
Implementation of partially tuned PD
controllers of a multirotor UAV using deep
deterministic policy gradient
Emmanuel Mosweu1, Tshepo Botho Seokolo1, Theddeus Tochukwu Akano1* and
Oboetswe Seraga Motsamai1

Introduction
The human capacity to generate imaginative and innovative solutions necessary for
overcoming challenges has been a valuable advantage [1]. The complexity of the human
brain compared to other creatures can be regarded as a significant advantage. With the
advent of modern technology and an increasingly technologically driven world, there
has been growing interest among scientists in transferring some degree of intelligence
to machines [2]. Artificial intelligence (AI) is a discipline in science and engineering that
has emerged over the past few decades and has since become pervasive in every domain.
Machine learning (ML) is a subset of these intelligent systems that have the ability to
enhance their performance with experience [3]. Machine learning can be seen as a

Abstract

The present methodology employed in classical control systems is characterized
by high costs, significant processing requirements, and inflexibility. In conventional
practice, when the controller exhibits instability after being implemented
on the hardware, it is often adjusted to achieve stability. However, this approach
is not suitable for mass-produced systems like drones, which possess diverse
manufacturing tolerances and delicate stability thresholds. The aim of this study
is to design and evaluate a controller for a multirotor unmanned aerial vehicle (UAV)
system that is capable of adapting its gains in accordance with changes in the system
dynamics. The controller utilized in this research employs a Simulink-constructed
model that has been taught by reinforcement learning techniques, specifically
employing a deep deterministic policy gradient (DDPG) network. The Simulink
model of the UAV establishes the framework within which the agent engages
in learning through interaction with its surroundings. The DDPG algorithm is an off-
policy reinforcement learning technique that operates in continuous action spaces
and does not require a model. The efficacy of the cascaded PD controllers and neural
network tuner is evaluated. The results revealed that the controller exhibited stability
during several flight phases, including take-off, hovering, path tracking, and landing
manoeuvres.

Keywords: UAV, Octorotor, DDPG, ANN

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Mosweu et al.
Journal of Electrical Systems and Inf Technol (2024) 11:28
https://doi.org/10.1186/s43067-024-00153-1

Journal of Electrical Systems
and Information Technology

*Correspondence:
akanott@ub.ac.bw;
manthez2016@gmail.com

1 Department of Mechanical
Engineering, University
of Botswana, Gaborone,
Botswana

http://orcid.org/0000-0002-6998-0743
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43067-024-00153-1&domain=pdf

Page 2 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

computational counterpart to human learning and has applications in a wide range of
fields, including computer vision, natural language processing, robotics, and finance [4].
This study was focused on the utilization of machine learning methodologies in robots,
particularly in the management of unmanned aerial vehicles (UAVs).

The octocopter is an UAV that can hover and navigate by controlling the eight lifts
without the need for the complicated system of linkages and blade elements found
in conventional single-rotor vehicles. Because of its adaptability, this system can
accomplish vertical take-off and landing (VTOL) and any other flight manoeuvre with
ease [5]. Like most design processes in engineering, the flight controller of such a system
must be built and tested on software before deploying it to the hardware [6]. To achieve
this, a model of the octocopter, developed using a system of equations that represent its
dynamics, is required. This model will be used to simulate flight and demonstrate that
the control system functions as theorized after installation on the octocopter [7].

In the past decade, a rise of techniques that apply the intelligent approach to increase
the level of autonomy within UAVs have quickly emerged [8]. Researchers such as Costa
et al. [9] have adopted some degree of truth in the landing of a UAV, an approach that
has been made possible using mathematical models based on fuzzy logic, to achieving
relatively accurate results. To achieve autonomous navigation with the limit of a closed
environment, Padhy et al. [10] used a deep neural network (DNN) to filter an RGB
image provided by a camera attached to the UAV. This allows it to navigate through the
environment in a controlled manner. In Villanueva and Farjardo [11], the objective was
to improve UAV performance using the deep Q-network (DQN) through noise injection.
The authors reported promising results in terms of improved performance and reduced
control effort using this approach.

In other related works, Cano et al. [12] utilized the proximal policy optimization
(PPO) algorithm in combination with a stochastic policy gradient to train a quadrotor
and develop a dependable control policy. By using a model-free reinforcement learning
(RL) approach, they demonstrated the feasibility and benefits of training a UAV’s low-
level controller without human intervention. This was applied by Schulman et al. [13]
to UAVs algorithm implementation. Cardenas et al. [14] created the first open-source
NN-based flight controller firmware, which allows a neural network to be trained in
simulation and compiled to run on hardware. The primary goal was to enhance the
altitude controller of the UAV, which is traditionally achieved using a PID controller
[15]. Additionally, alternative approaches have been developed for applications such as
combat and reconnaissance missions.

Maciel-Pearson et al. [16] utilized deep learning (DL) and multi-task regression-
based learning (MTRL) to develop a strategy for navigating through forests,
even in the presence of trails and global positioning system (GPS). This strategy
employed two sub-networks, each featuring a convolutional layer. Meanwhile, Xu
et al. [17] focused on enhancing the UAV’s decision-making autonomy for military
applications. They employed a combination of deep belief network (DBN) with
Q-learning and a decision-making algorithm based on genetic algorithms (GAs) to
enhance the UAV’s autonomy in decision-making for military applications. Their
approach yielded satisfactory results. Other researchers in a similar field of study
used surveillance images and a convolutional neural network (CNN) architecture to

Page 3 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

learn human interactions and identify how the opponent’s aircraft is being controlled
[18]. Bouhamed et al. [19] utilized the deep deterministic policy gradient (DDPG)
approach, which has a continuous action-space, to train a UAV to navigate through
or over obstacles in order to reach a target. The DDPG algorithm is an extension of
the deep Q-network (DQN) [20] and combines the actor-critic approach with insights
from DQN. The reward function was designed to guide the UAV through the optimal
path while penalizing any collisions. The architectures reported in the literature
review highlight the need for a hybrid system for control engineers, as many of these
approaches are more oriented towards computer science than engineering.

