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Introduction
The human capacity to generate imaginative and innovative solutions necessary for 
overcoming challenges has been a valuable advantage [1]. The complexity of the human 
brain compared to other creatures can be regarded as a significant advantage. With the 
advent of modern technology and an increasingly technologically driven world, there 
has been growing interest among scientists in transferring some degree of intelligence 
to machines [2]. Artificial intelligence (AI) is a discipline in science and engineering that 
has emerged over the past few decades and has since become pervasive in every domain. 
Machine learning (ML) is a subset of these intelligent systems that have the ability to 
enhance their performance with experience [3]. Machine learning can be seen as a 
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computational counterpart to human learning and has applications in a wide range of 
fields, including computer vision, natural language processing, robotics, and finance [4]. 
This study was focused on the utilization of machine learning methodologies in robots, 
particularly in the management of unmanned aerial vehicles (UAVs).

The octocopter is an UAV that can hover and navigate by controlling the eight lifts 
without the need for the complicated system of linkages and blade elements found 
in conventional single-rotor vehicles. Because of its adaptability, this system can 
accomplish vertical take-off and landing (VTOL) and any other flight manoeuvre with 
ease [5]. Like most design processes in engineering, the flight controller of such a system 
must be built and tested on software before deploying it to the hardware [6]. To achieve 
this, a model of the octocopter, developed using a system of equations that represent its 
dynamics, is required. This model will be used to simulate flight and demonstrate that 
the control system functions as theorized after installation on the octocopter [7].

In the past decade, a rise of techniques that apply the intelligent approach to increase 
the level of autonomy within UAVs have quickly emerged [8]. Researchers such as Costa 
et al. [9] have adopted some degree of truth in the landing of a UAV, an approach that 
has been made possible using mathematical models based on fuzzy logic, to achieving 
relatively accurate results. To achieve autonomous navigation with the limit of a closed 
environment, Padhy et  al. [10] used a deep neural network (DNN) to filter an RGB 
image provided by a camera attached to the UAV. This allows it to navigate through the 
environment in a controlled manner. In Villanueva and Farjardo [11], the objective was 
to improve UAV performance using the deep Q-network (DQN) through noise injection. 
The authors reported promising results in terms of improved performance and reduced 
control effort using this approach.

In other related works, Cano et  al. [12] utilized the proximal policy optimization 
(PPO) algorithm in combination with a stochastic policy gradient to train a quadrotor 
and develop a dependable control policy. By using a model-free reinforcement learning 
(RL) approach, they demonstrated the feasibility and benefits of training a UAV’s low-
level controller without human intervention. This was applied by Schulman et al. [13] 
to UAVs algorithm implementation. Cardenas et  al. [14] created the first open-source 
NN-based flight controller firmware, which allows a neural network to be trained in 
simulation and compiled to run on hardware. The primary goal was to enhance the 
altitude controller of the UAV, which is traditionally achieved using a PID controller 
[15]. Additionally, alternative approaches have been developed for applications such as 
combat and reconnaissance missions.

Maciel-Pearson et  al. [16] utilized deep learning (DL) and multi-task regression-
based learning (MTRL) to develop a strategy for navigating through forests, 
even in the presence of trails and global positioning system (GPS). This strategy 
employed two sub-networks, each featuring a convolutional layer. Meanwhile, Xu 
et  al. [17] focused on enhancing the UAV’s decision-making autonomy for military 
applications. They employed a combination of deep belief network (DBN) with 
Q-learning and a decision-making algorithm based on genetic algorithms (GAs) to 
enhance the UAV’s autonomy in decision-making for military applications. Their 
approach yielded satisfactory results. Other researchers in a similar field of study 
used surveillance images and a convolutional neural network (CNN) architecture to 
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learn human interactions and identify how the opponent’s aircraft is being controlled 
[18]. Bouhamed et  al. [19] utilized the deep deterministic policy gradient (DDPG) 
approach, which has a continuous action-space, to train a UAV to navigate through 
or over obstacles in order to reach a target. The DDPG algorithm is an extension of 
the deep Q-network (DQN) [20] and combines the actor-critic approach with insights 
from DQN. The reward function was designed to guide the UAV through the optimal 
path while penalizing any collisions. The architectures reported in the literature 
review highlight the need for a hybrid system for control engineers, as many of these 
approaches are more oriented towards computer science than engineering.

