in Solar PV systems were 
isolated using CDF modeling, the 
CDF model predicted presence of 
PV hot-spots in the PV modules. The 
CDF models got the PV hotspots 
with 80% accuracy

Fault Detection in aerial images of 
photovoltaic modules based on 
Deep learning [75]

https://​doi.​org/​10.​1088/​1757-​899X/​
1012/1/​012030

Proposed a fault detection in Solar 
PV module using DL. The feature 
extraction and fault classification 
was implemented using VGG-16 pre-
trained network resulting to mean 
training accuracy of 98.47% and 
validation accuracy of 95.40%

Deep Convolutional Neural Net-
work for Automatic Detection of 
Damages Photovoltaic Cells [76]

https://​doi.​org/​10.​5194/​isprs-​archi​
ves-​XLII-2-​893-​2018

Model was based on a Balanced 
Dataset of Solar PV modules acquired 
using FLIR TAU 2; predicted damaged 
module with Precision of 0.83, Recall 
of 0.50, and F1-score of 0.63. Normal 
modules were predicted with a 
Precision of 0.64, Recall of 0.90, and 
F1-score of 0.75

https://doi.org/10.2339/politeknik.1094586
https://doi.org/10.2339/politeknik.1094586
https://doi.org/10.1007/s13369-014-0989-7
https://doi.org/10.1007/s13369-014-0989-7
https://doi.org/10.1109/TDMR.2019.2944793
https://doi.org/10.1109/TDMR.2019.2944793
https://doi.org/10.1016/j.microrel.2017.02.013
https://doi.org/10.1016/j.microrel.2017.02.013
https://doi.org/10.3390/s22124617
https://doi.org/10.1109/TDMR.2019.2910196
https://doi.org/10.1109/TDMR.2019.2910196
https://doi.org/10.1088/1757-899X/1012/1/012030
https://doi.org/10.1088/1757-899X/1012/1/012030
https://doi.org/10.5194/isprs-archives-XLII-2-893-2018
https://doi.org/10.5194/isprs-archives-XLII-2-893-2018
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because the model can be configured to identify more than one region containing 
hotspots in an IR image of a power system.

Conclusion and future work
The proposed transfer learning-based VGG-16 deep learning model achieved an accu-
racy measure of up to 99.98% using the Adam optimizer. Careful choice of the 16.3–
150 °C thermal range together with the rainbow color palette made for standardized IR 
training images that helps the models to easily pinpoint the hotspots within the electri-
cal power system. Another spectacular feature of the model is that it can figure out very 
tiny hotspots that may not necessarily be visible using the human visual system, which is 
one of the essence of computer vision.

Applicability and limitations

The presented approach converges within finite time, with low computational com-
plexity. Hence, it is implementable with moderate computing infrastructure and would 
reduce the dependency on power system experts for timely identification of hotspots in 
electrical installations.

It can be applied for multiple hotspot detection in most types of electrical/electronic 
devices or installations like rotating machines, solar power equipment, power electron-
ics, etc. In leaking petrochemical fluid or gas storage systems, anomalies in the storage 
vessel can be evident in the form of temperature differential around the compromised 
area. Moreover, in monitoring heating, ventilating, and air conditioning (HVAC) or 
power generating systems with feedstock its prospects are quite enormous because 
temperature difference would usually exist between area containing fluids in pipes or 
containers and regions containing gases. Such thermal profile can be used to segregate 
anomalies. In roofing systems, the method can be used to isolate tiny holes prone to 
leakages. In fact, the applications in thermal anomaly detection cannot be exhausted.

However, limitations exist in that the model depends on training with carefully taken 
IR images using cautiously selected thermal range to make it easy for the model to pin-
point any anomaly therein.

Future research areas

The work has many prospects for future research. It can be implemented using various 
deep learning models like ResNet, AlexNet, EfficientNet, etc. Moreover, there is poten-
tial for exploring implementation of these models using the GlobalMaxPooling in place 
of the GlobalAveragePooling Layer.
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