According to the investigation conducted by Zulu and John [21] on the analysis of
multiple control algorithms for autonomous quadrotors, it was found that no single
controller provided all the desired features, such as adaptability, robustness, optimal
trajectory tracking, and disturbance rejection. Instead, they found that hybrid control
schemes combine multiple controllers and produced the best results. The nonlinear
systems considered in their study were not effectively tuned using conventional offline
PID tuning techniques [22, 23], and online tuning of PID parameters was required to
achieve better performance for these systems. Several studies have explored the use of
various algorithms, such as fuzzy logic and artificial neural networks (ANNs) for con-
tinuous PID gain tuning [24, 25]. ANNs have been found to have an advantage over
other methods due to their ability to solve nontrivial problems [25]. Hernandez-Alva-
rado et al. [26] also discussed the use of online tuning of PIDs using ANNs for control
of submarines. For a quadcopter, Yoon et al. [27] developed a robust control tech-
nique based on an ANN that could adjust the PID parameters in real-time to handle
wind disturbance. A comparison chart for the rise time, settling time, and overshoot
for pitch, roll, and yaw using the RL and PID controllers is shown in Table 1.

The classical control systems approach to solving nonlinear systems is financially,
computationally, and timely expensive, and can be quite rigid in solving dynamic
problems. Due to the slight changes in their physical properties, the moments of iner-
tia of the system with respect to the three axes are also continuously changing, and
therefore, the actuator effort needed archive stability at different points of the flight
also varies. For example, mass changing systems that vary by over 50% behave with a
completely different set of dynamics at the two extremes. Therefore, system stability
cannot be archived for both using a static controller. These controllers face difficulty
due to their inability to detect and respond to changes in the system’s physical attrib-
utes. This begs the question of how one designs a controller that can take in system
attributes and adjust its gains in response to the changing system dynamics. Most
common methods of solving this problem involve engineers analysing all possible sys-
tem states and designing multiple controllers for each. This implies solving a single

Table 1 Comparison of an RL and PID controller [28]

Controller Rise time (s) Settling time (s) Overshoot (%)

Pitch Roll Yaw Pitch Roll Yaw Pitch Roll Yaw

RL 0.265 0.661 0.825 0.825 1.584 2.798 21 24 31

PID 1.344 0.228 0.962 0.962 2.05 2.198 4 17 35

Page 4 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

problem multiple times bringing about the complexity and expensiveness of classical
control methods.

Traditionally, if the controller is unstable upon deployment onto the hardware, it is
further tuned to archive stability, but this method becomes unacceptable for mass
produced systems such as drones with varying manufacturing tolerances and sensitive
margins of stability. Controllers are often designed using soft models of the system
for several reasons, mainly unavailability of hardware or to protect the hardware from
possible damage of running from an imperfect controller. The challenge of designing a
controller using software models is that they are often an inaccurate representation of
the physical system especially for nonlinear systems. Physical properties such as sensor
measurement noise and environment variations are often not included as part of the
models since they are difficult to linearize. Therefore, when controller is deployed onto
the actual hardware, it does not give the expected output, and this may result in an
unstable system that could potentially damage the hardware.

Based on the previous discussions, it can be inferred that ANN is beneficial in
enhancing the performance of control systems, particularly PID controllers. This work
adopts a comparable strategy, utilizing an ANN-based cascaded PID controller to
regulate various parameters of a mass-varying octocopter, such as altitude, roll, pitch,
and yaw. Figure 1 shows the architecture of the proposed model deployed for the control
of a quadcopter.

The remaining of the paper is organized as follows: The technique, including the octo-
copter model and dynamic equations, is in “Methodology” section. “Results and discus-
sion” section shows the effectiveness of the control system and discusses its simulation

Fig. 1 ANN–PID control system architecture for a quadcopter [27]

Page 5 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

results. Finally, “Conclusion” section concludes, highlights the limitations, and suggests
future research.

Methodology
Mathematical modelling of the octorotor dynamics

The kinematics and dynamics of a multirotor aircraft are typically analysed in two
reference frames viz the earth inertial frame and the body-fixed frame. The earth inertial
frame is oriented such that the gravity points are in the negative direction of the z-axis,
while the coordinate axes of the body frame align with the rotors of the octocopter.

The octocopter comprises of eight DC motors located at the ends of the rotor arms.
Each motor has a propeller mounted on its output shaft to generate the required thrust.
As illustrated in Fig. 2, rotors 1, 2, 5, and 6 rotate in the counterclockwise direction with
angular velocities ω1 , ω2 , ω5 , and ω6 , respectively. On the other hand, rotors 3, 4, 7, and 8
rotate in the clockwise direction with angular velocities ω3 , ω4 , ω7 , and ω8 , respectively.

The location of the octocopter’s centre of mass in the earth frame is represented by
ε = [X Y Z]T , whereas the angular position, η , is expressed in the inertial frame using
Euler angles denoted by η = [� θ �]T . In addition, the absolute linear velocities of
the octocopter are represented by VB = [VX VY VZ]T , and the angular velocities
with respect to the Euler angles are represented by ν = [P Q R] . Both of these velocity
components are defined in the body frame. The relationship between these two frames is
expressed using the rotation matrix R1 , given as follows [30],

Fig. 2 Octorotor setup ([29])

Page 6 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

It should be noted that all of the motors in the octocopter are identical. However, the
following derivation will only consider the operation of a single motor. According to
momentum theory, the thrust generated by a single motor-propeller system on the
octocopter is given by [31],

In Eq. (2), CD represents the thrust coefficient of the motor, ρ represents the density of
air, A is the cross-sectional area of the propeller’s rotation, r is the radius of the rotor,
and ωi is the angular speed of the rotor. In the case of simple flight motion, a lumped
parameter approach can be used to simplify Eqs. (2)–(3) as follows,