According to the investigation conducted by Zulu and John [21] on the analysis of 
multiple control algorithms for autonomous quadrotors, it was found that no single 
controller provided all the desired features, such as adaptability, robustness, optimal 
trajectory tracking, and disturbance rejection. Instead, they found that hybrid control 
schemes combine multiple controllers and produced the best results. The nonlinear 
systems considered in their study were not effectively tuned using conventional offline 
PID tuning techniques [22, 23], and online tuning of PID parameters was required to 
achieve better performance for these systems. Several studies have explored the use of 
various algorithms, such as fuzzy logic and artificial neural networks (ANNs) for con-
tinuous PID gain tuning [24, 25]. ANNs have been found to have an advantage over 
other methods due to their ability to solve nontrivial problems [25]. Hernandez-Alva-
rado et al. [26] also discussed the use of online tuning of PIDs using ANNs for control 
of submarines. For a quadcopter, Yoon et  al. [27] developed a robust control tech-
nique based on an ANN that could adjust the PID parameters in real-time to handle 
wind disturbance. A comparison chart for the rise time, settling time, and overshoot 
for pitch, roll, and yaw using the RL and PID controllers is shown in Table 1.

The classical control systems approach to solving nonlinear systems is financially, 
computationally, and timely expensive, and can be quite rigid in solving dynamic 
problems. Due to the slight changes in their physical properties, the moments of iner-
tia of the system with respect to the three axes are also continuously changing, and 
therefore, the actuator effort needed archive stability at different points of the flight 
also varies. For example, mass changing systems that vary by over 50% behave with a 
completely different set of dynamics at the two extremes. Therefore, system stability 
cannot be archived for both using a static controller. These controllers face difficulty 
due to their inability to detect and respond to changes in the system’s physical attrib-
utes. This begs the question of how one designs a controller that can take in system 
attributes and adjust its gains in response to the changing system dynamics. Most 
common methods of solving this problem involve engineers analysing all possible sys-
tem states and designing multiple controllers for each. This implies solving a single 

Table 1 Comparison of an RL and PID controller [28]

Controller Rise time (s) Settling time (s) Overshoot (%)

Pitch Roll Yaw Pitch Roll Yaw Pitch Roll Yaw

RL 0.265 0.661 0.825 0.825 1.584 2.798 21 24 31

PID 1.344 0.228 0.962 0.962 2.05 2.198 4 17 35
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problem multiple times bringing about the complexity and expensiveness of classical 
control methods.

Traditionally, if the controller is unstable upon deployment onto the hardware, it is 
further tuned to archive stability, but this method becomes unacceptable for mass 
produced systems such as drones with varying manufacturing tolerances and sensitive 
margins of stability. Controllers are often designed using soft models of the system 
for several reasons, mainly unavailability of hardware or to protect the hardware from 
possible damage of running from an imperfect controller. The challenge of designing a 
controller using software models is that they are often an inaccurate representation of 
the physical system especially for nonlinear systems. Physical properties such as sensor 
measurement noise and environment variations are often not included as part of the 
models since they are difficult to linearize. Therefore, when controller is deployed onto 
the actual hardware, it does not give the expected output, and this may result in an 
unstable system that could potentially damage the hardware.

Based on the previous discussions, it can be inferred that ANN is beneficial in 
enhancing the performance of control systems, particularly PID controllers. This work 
adopts a comparable strategy, utilizing an ANN-based cascaded PID controller to 
regulate various parameters of a mass-varying octocopter, such as altitude, roll, pitch, 
and yaw. Figure 1 shows the architecture of the proposed model deployed for the control 
of a quadcopter.

The remaining of the paper is organized as follows: The technique, including the octo-
copter model and dynamic equations, is in “Methodology” section. “Results and discus-
sion” section shows the effectiveness of the control system and discusses its simulation 

Fig. 1 ANN–PID control system architecture for a quadcopter [27]
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results. Finally, “Conclusion” section concludes, highlights the limitations, and suggests 
future research.

Methodology
Mathematical modelling of the octorotor dynamics

The kinematics and dynamics of a multirotor aircraft are typically analysed in two 
reference frames viz the earth inertial frame and the body-fixed frame. The earth inertial 
frame is oriented such that the gravity points are in the negative direction of the z-axis, 
while the coordinate axes of the body frame align with the rotors of the octocopter.

The octocopter comprises of eight DC motors located at the ends of the rotor arms. 
Each motor has a propeller mounted on its output shaft to generate the required thrust. 
As illustrated in Fig. 2, rotors 1, 2, 5, and 6 rotate in the counterclockwise direction with 
angular velocities ω1 , ω2 , ω5 , and ω6 , respectively. On the other hand, rotors 3, 4, 7, and 8 
rotate in the clockwise direction with angular velocities ω3 , ω4 , ω7 , and ω8 , respectively.

The location of the octocopter’s centre of mass in the earth frame is represented by 
ε = [X Y Z]T , whereas the angular position, η , is expressed in the inertial frame using 
Euler angles denoted by η = [� θ �]T . In addition, the absolute linear velocities of 
the octocopter are represented by VB = [VX VY VZ]T , and the angular velocities 
with respect to the Euler angles are represented by ν = [P Q R] . Both of these velocity 
components are defined in the body frame. The relationship between these two frames is 
expressed using the rotation matrix R1 , given as follows [30],

Fig. 2 Octorotor setup ([29])
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It should be noted that all of the motors in the octocopter are identical. However, the 
following derivation will only consider the operation of a single motor. According to 
momentum theory, the thrust generated by a single motor-propeller system on the 
octocopter is given by [31],

In Eq. (2), CD represents the thrust coefficient of the motor, ρ represents the density of 
air, A is the cross-sectional area of the propeller’s rotation, r is the radius of the rotor, 
and ωi is the angular speed of the rotor. In the case of simple flight motion, a lumped 
parameter approach can be used to simplify Eqs. (2)–(3) as follows,

Combining the thrust from all the eight motor-propeller systems, the net thrust in the 
body frame z-direction is given in Eq. (4) as follows,

giving the net thrust acting on the octorotor in the body frame as follows,

In addition to thrust, a drag force also acts on the octocopter, which is a resisting 
force. This force has components along the coordinate axes in the inertial frame that is 
directly proportional to the corresponding velocities. The drag force can be expressed in 
component form of Eq. (6) as follows,

where Ax , Ay , and Az are the drag coefficients in the x, y, and z directions. If all the 
rotor velocities are equal, the octocopter will experience a force in the z-direction and 
will move up, hover, or fall depending on the magnitude of the force relative to gravity. 
The moments acting on the octocopter cause pitch, roll, and yaw motion. The pitching 
moment M� occurs due to the difference in thrust produced by motors 8 and 2, and 
4 and 6. The rolling moment M� occurs due to the difference in thrust produced by 
motors 2 and 4, and 8 and 6.

The yawing moment M is caused by the drag force acting on all the propellers and 
opposing their rotation. From the lumped parameter approach, it can be expressed as 
follows [31]:

(1)R1 =





C� Cθ C� Sθ S� − S� C� C� Sθ C� + S� S�
S� Cθ S� Sθ S� + C� C� S� Sθ C� − C� S�
−Sθ Cθ S� Cθ C�





(2)R1 = Ti = CD ρAr2 ω2
i

(3)Ti = Kω2
i

(4)T = K
∑

ω2
i

(5)FB =
[

0 0 T
]T

(6)FD =





Ax 0 0
0 Ay 0
0 0 Az









ẋ
ẏ
ż





(7)
M� = L((T2 + T4 )− (T8 + T6 ))

Mθ = L((T8 + T2 )− (T4 + T6 ))
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where τMi is the torque produced by motor 1, B is the torque constant, and IR is the 
inertia moment of rotor. The effect of ωi is very small and could be neglected.

The rotational moment acting on the octorotor in the body frame is given as follows [31],

The body frame experiences a resistive torque known as rotational drag, which is 
directly proportional to the body’s angular velocities. The equation for rotational drag is 
as follows:

where Ar is the rotational drag coefficient. The presented model has been simplified 
by neglecting various intricate phenomena such as blade flapping, which involves the 
deformation of blades at high velocities with flexible materials, and surrounding wind 
velocities. The dynamic equations of motion for the octorotor have been derived using 
the Newton–Euler formulation. It is assumed that the octorotor has a symmetrical 
structure, and therefore, the inertia matrix is both diagonal and time-invariant, with 
IXX = IYY .