Combining the thrust from all the eight motor-propeller systems, the net thrust in the
body frame z-direction is given in Eq. (4) as follows,

giving the net thrust acting on the octorotor in the body frame as follows,

In addition to thrust, a drag force also acts on the octocopter, which is a resisting
force. This force has components along the coordinate axes in the inertial frame that is
directly proportional to the corresponding velocities. The drag force can be expressed in
component form of Eq. (6) as follows,

where Ax , Ay , and Az are the drag coefficients in the x, y, and z directions. If all the
rotor velocities are equal, the octocopter will experience a force in the z-direction and
will move up, hover, or fall depending on the magnitude of the force relative to gravity.
The moments acting on the octocopter cause pitch, roll, and yaw motion. The pitching
moment M� occurs due to the difference in thrust produced by motors 8 and 2, and
4 and 6. The rolling moment M� occurs due to the difference in thrust produced by
motors 2 and 4, and 8 and 6.

The yawing moment M is caused by the drag force acting on all the propellers and
opposing their rotation. From the lumped parameter approach, it can be expressed as
follows [31]:

(1)R1 =

C� Cθ C� Sθ S� − S� C� C� Sθ C� + S� S�
S� Cθ S� Sθ S� + C� C� S� Sθ C� − C� S�
−Sθ Cθ S� Cθ C�

(2)R1 = Ti = CD ρAr2 ω2
i

(3)Ti = Kω2
i

(4)T = K
∑

ω2
i

(5)FB =
[

0 0 T
]T

(6)FD =

Ax 0 0
0 Ay 0
0 0 Az

ẋ
ẏ
ż

(7)
M� = L((T2 + T4)− (T8 + T6))

Mθ = L((T8 + T2)− (T4 + T6))

Page 7 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

where τMi is the torque produced by motor 1, B is the torque constant, and IR is the
inertia moment of rotor. The effect of ωi is very small and could be neglected.

The rotational moment acting on the octorotor in the body frame is given as follows [31],

The body frame experiences a resistive torque known as rotational drag, which is
directly proportional to the body’s angular velocities. The equation for rotational drag is
as follows:

where Ar is the rotational drag coefficient. The presented model has been simplified
by neglecting various intricate phenomena such as blade flapping, which involves the
deformation of blades at high velocities with flexible materials, and surrounding wind
velocities. The dynamic equations of motion for the octorotor have been derived using
the Newton–Euler formulation. It is assumed that the octorotor has a symmetrical
structure, and therefore, the inertia matrix is both diagonal and time-invariant, with
IXX = IYY .

The force that results in the acceleration of the mass mV̇B , as well as the centrifugal force
v × (mVB) , is equivalent to the gravity force RTG and the total external thrust force FB ,
and the force of aerodynamic drag RTFD , all measured in the body frame and are related
according to Eq. (13) [31].

When dealing with an octorotor, it is more practical to describe the dynamics using a
mixed frame {M} that considers translational dynamics with respect to the inertial
frame {O} and rotational dynamics with respect to the body frame {B} . In the inertial
frame, centrifugal effects can be disregarded, and the only forces that need to be taken
into account are the gravitational force, thrust, drag, and the mass acceleration of the
octorotor. The dynamic equation could now be written in the form of Eq. (14).

After some substitutions and taking the component form gives the dynamic equation for
translational motion in the form of Eqs. (15) and (16).

(8)τMi = Bω2
i + IRω̇i

(9)M� = B(−ω2
1 − ω2

2 + ω2
3 + ω2

4 − ω2
5 − ω2

6 + ω2
7 + ω2

8)

(10)FB =
[

M� Mθ M�

]T

(11)MR =
[

ArP ArQ ArR
]T

(12)I =

IXX 0 0
0 IYY 0
0 0 IZZ

(13)mV̇B + v × (mVB) = RT G + FB − RT FD

(14)

ẍ
ÿ
z̈

 =

0
0
−g

+ R
FB

m
−

FD

m

Page 8 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

Focusing on the rotational dynamics in the body frame, the angular acceleration of
the inertia, I represented by v̇ , is equivalent to the centripetal forces v × (Iv) and the
gyroscopic forces τ . These forces are equal to the external torque MB and the torque
generated by aerodynamic drag. Hence, the rotational equation becomes,

giving

where � = −ω2
1 − ω2

2 + ω2
3 + ω2

4 − ω2
5 − ω2

6 + ω2
7 + ω2

8 and IR is the rotational inertia of
each motor written in component form as follows,

PID flight controller

The octorotor system consists of six control variables of interest. These are
(�, θ ,� ,X ,Y ,Z) and take in only eight inputs from the controller. The flight con-
troller will take in two sets of inputs viz the octorotor system states and the refer-
ence command signal. The set of system state signals will comprise of 12 values, and
they are as follows: six linear and angular positions (x, y, z,�, θ ,�) , and six velocities
(dx, dy, dz, d�, dθ , d�) . The reference command signal set will consist of the following
signals: live time ticks, orientation reference, positions reference, take-off flag, and con-
trol mode vs orientation flag. There is a single output from the flight controller, and it
comprises of the eight motor commands. The flight controller consists of six different
PID controllers, connected in a cascaded manner; two inner loop and a single outer loop
as shown in Fig. 3. The simulation ran for 300 s with MATLAB default rate of 0.005 s.

The angular motion of the UAV is not influenced by the translational components,
whereas the translational motion is dependent on the Euler angles. Hence, the primary

(15)

Ẋ

Ẏ

Ż

 =

U
V
W

(16)

U̇ = (sin�sin� + cos�sinθcos�)
T

m
−

Ax

m
U

V̇ = (−sin�cos� + cos�sinθsin�)
T

m
−

Ay

m
V

Ẇ = −g + (cos�cosθ)
T

m
−

Az

m
W

(17)I v̇ + v × (Iv)+ τ = MB −MD

(18)v̇ = I−1

−

P
Q
R

×

IxxP
IyyQ
IzzR

− IR

P
Q
R

×

0
0
1

�+MB −MD

(19)

Ṗ =
IYY − IXX

IXX
PQ −

IR

IXX
Pφ +

Mθ

IXX

Q̇ =
IZZ − IXX

IYY
PQ −

IR

IYY
Q�+

Mθ

IYY

Ṙ =
IXX − IYY

IZZ
QP −

IR

IZZ
Q�+

Mϕ

IZZ

Page 9 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

objective is to regulate the rotational behaviour of the vehicle due to its independence
from translational motion, followed by controlling the translational behaviour. To
control the attitude of the vehicle, it is necessary to have sensors that can measure the
orientation of the vehicle, actuators that can apply the required torques to re-orient the
vehicle to the desired position, and algorithms that can command the actuators based
on (1) sensor measurements of the current attitude and (2) specification of a desired
position. Once modelling is completed, the controllers were each tuned using the
Simulink auto-tuner. The altitude controller is tuned first since it has no state behaviour
dependent inputs and is essential for other controllers to work. The same process is taken
for the yaw controller. The gains obtained from the yaw tuning process were passed on
to the pitch and roll controllers. Lastly, the X and Y position controllers were tuned since
they require a functioning pitch and roll controller in order to work as expected.

Altitude controller This PD controller has three inputs; system altitude reference and
current system altitude and, lastly, the gain multiplier for the proportional part and
outputs thrust.

Yaw controller This is a PD controller with only three inputs; the reference yaw angle,
the current system yaw angle, and the proportional gain multiplier. It has a single output
that is the motor torque difference for the motor configurations.

Pitch and roll controllers These two have the same architecture and shall be full PD
controllers with only three inputs; their respective reference angles to be computed by
the position controller, their respective current system angles, and lastly their respective
proportional gain multiplier. They have a single output that is the motor torque
difference for the motor configurations.

Pitch–roll position controllers These are PD controller with four inputs each; the
current yaw angle, the reference system x, y positions, and lastly the current system x,
y positions. They have a single output that is the pitch and roll reference angles for the
pitch and roll controllers, respectively

Self‑tuning neural network

Artificial neural networks are designed based on the structure and function of biological
neurons. In a neural network, each neuron is represented by a weight function,
similar to the synaptic connections in natural neurons. The neural network processor
is composed of two components: The first component calculates the weighted inputs,

Fig. 3 Cascaded PID flight controller

Page 10 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

while the second component is an activation function that acts as a filter for the neuron.
The input for each neuron is multiplied by the corresponding weight and then passed on
to the adjacent neurons through an activation function. The neural network developed
in this study has 16 inputs and four outputs, where the inputs are reference signal, error,
and plant output, while the outputs are Kp values for each PID controller. As the input
parameters of the neural network change, the output values also change accordingly. The
tuning algorithm proposed in this study consists of two hidden layers, with a leaky RELU
activation function used for the hidden layers and tanh for the last layer. The structure of
the complete Simulink model of the entire system is shown in Fig. 4.

A neural network can enhance a PID controller by dynamically adjusting its propor-
tional, integral, and derivative gains based on real-time system conditions. This process
involves collecting data on system states, errors, and optimal PID gains under various
conditions. A neural network is then designed and trained using this data to predict the
optimal PID gains. Once trained, the neural network inputs current system states and
external conditions, outputs the tuned PID gains, and feeds these values into the PID
controller. This integration allows the PID controller to adapt to varying system dynam-
ics, improving its performance and responsiveness.

Development

The first step in training a Simulink-built model with reinforcement learning is to define
the environment, which is the simulation or real-world system in which the agent
interacts to learn. In this case, the environment is the Simulink model of the octorotor
that has been defined in the previous sections through equations. With the state, action,
and reward spaces of the environment defined, as well as any other relevant parameters
that training procedure may follow as shown in Table 2. The “rlSimulinkEnv” function
in MATLAB [32] is used to create the environment object. The function takes the name
of the Simulink model as an argument and returns an environment object. The reset
function is defined for the environment to specify how the environment should be reset
after each episode. The reset function takes an input argument and returns an output
argument that specifies the initial state of the environment.

The second step is to define the agent, which is an algorithm that takes the state
of the environment as input and outputs an action. In this case, a DDPG network is
used with a leaky ReLU activation function. The DDPG algorithm is a model-free,

Fig. 4 Structure of the complete Simulink model of the system

Page 11 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

off-policy reinforcement learning algorithm that can learn policies in continuous
action spaces. The structure of the DDPG network is defined using the MATLAB’s
deep learning toolbox. In it, it is important to specify the number of hidden layers
and nodes in each layer, the activation function for each layer, and any other relevant
parameters shown in Table 3. In addition, other training parameters such as the learn-
ing rate, exploration strategy, and other hyperparameters for the agent were defined
in the MATLAB code.

The third step is to define the training parameters using the options shown in
Table 4, such as the number of episodes or iterations of training, the maximum
number of steps per episode, and the exploration strategy (e.g. how the agent should
explore the state-action space). These were defined using the “rlTrainingOptions”
function.

The fourth step is to implement the training loop, which consists of repeatedly
interacting with the environment using the agent to learn from the experience.
In each episode, the agent takes an action in the current state of the environment,
receives a reward, and observes the next state. The agent then uses this experience to

Table 2 Network architecture parameters

Variable name Value

Discount factor 0.99

Mini batch size 128

Experience buffer length 1e6

Target smooth factor 1e−3

Noise options mean attraction constant 0.15

Noise options variable 0.1

Table 3 Network parameters

Variable name Actor value Critic value

Algorithm Adam Adam

Learn rate 1e−4 1e−3

Gradient threshold 1 1

L2 regularization factor 1e−5 2e−4

Table 4 Training options

Parameter Value

Max episodes 1000

Max steps Floor (Tf/Ts)

Train opts Rl training options

Max steps per episode Max steps

Score averaging window length 250

Plots Training progress

Stop training criteria Average reward

Stop training value 190

Save agent criteria Episode reward

Save agent value −700

Page 12 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

update its network parameters. The “train” function is used to run the training loop.
The function takes the environment object, agent object, and training options object
as inputs and returns the trained agent object.