The force that results in the acceleration of the mass mV̇B , as well as the centrifugal force 
v × (mVB) , is equivalent to the gravity force RTG and the total external thrust force FB , 
and the force of aerodynamic drag RTFD , all measured in the body frame and are related 
according to Eq. (13) [31].

When dealing with an octorotor, it is more practical to describe the dynamics using a 
mixed frame {M} that considers translational dynamics with respect to the inertial 
frame {O} and rotational dynamics with respect to the body frame {B} . In the inertial 
frame, centrifugal effects can be disregarded, and the only forces that need to be taken 
into account are the gravitational force, thrust, drag, and the mass acceleration of the 
octorotor. The dynamic equation could now be written in the form of Eq. (14).

After some substitutions and taking the component form gives the dynamic equation for 
translational motion in the form of Eqs. (15) and (16).

(8)τMi = Bω2
i + IRω̇i

(9)M� = B(−ω2
1 − ω2

2 + ω2
3 + ω2

4 − ω2
5 − ω2

6 + ω2
7 + ω2

8)

(10)FB =
[

M� Mθ M�

]T

(11)MR =
[

ArP ArQ ArR
]T

(12)I =





IXX 0 0
0 IYY 0
0 0 IZZ





(13)mV̇B + v × (mVB) = RT G + FB − RT FD

(14)





ẍ
ÿ
z̈



 =





0
0
−g



+ R
FB

m
−

FD

m
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Focusing on the rotational dynamics in the body frame, the angular acceleration of 
the inertia, I represented by v̇ , is equivalent to the centripetal forces v × (Iv) and the 
gyroscopic forces τ . These forces are equal to the external torque MB and the torque 
generated by aerodynamic drag. Hence, the rotational equation becomes,

giving

where � = −ω2
1 − ω2

2 + ω2
3 + ω2

4 − ω2
5 − ω2

6 + ω2
7 + ω2

8 and IR is the rotational inertia of 
each motor written in component form as follows,

PID flight controller

The octorotor system consists of six control variables of interest. These are 
( �, θ ,� ,X ,Y ,Z ) and take in only eight inputs from the controller. The flight con-
troller will take in two sets of inputs viz the octorotor system states and the refer-
ence command signal. The set of system state signals will comprise of 12 values, and 
they are as follows: six linear and angular positions (x, y, z,�, θ ,�) , and six velocities 
(dx, dy, dz, d�, dθ , d�) . The reference command signal set will consist of the following 
signals: live time ticks, orientation reference, positions reference, take-off flag, and con-
trol mode vs orientation flag. There is a single output from the flight controller, and it 
comprises of the eight motor commands. The flight controller consists of six different 
PID controllers, connected in a cascaded manner; two inner loop and a single outer loop 
as shown in Fig. 3. The simulation ran for 300 s with MATLAB default rate of 0.005 s.

The angular motion of the UAV is not influenced by the translational components, 
whereas the translational motion is dependent on the Euler angles. Hence, the primary 

(15)





Ẋ

Ẏ

Ż



 =





U
V
W





(16)

U̇ = (sin�sin� + cos�sinθcos�)
T

m
−

Ax

m
U

V̇ = (−sin�cos� + cos�sinθsin�)
T

m
−

Ay

m
V

Ẇ = −g + (cos�cosθ)
T

m
−

Az

m
W

(17)I v̇ + v × (Iv)+ τ = MB −MD

(18)v̇ = I−1



−





P
Q
R



×





IxxP
IyyQ
IzzR



− IR





P
Q
R



×





0
0
1



�+MB −MD





(19)

Ṗ =
IYY − IXX

IXX
PQ −

IR

IXX
Pφ +

Mθ

IXX

Q̇ =
IZZ − IXX

IYY
PQ −

IR

IYY
Q�+

Mθ

IYY

Ṙ =
IXX − IYY

IZZ
QP −

IR

IZZ
Q�+

Mϕ

IZZ
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objective is to regulate the rotational behaviour of the vehicle due to its independence 
from translational motion, followed by controlling the translational behaviour. To 
control the attitude of the vehicle, it is necessary to have sensors that can measure the 
orientation of the vehicle, actuators that can apply the required torques to re-orient the 
vehicle to the desired position, and algorithms that can command the actuators based 
on (1) sensor measurements of the current attitude and (2) specification of a desired 
position. Once modelling is completed, the controllers were each tuned using the 
Simulink auto-tuner. The altitude controller is tuned first since it has no state behaviour 
dependent inputs and is essential for other controllers to work. The same process is taken 
for the yaw controller. The gains obtained from the yaw tuning process were passed on 
to the pitch and roll controllers. Lastly, the X and Y position controllers were tuned since 
they require a functioning pitch and roll controller in order to work as expected.

Altitude controller This PD controller has three inputs; system altitude reference and 
current system altitude and, lastly, the gain multiplier for the proportional part and 
outputs thrust.

Yaw controller This is a PD controller with only three inputs; the reference yaw angle, 
the current system yaw angle, and the proportional gain multiplier. It has a single output 
that is the motor torque difference for the motor configurations.

Pitch and roll controllers These two have the same architecture and shall be full PD 
controllers with only three inputs; their respective reference angles to be computed by 
the position controller, their respective current system angles, and lastly their respective 
proportional gain multiplier. They have a single output that is the motor torque 
difference for the motor configurations.

Pitch–roll position controllers These are PD controller with four inputs each; the 
current yaw angle, the reference system x, y positions, and lastly the current system x, 
y positions. They have a single output that is the pitch and roll reference angles for the 
pitch and roll controllers, respectively

Self‑tuning neural network

Artificial neural networks are designed based on the structure and function of biological 
neurons. In a neural network, each neuron is represented by a weight function, 
similar to the synaptic connections in natural neurons. The neural network processor 
is composed of two components: The first component calculates the weighted inputs, 

Fig. 3 Cascaded PID flight controller
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while the second component is an activation function that acts as a filter for the neuron. 
The input for each neuron is multiplied by the corresponding weight and then passed on 
to the adjacent neurons through an activation function. The neural network developed 
in this study has 16 inputs and four outputs, where the inputs are reference signal, error, 
and plant output, while the outputs are Kp values for each PID controller. As the input 
parameters of the neural network change, the output values also change accordingly. The 
tuning algorithm proposed in this study consists of two hidden layers, with a leaky RELU 
activation function used for the hidden layers and tanh for the last layer. The structure of 
the complete Simulink model of the entire system is shown in Fig. 4.

A neural network can enhance a PID controller by dynamically adjusting its propor-
tional, integral, and derivative gains based on real-time system conditions. This process 
involves collecting data on system states, errors, and optimal PID gains under various 
conditions. A neural network is then designed and trained using this data to predict the 
optimal PID gains. Once trained, the neural network inputs current system states and 
external conditions, outputs the tuned PID gains, and feeds these values into the PID 
controller. This integration allows the PID controller to adapt to varying system dynam-
ics, improving its performance and responsiveness.

Development

The first step in training a Simulink-built model with reinforcement learning is to define 
the environment, which is the simulation or real-world system in which the agent 
interacts to learn. In this case, the environment is the Simulink model of the octorotor 
that has been defined in the previous sections through equations. With the state, action, 
and reward spaces of the environment defined, as well as any other relevant parameters 
that training procedure may follow as shown in Table 2. The “rlSimulinkEnv” function 
in MATLAB [32] is used to create the environment object. The function takes the name 
of the Simulink model as an argument and returns an environment object. The reset 
function is defined for the environment to specify how the environment should be reset 
after each episode. The reset function takes an input argument and returns an output 
argument that specifies the initial state of the environment.

The second step is to define the agent, which is an algorithm that takes the state 
of the environment as input and outputs an action. In this case, a DDPG network is 
used with a leaky ReLU activation function. The DDPG algorithm is a model-free, 

Fig. 4 Structure of the complete Simulink model of the system
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off-policy reinforcement learning algorithm that can learn policies in continuous 
action spaces. The structure of the DDPG network is defined using the MATLAB’s 
deep learning toolbox. In it, it is important to specify the number of hidden layers 
and nodes in each layer, the activation function for each layer, and any other relevant 
parameters shown in Table 3. In addition, other training parameters such as the learn-
ing rate, exploration strategy, and other hyperparameters for the agent were defined 
in the MATLAB code.