Reward

During training, the agent will receive a reward at each time step. The reward function
is designed to motivate the agent to move towards the desired position, which is
achieved by providing a positive reward for positive forward velocity. Additionally, the
reward function is intended to encourage the agent to approach the target position by
providing positive rewards for minimizing the errors between the reference and current
positions. Furthermore, the agent will be incentivized to avoid early termination by
receiving a constant reward at each time step. The other components of the reward
function are penalties that discourage undesirable states, such as high angular velocities
and orientation angles beyond 45 degrees. The DDPG agents discussed above were
developed as shown in Table 5.

Complete model test

Once all the system were modelled, all the PD controllers manually tuned and the neural
networks trained, the system is tested for a typical path following model. The path to be
followed is as shown in Fig. 5.

Results and discussion
Complete model test

The cascaded PD control architecture stated in “Methodology” section is developed
with the proposed X and Y PD controllers imbedded within the pitch and roll blocks,
respectively. The utilization of a PD is primarily motivated by several key factors. Firstly,

Table 5 Summary of the DDPG agents

Network Observations Reward variables Simulation
boundaries

No. of
hidden
layers

Neurons per layer

Yaw agent Angular position
(Z-axis), angular
velocity (Z-axis),
yaw error, previous
error

Yaw error, constant > 1.0472 , > 1.0472 2 400:300

Pitch agent Angular position
(X-axis), angular
velocity (X-axis),
pitch error,
previous error

Pitch error,
constant

> 0.7854 ,
< −0.7854

2 400:300

Roll agent Angular position
(Y-axis), angular
velocity (Y-axis), roll
error, previous error

Roll error, constant > 1.0472 ,
< −1.0472

2 400:300

Altitude agent Angular position
(Z-axis), angular
velocity (Z-axis),
altitude error,
previous error

Altitude error,
constant

> 50 , < −50 2 400:300:150

Page 13 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

PD controllers effectively avoid the issue of integral windup, a common problem in PID
controllers where the integral term can accumulate error over time, leading to excessive
overshoot and potential instability. Secondly, the process of tuning a PD controller is
more straightforward due to the absence of the integral term, resulting in fewer parame-
ters to adjust and facilitating quicker and more efficient optimization. Moreso, for many
UAV applications, the proportional and derivative actions provided by a PD controller
are sufficient to achieve the desired stability and performance, as the primary function
of integral term is to eliminate steady-state error that is less critical in dynamic systems
like UAVs, where maintaining rapid response and stability is paramount. In the context
of this study, these translates to fewer parameters, which simplifies the training process
and reduces the training time for the neural network agents.

As previously discussed, the proportional gain of the PD controllers is taken from an
external source and multiplied with the state error of the respective controller. Using the
process described in the methodology, the individual controllers were tuned using the
Simulink auto-tuner, and the results of this progress are as shown in Table 6.

Flight simulation results

Using the flight path defined in Fig. 5, the simulation is run to test the stability of the
cascaded PD controllers and neural network tuner, and the results are as shown in

Fig. 5 Flight path

Table 6 PD tuning gain results

Controller name Proportional gain Derivative gain Input Output

PD controller yaw 10 20 Yaw angle Yaw Torque

PD controller P (X-axis) 0.008 0.05 Linear X position Pitch angle

PD controller pitch 10 20 Pitch angle Pitch torque

PD controller R (Y-axis) 0.01 0.05 Linear Y position Roll angle

PD controller roll 10 20 Roll angle Roll torque

PD controller altitude 40 25 Linear Z position Thrust

Page 14 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

Figs. 6, 7, 8, 9, 10, and 11. In the flight data, there were five major positions of interest in
the time scale, and these were at 0 s, 15 s, 35 s, 70 s, and lastly 140 s.

The designed position trajectory and the simulated trajectory have been plotted on
the same axes as shown in Figs. 8, 9, and 10. The results show a high level of consistency
of the simulated trajectory with the flight path. At the 0-s mark, the system had to take
off from the ground and rise to a height of 20 m, which is to be maintained for the
remainder of the system. The altitude increases from 0 to about 19 m, and this height
was maintained for the remained of the flight with a steady-state error of 1 m.

At the 15-s mark, the second major event took place where the UAV is expected to
move from 0 to 10 m along the x-axis. In order to execute this manoeuvre, the X con-
troller must detect a position error and command the pitch controller to take action
in the right direction. As shown in Fig. 7, the angular position of the UAV increased
along with the speed shown in Fig. 6. This caused a distribution of the force along

Fig. 6 Angular position simulation results

Fig. 7 Angular velocity simulation results

Page 15 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

Fig. 8 Linear X position simulation results

Fig. 9 Linear Y position simulation results

Fig. 10 Linear Z position simulation results

Page 16 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

the z- and x-axis. This distribution initiated velocity in the x-axis and as expected
the UAV moved to the 10-m mark. The distribution also decreased the z component
of trust, and therefore, the altitude controller had to react to this change in order to
maintain the desired position, and this was successfully done as shown in Fig. 10. The
pitch controller was stable, and the 10-m command was maintained for the desired
period of time.

Similarly at the 35-s mark, the Y and roll controllers were engaged in order to change
the y position of the UAV through the same concept discussed above. The y position is
to be changed by 5 m, and the two controllers like the previous reacted with adequate
stability.

The 140-s mark is the most critical since it tested the stability of all six controllers
simultaneously. The X controller is commanded to maintain the 0-m position and,
therefore, creates no component of force along the x-axis, the same is done for
the altitude controller which is to maintain a height of 20 m by creating zero force
difference in the z-axis, the Y controller is instructed to change the Y position from 20
m to 0, and the yaw controller is instructed to change orientation to 0.1 radians. The
combination of all these controllers is most likely going to create a backlog in the motor
mixing algorithm and thus negatively affecting the results, but because of the NN auto-
tuner, this is averted. It could be seen that the yaw controller successfully changed the
orientation from and maintained stability while the Z velocity spike in Fig. 7 is evidence
that the altitude controller also responded to the situation. The introduction of an altered
orientation meant that the Y controller’s efforts to subsidize error introduced error in
the X controller that had since archived stability, and as a result, the pitch controller
reacted to this change. As shown in Table 7, the DDPG network improved the overshoot

Fig. 11 Linear velocity simulation results

Table 7 Control behaviour of the controllers

 Controller Rise time (s) Settling time (s) Overshoot (%)

Pitch Roll Yaw Pitch Roll Yaw Pitch Roll Yaw

DDPG 0.913 2.417 4.8395 1.493 5.778 12.977 12.077 13.667 11.35

Page 17 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

of the system, and this is due to the maintained derivative gain. The results of the present
study are consistent with the results presented by Bohn et al. [33].

Conclusion
The octorotor model created using Simulink, takes into account motor actuation, air
resistance, gravity, climatic conditions, and sensor variations. By conducting level and
roll tests, both single motor and complete actuation designs exhibited outcomes that
were consistent with the anticipated performance for the specified motor speed. This
alignment necessitates precise modelling of air resistance, gravitational forces, ambient
conditions, and sensor performance. The airframe model, when exposed to a level
test, verifies the accurate representation of the UAV system. In addition, a cascaded
proportional-derivative control architecture has been successfully constructed,
calibrated, evaluated, and integrated into the unmanned aerial vehicle (UAV) system.

In order to enhance the performance of UAVs, a deep deterministic policy gradient
network is built and trained using reinforcement learning techniques in MATLAB. The
findings, assessed for stability using simulated flight routes, demonstrate the UAV’s
capacity to accurately track the assigned trajectory. Significantly, each of the four
principal controllers operates autonomously without any influence with the aims of the
others.

The integration of DDPG with PD controllers for multirotor UAVs reduces the
significant manual effort traditionally required, ensuring consistent and optimal
performance across various UAVs and flights. This automation not only saves time but
also minimizes the dependency on expert knowledge, making advanced UAV control
more accessible.

Moreover, this work is a pivotal step towards achieving fully autonomous UAV
operations. By enabling UAVs to self-tune and optimize their control strategies in
real-time, it sets the foundation for more sophisticated autonomous systems capable
of adapting to diverse and unpredictable environments. This enhanced autonomy can
revolutionize a myriad of applications, from delivery services to emergency response, by
providing more reliable and efficient UAV performance.

In addition to practical benefits, this paper contributes significantly to the academic
and industrial fields. It showcases the innovative application of reinforcement learning
in control systems, offering new methodologies and insights that can spur further
research and development. This work not only demonstrates the potential of combining
machine learning with traditional control techniques but also paves the way for future
advancements, ultimately driving innovation in UAV technology and control systems.

The implementation of DDPG with PD controllers for multirotor UAVs offers
significant potential for enhancing autonomous operations. However, the research faces
notable challenges related to the complexity and time required for training. Overcoming
these hurdles will be critical in realizing the full benefits of this approach.

Moving forward, focusing on extending the DDPG approach to multi-agent systems
will be pivotal. This evolution promises to revolutionize sectors such as search and
rescue, surveillance, and environmental monitoring by leveraging cooperative
behaviour among UAVs. By harnessing the power of reinforcement learning in
this context, we can expect significant advancements in efficiency, scalability, and

Page 18 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

adaptability, paving the way for a future where autonomous UAV fleets operate
seamlessly and effectively in complex dynamic environments.

Abbreviations
AEF Aerodynamic and external forces
AFC Adaptive filter controller
AI Artificial intelligence
ANN Artificial neural networks
ARC Aspect ratio change
BPNN Back propagation neural network
CNN Convolutional neural network
CPU Central processing unit
CVM Custom varying mass
DDPG Deep deterministic policy gradient
DL Deep learning
DQN Deep Q-network
EKF Extended Kalman filter
FL Feedback linearization
GA Genetic algorithms
IMC Internal model control
IMU Inertial measurement unit
KF Kalman filter
MIMO Multi-input multi-output
ML Machine learning
MLP Multiple layer perceptron
MPC Model predictive control
MTRBL Multi-task regression-based learning
NN Neural network
PID Proportional, integral, and derivative
PPO Proximal policy optimization
RL Reinforcement learning
RLS Recursive least squares
RNN Recurrent neural network
SISO Single-input single-output
SLC Successive loop closure
SMC Sliding mode control
SVSF Smooth variable structure filter
TRPO Trust-region policy optimization
UAV Unmanned aerial vehicles
VTOL Vertical take-off and landing
θ̈ Euler pitch angular acceleration (rad/s2)
θ̇ Euler pitch angular velocity (rad/s)
θ Euler pitch angle (rad)
φ Euler roll angle (rad)
φ̈ Euler roll angular acceleration (rad/s2)
φ̇ Euler roll angular velocity (rad/s)
ψ Euler yaw angle (rad)
ψ̈ Euler yaw angular acceleration (rad/s2)
ψ̇ Euler yaw angular velocity (rad/s)
X Position along the x-axis (m)
Ẋ Linear velocity along the x-axis (m/s)
Ẍ Linear acceleration along the x-axis (m/s2)
Y Position along the y-axis (m)
Ẏ Linear velocity along the y-axis (m/s)
Ÿ Linear acceleration along the y-axis (m/s2)
Z Position along the z-axis (m)
Ż Linear velocity along the z-axis (m/s)
Z̈ Linear acceleration along the z-axis (m/s2)
�/ω Motor angular velocity (rad/s)
IXX Moment of inertia in the x-axis (Kgm2)
IYY Moment of inertia in the y-axis (Kgm2)
IZZ Moment of inertia in the z-axis (Kgm2)
Mθ Pitch moment (Nm)
Mφ Roll moment (Nm)
Mψ Yaw moment (Nm)
ρ Density (Kg/m3)

Page 19 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

Author contributions
E. Mosweu helped in conceptualization and writing of the original draught, T. B. Seokolo contributed to writing of the
original draught, T. T, Akano worked in supervision and review and editing, and O.S. Motsamai worked in supervision and
review.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable. Consent granted is granted by authors.