The third step is to define the training parameters using the options shown in 
Table  4, such as the number of episodes or iterations of training, the maximum 
number of steps per episode, and the exploration strategy (e.g. how the agent should 
explore the state-action space). These were defined using the “rlTrainingOptions” 
function.

The fourth step is to implement the training loop, which consists of repeatedly 
interacting with the environment using the agent to learn from the experience. 
In each episode, the agent takes an action in the current state of the environment, 
receives a reward, and observes the next state. The agent then uses this experience to 

Table 2 Network architecture parameters

Variable name Value

Discount factor 0.99

Mini batch size 128

Experience buffer length 1e6

Target smooth factor 1e−3

Noise options mean attraction constant 0.15

Noise options variable 0.1

Table 3 Network parameters

Variable name Actor value Critic value

Algorithm Adam Adam

Learn rate 1e−4 1e−3

Gradient threshold 1 1

L2 regularization factor 1e−5 2e−4

Table 4 Training options

Parameter Value

Max episodes 1000

Max steps Floor (Tf/Ts)

Train opts Rl training options

Max steps per episode Max steps

Score averaging window length 250

Plots Training progress

Stop training criteria Average reward

Stop training value 190

Save agent criteria Episode reward

Save agent value −700
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update its network parameters. The “train” function is used to run the training loop. 
The function takes the environment object, agent object, and training options object 
as inputs and returns the trained agent object.

Reward

During training, the agent will receive a reward at each time step. The reward function 
is designed to motivate the agent to move towards the desired position, which is 
achieved by providing a positive reward for positive forward velocity. Additionally, the 
reward function is intended to encourage the agent to approach the target position by 
providing positive rewards for minimizing the errors between the reference and current 
positions. Furthermore, the agent will be incentivized to avoid early termination by 
receiving a constant reward at each time step. The other components of the reward 
function are penalties that discourage undesirable states, such as high angular velocities 
and orientation angles beyond 45 degrees. The DDPG agents discussed above were 
developed as shown in Table 5.

Complete model test

Once all the system were modelled, all the PD controllers manually tuned and the neural 
networks trained, the system is tested for a typical path following model. The path to be 
followed is as shown in Fig. 5.

Results and discussion
Complete model test

The cascaded PD control architecture stated in “Methodology” section is developed 
with the proposed X and Y PD controllers imbedded within the pitch and roll blocks, 
respectively. The utilization of a PD is primarily motivated by several key factors. Firstly, 

Table 5 Summary of the DDPG agents

Network Observations Reward variables Simulation 
boundaries

No. of 
hidden 
layers

Neurons per layer

Yaw agent Angular position 
(Z-axis), angular 
velocity (Z-axis), 
yaw error, previous 
error

Yaw error, constant > 1.0472 , > 1.0472 2 400:300

Pitch agent Angular position 
(X-axis), angular 
velocity (X-axis), 
pitch error, 
previous error

Pitch error, 
constant

> 0.7854 , 
< −0.7854

2 400:300

Roll agent Angular position 
(Y-axis), angular 
velocity (Y-axis), roll 
error, previous error

Roll error, constant > 1.0472 , 
< −1.0472

2 400:300

Altitude agent Angular position 
(Z-axis), angular 
velocity (Z-axis), 
altitude error, 
previous error

Altitude error, 
constant

> 50 , < −50 2 400:300:150
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PD controllers effectively avoid the issue of integral windup, a common problem in PID 
controllers where the integral term can accumulate error over time, leading to excessive 
overshoot and potential instability. Secondly, the process of tuning a PD controller is 
more straightforward due to the absence of the integral term, resulting in fewer parame-
ters to adjust and facilitating quicker and more efficient optimization. Moreso, for many 
UAV applications, the proportional and derivative actions provided by a PD controller 
are sufficient to achieve the desired stability and performance, as the primary function 
of integral term is to eliminate steady-state error that is less critical in dynamic systems 
like UAVs, where maintaining rapid response and stability is paramount. In the context 
of this study, these translates to fewer parameters, which simplifies the training process 
and reduces the training time for the neural network agents.

As previously discussed, the proportional gain of the PD controllers is taken from an 
external source and multiplied with the state error of the respective controller. Using the 
process described in the methodology, the individual controllers were tuned using the 
Simulink auto-tuner, and the results of this progress are as shown in Table 6.