Consent for publication
Consent for publication is granted by authors.

Competing interests
The authors declare that they have no competing interests.

Received: 11 December 2023 Accepted: 9 July 2024

References
 1. ClimateWire NM Humans may be the most adaptive species. https:// www. scien tific ameri can. com/ artic le/ humans-

may- be- most- adapt ive- speci es/. Accessed 12 Feb 2023
 2. Badawy M, Ramadan N, Hefny HA (2023) Healthcare predictive analytics using machine learning and deep learning

techniques: a survey. J Electr Syst Inf Technol. https:// doi. org/ 10. 1186/ s43067- 023- 00108-y
 3. Mitchell TM (1988) (ed.): Machine Learning: a Guide to Current Research, 3. print edn. In: Kluwer international series

in engineering and computer science Knowledge representation, learning and expert systems, vol. 12. Kluwer,
Boston

 4. Alpaydın E (2020) Introduction to machine learning. In: Adaptive computation and machine learning series. MIT
Press, Cambridge

 5. Illman PE (2000) The pilot’s handbook of aeronautical knowledge. In: United States Department of Transportation,
Federal Aviation Administration, Airman Testing Standards Branch, p 471

 6. Chapman WL, Bahill AT, Wymore AW (2018) Engineering modeling and design, 1st edn. CRC Press. https:// doi. org/
10. 1201/ 97802 03757 314

 7. Burns RS (2001) Advanced control engineering. Butterworth-Heinemann, Oxford, Boston OCLC: ocm47823330
 8. Malik W, Hussain S (2019) Developing of the smart quadcopter with improved flight dynamics and stability. J Electr

Syst Inf Technol. https:// doi. org/ 10. 1186/ s43067- 019- 0005-0
 9. Sielly Jales Costa B, Greati VR, Campos Tinoco Ribeiro V, Da Silva CS, Vieira IF (2015) A visual protocol for autonomous

landing of unmanned aerial vehicles based on fuzzy matching and evolving clustering. In: 2015 IEEE international
conference on fuzzy systems (FUZZ-IEEE), pp 1–6. IEEE, Istanbul. https:// doi. org/ 10. 1109/ FUZZ- IEEE. 2015. 73379 07

 10. Padhy RP, Ahmad S, Verma S, Sa PK, Bakshi S (2019) Localization of unmanned aerial vehicles in corridor environ-
ments using deep learning. https:// doi. org/ 10. 48550/ ARXIV. 1903. 09021. Publisher: arXiv Version Number: 1

 11. Villanueva A, Fajardo A (2019) UAV navigation system with obstacle detection using deep reinforcement learn-
ing with noise injection. In: 2019 International conference on ICT for smart society (ICISS), pp. 1–6. IEEE, Bandung,
Indonesia. https:// doi. org/ 10. 1109/ ICISS 48059. 2019. 89697 98

 12. Cano Lopes G, Ferreira M, Da Silva Simoes A, Luna Colombini E (2018) Intelligent control of a quadrotor with
proximal policy optimization reinforcement learning. In: 2018 Latin American robotic symposium, 2018 Brazilian
symposium on robotics (SBR) and 2018 workshop on robotics in education (WRE), pp 503–508. IEEE, Joao Pessoa.
https:// doi. org/ 10. 1109/ LARS/ SBR/ WRE. 2018. 00094

 13. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. https:// doi.
org/ 10. 48550/ ARXIV. 1707. 06347. Publisher: arXiv Version Number: 2

 14. Cardenas JA, Carrero UE, Camacho EC, Calderon JM (2023) Intelligent position controller for unmanned aerial vehi-
cles (UAV) based on supervised deep learning. Machines 11(6):606. https:// doi. org/ 10. 3390/ machi nes11 060606

 15. Mohammed FA, Bahgat ME, Elmasry SS, Sharaf SM (2022) Design of a maximum power point tracking-based
PID controller for DC converter of stand-alone PV system. J Electr Syst Inf Technol. https:// doi. org/ 10. 1186/
s43067- 022- 00050-5

 16. Maciel-Pearson BG, Akcay S, Atapour-Abarghouei A, Holder C, Breckon TP (2019) Multi-task regression-based learn-
ing for autonomous unmanned aerial vehicle flight control within unstructured outdoor environments. IEEE Robot
Autom Lett 4(4):4116–4123. https:// doi. org/ 10. 1109/ LRA. 2019. 29304 96

 17. Xu J, Guo Q, Xiao L, Li Z, Zhang G (2019) Autonomous decision-making method for combat mission of UAV based
on deep reinforcement learning. In: 2019 IEEE 4th advanced information technology, electronic and automation
control conference (IAEAC), pp 538–544. IEEE, Chengdu, China. https:// doi. org/ 10. 1109/ IAEAC 47372. 2019. 89980 66

https://www.scientificamerican.com/article/humans-may-be-most-adaptive-species/
https://www.scientificamerican.com/article/humans-may-be-most-adaptive-species/
https://doi.org/10.1186/s43067-023-00108-y
https://doi.org/10.1201/9780203757314
https://doi.org/10.1201/9780203757314
https://doi.org/10.1186/s43067-019-0005-0
https://doi.org/10.1109/FUZZ-IEEE.2015.7337907
https://doi.org/10.48550/ARXIV.1903.09021
https://doi.org/10.1109/ICISS48059.2019.8969798
https://doi.org/10.1109/LARS/SBR/WRE.2018.00094
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.3390/machines11060606
https://doi.org/10.1186/s43067-022-00050-5
https://doi.org/10.1186/s43067-022-00050-5
https://doi.org/10.1109/LRA.2019.2930496
https://doi.org/10.1109/IAEAC47372.2019.8998066

Page 20 of 20Mosweu et al. Journal of Electrical Systems and Inf Technol (2024) 11:28

 18. Cho S, Kim DH, Park YW (2017) Learning drone-control actions in surveillance videos. In: 2017 17th International
conference on control, automation and systems (ICCAS), pp 700–703. IEEE, Jeju. https:// doi. org/ 10. 23919/ ICCAS.
2017. 82043 19

 19. Bouhamed O, Ghazzai H, Besbes H, Massoud Y (2020) Autonomous UAV navigation: a DDPG-based deep reinforce-
ment learning approach. In: 2020 IEEE international symposium on circuits and systems (ISCAS), pp 1–5. IEEE, Seville,
Spain. https:// doi. org/ 10. 1109/ ISCAS 45731. 2020. 91812 45

 20. Sewak M (2019) Deep Q network (DQN), double DQN, and dueling DQN: a step towards general artifi-
cial intelligence. In: Deep reinforcement learning, pp 95–108. Springer, Singapore. https:// doi. org/ 10. 1007/
978- 981- 13- 8285-7_8

 21. Zulu A, John S (2014) A review of control algorithms for autonomous quadrotors. OJAppS 04(14):547–556. https://
doi. org/ 10. 4236/ ojapps. 2014. 414053

 22. Shao-yuan L (2009) Adaptive PID control for nonlinear systems based on lazy learning. Control Theory Appl
 23. Nuella I, Cheng C, Chiu M-S (2009) Adaptive PID controller design for nonlinear systems. Ind Eng Chem Res

48(10):4877–4883. https:// doi. org/ 10. 1021/ ie801 227d
 24. Malekabadi M, Haghparast M, Nasiri F (2018) Air condition’s PID controller fine-tuning using artificial neural net-

works and genetic algorithms. Computers 7(2):32. https:// doi. org/ 10. 3390/ compu ters7 020032
 25. Essalmi A, Mahmoudi H, Abbou A, Bennassar A, Zahraoui Y (2014) DTC of PMSM based on artificial neural networks

with regulation speed using the fuzzy logic controller. In: 2014 International renewable and sustainable energy
conference (IRSEC), pp 879–883. IEEE, Ouarzazate, Morocco. https:// doi. org/ 10. 1109/ IRSEC. 2014. 70598 01

 26. Hernández-Alvarado R, García-Valdovinos L, Salgado-Jiménez T, Gómez-Espinosa A, Fonseca-Navarro F (2016) Neural
network-based self-tuning PID control for underwater vehicles. Sensors 16(9):1429. https:// doi. org/ 10. 3390/ s1609
1429

 27. Yoon G-Y, Yamamoto A, Lim H-O (2016) Mechanism and neural network based on PID control of quadcopter. In:
2016 16th International conference on control, automation and systems (ICCAS), pp 19–24. IEEE, Gyeongju, South
Korea. https:// doi. org/ 10. 1109/ ICCAS. 2016. 78322 94

 28. Bohn E, Coates EM, Moe S, Johansen TA (2019) Deep reinforcement learning attitude control of fixed-wing UAVs
using proximal policy optimization. In: 2019 International conference on unmanned aircraft systems (ICUAS). IEEE.
https:// doi. org/ 10. 1109/ icuas. 2019. 87982 54

 29. Salazar JC, Sanjuan A, Nejjari F, Sarrate R (2017) Health-aware control of an octorotor UAV system based on actuator
reliability. In: 2017 4th International conference on control, decision and information technologies (CoDIT), pp
0815–0820. IEEE

 30. Artale V, Milazzo C, Ricciardello A (2013) Mathematical modeling of hexacopter. Appl Math Sci 7(97):4805–4811.
https:// doi. org/ 10. 12988/ ams. 2013. 37385

 31. Artale V, Milazzo CLR, Ricciardello A (2013) Mathematical modeling of hexacopter. Appl Math Sci 7:4805–4811.
https:// doi. org/ 10. 12988/ ams. 2013. 37385

 32. MathWorks: MATLAB version: 9.12.0. The MathWorks Inc., Natick, Massachusetts, United States (2022). https:// www.
mathw orks. com

 33. Bohn E, Coates EM, Moe S, Johansen TA (2019) Deep reinforcement learning attitude control of fixed-wing UAVs
using proximal policy optimization. In: 2019 International conference on unmanned aircraft systems (ICUAS). IEEE.
https:// doi. org/ 10. 1109/ icuas. 2019. 87982 54

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.23919/ICCAS.2017.8204319
https://doi.org/10.23919/ICCAS.2017.8204319
https://doi.org/10.1109/ISCAS45731.2020.9181245
https://doi.org/10.1007/978-981-13-8285-7_8
https://doi.org/10.1007/978-981-13-8285-7_8
https://doi.org/10.4236/ojapps.2014.414053
https://doi.org/10.4236/ojapps.2014.414053
https://doi.org/10.1021/ie801227d
https://doi.org/10.3390/computers7020032
https://doi.org/10.1109/IRSEC.2014.7059801
https://doi.org/10.3390/s16091429
https://doi.org/10.3390/s16091429
https://doi.org/10.1109/ICCAS.2016.7832294
https://doi.org/10.1109/icuas.2019.8798254
https://doi.org/10.12988/ams.2013.37385
https://doi.org/10.12988/ams.2013.37385
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1109/icuas.2019.8798254

	Implementation of partially tuned PD controllers of a multirotor UAV using deep deterministic policy gradient
	Abstract
	Introduction
	Methodology
	Mathematical modelling of the octorotor dynamics
	PID flight controller
	Self-tuning neural network
	Development
	Reward
	Complete model test

	Results and discussion
	Complete model test
	Flight simulation results

	Conclusion
	References