Flight simulation results

Using the flight path defined in Fig. 5, the simulation is run to test the stability of the 
cascaded PD controllers and neural network tuner, and the results are as shown in 

Fig. 5 Flight path

Table 6 PD tuning gain results

Controller name Proportional gain Derivative gain Input Output

PD controller yaw 10 20 Yaw angle Yaw Torque

PD controller P (X-axis) 0.008 0.05 Linear X position Pitch angle

PD controller pitch 10 20 Pitch angle Pitch torque

PD controller R (Y-axis) 0.01 0.05 Linear Y position Roll angle

PD controller roll 10 20 Roll angle Roll torque

PD controller altitude 40 25 Linear Z position Thrust
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Figs. 6, 7, 8, 9, 10, and 11. In the flight data, there were five major positions of interest in 
the time scale, and these were at 0 s, 15 s, 35 s, 70 s, and lastly 140 s.

The designed position trajectory and the simulated trajectory have been plotted on 
the same axes as shown in Figs. 8, 9, and 10. The results show a high level of consistency 
of the simulated trajectory with the flight path. At the 0-s mark, the system had to take 
off from the ground and rise to a height of 20 m, which is to be maintained for the 
remainder of the system. The altitude increases from 0 to about 19 m, and this height 
was maintained for the remained of the flight with a steady-state error of 1 m.

At the 15-s mark, the second major event took place where the UAV is expected to 
move from 0 to 10 m along the x-axis. In order to execute this manoeuvre, the X con-
troller must detect a position error and command the pitch controller to take action 
in the right direction. As shown in Fig. 7, the angular position of the UAV increased 
along with the speed shown in Fig.  6. This caused a distribution of the force along 

Fig. 6 Angular position simulation results

Fig. 7 Angular velocity simulation results
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Fig. 8 Linear X position simulation results

Fig. 9 Linear Y position simulation results

Fig. 10 Linear Z position simulation results
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the z- and x-axis. This distribution initiated velocity in the x-axis and as expected 
the UAV moved to the 10-m mark. The distribution also decreased the z component 
of trust, and therefore, the altitude controller had to react to this change in order to 
maintain the desired position, and this was successfully done as shown in Fig. 10. The 
pitch controller was stable, and the 10-m command was maintained for the desired 
period of time.

Similarly at the 35-s mark, the Y and roll controllers were engaged in order to change 
the y position of the UAV through the same concept discussed above. The y position is 
to be changed by 5 m, and the two controllers like the previous reacted with adequate 
stability.

The 140-s mark is the most critical since it tested the stability of all six controllers 
simultaneously. The X controller is commanded to maintain the 0-m position and, 
therefore, creates no component of force along the x-axis, the same is done for 
the altitude controller which is to maintain a height of 20 m by creating zero force 
difference in the z-axis, the Y controller is instructed to change the Y position from 20 
m to 0, and the yaw controller is instructed to change orientation to 0.1 radians. The 
combination of all these controllers is most likely going to create a backlog in the motor 
mixing algorithm and thus negatively affecting the results, but because of the NN auto-
tuner, this is averted. It could be seen that the yaw controller successfully changed the 
orientation from and maintained stability while the Z velocity spike in Fig. 7 is evidence 
that the altitude controller also responded to the situation. The introduction of an altered 
orientation meant that the Y controller’s efforts to subsidize error introduced error in 
the X controller that had since archived stability, and as a result, the pitch controller 
reacted to this change. As shown in Table 7, the DDPG network improved the overshoot 

Fig. 11 Linear velocity simulation results

Table 7 Control behaviour of the controllers

 Controller Rise time (s) Settling time (s) Overshoot (%)

Pitch Roll Yaw Pitch Roll Yaw Pitch Roll Yaw

DDPG 0.913 2.417 4.8395 1.493 5.778 12.977 12.077 13.667 11.35
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of the system, and this is due to the maintained derivative gain. The results of the present 
study are consistent with the results presented by Bohn et al. [33].

Conclusion
The octorotor model created using Simulink, takes into account motor actuation, air 
resistance, gravity, climatic conditions, and sensor variations. By conducting level and 
roll tests, both single motor and complete actuation designs exhibited outcomes that 
were consistent with the anticipated performance for the specified motor speed. This 
alignment necessitates precise modelling of air resistance, gravitational forces, ambient 
conditions, and sensor performance. The airframe model, when exposed to a level 
test, verifies the accurate representation of the UAV system. In addition, a cascaded 
proportional-derivative control architecture has been successfully constructed, 
calibrated, evaluated, and integrated into the unmanned aerial vehicle (UAV) system.

In order to enhance the performance of UAVs, a deep deterministic policy gradient 
network is built and trained using reinforcement learning techniques in MATLAB. The 
findings, assessed for stability using simulated flight routes, demonstrate the UAV’s 
capacity to accurately track the assigned trajectory. Significantly, each of the four 
principal controllers operates autonomously without any influence with the aims of the 
others.

The integration of DDPG with PD controllers for multirotor UAVs reduces the 
significant manual effort traditionally required, ensuring consistent and optimal 
performance across various UAVs and flights. This automation not only saves time but 
also minimizes the dependency on expert knowledge, making advanced UAV control 
more accessible.

Moreover, this work is a pivotal step towards achieving fully autonomous UAV 
operations. By enabling UAVs to self-tune and optimize their control strategies in 
real-time, it sets the foundation for more sophisticated autonomous systems capable 
of adapting to diverse and unpredictable environments. This enhanced autonomy can 
revolutionize a myriad of applications, from delivery services to emergency response, by 
providing more reliable and efficient UAV performance.

In addition to practical benefits, this paper contributes significantly to the academic 
and industrial fields. It showcases the innovative application of reinforcement learning 
in control systems, offering new methodologies and insights that can spur further 
research and development. This work not only demonstrates the potential of combining 
machine learning with traditional control techniques but also paves the way for future 
advancements, ultimately driving innovation in UAV technology and control systems.

The implementation of DDPG with PD controllers for multirotor UAVs offers 
significant potential for enhancing autonomous operations. However, the research faces 
notable challenges related to the complexity and time required for training. Overcoming 
these hurdles will be critical in realizing the full benefits of this approach.

Moving forward, focusing on extending the DDPG approach to multi-agent systems 
will be pivotal. This evolution promises to revolutionize sectors such as search and 
rescue, surveillance, and environmental monitoring by leveraging cooperative 
behaviour among UAVs. By harnessing the power of reinforcement learning in 
this context, we can expect significant advancements in efficiency, scalability, and 
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adaptability, paving the way for a future where autonomous UAV fleets operate 
seamlessly and effectively in complex dynamic environments.

Abbreviations
AEF  Aerodynamic and external forces
AFC  Adaptive filter controller
AI  Artificial intelligence
ANN  Artificial neural networks
ARC   Aspect ratio change
BPNN  Back propagation neural network
CNN  Convolutional neural network
CPU  Central processing unit
CVM  Custom varying mass
DDPG  Deep deterministic policy gradient
DL  Deep learning
DQN  Deep Q-network
EKF  Extended Kalman filter
FL  Feedback linearization
GA  Genetic algorithms
IMC  Internal model control
IMU  Inertial measurement unit
KF  Kalman filter
MIMO  Multi-input multi-output
ML  Machine learning
MLP  Multiple layer perceptron
MPC  Model predictive control
MTRBL  Multi-task regression-based learning
NN  Neural network
PID  Proportional, integral, and derivative
PPO  Proximal policy optimization
RL  Reinforcement learning
RLS  Recursive least squares
RNN  Recurrent neural network
SISO  Single-input single-output
SLC  Successive loop closure
SMC  Sliding mode control
SVSF  Smooth variable structure filter
TRPO  Trust-region policy optimization
UAV  Unmanned aerial vehicles
VTOL  Vertical take-off and landing
θ̈  Euler pitch angular acceleration ( rad/s2)
θ̇  Euler pitch angular velocity (rad/s)
θ  Euler pitch angle (rad)
φ  Euler roll angle (rad)
φ̈  Euler roll angular acceleration ( rad/s2)
φ̇  Euler roll angular velocity ( rad/s)
ψ  Euler yaw angle (rad)
ψ̈  Euler yaw angular acceleration ( rad/s2)
ψ̇  Euler yaw angular velocity ( rad/s)
X  Position along the x-axis (m)
Ẋ   Linear velocity along the x-axis (m/s)
Ẍ   Linear acceleration along the x-axis ( m/s2)
Y  Position along the y-axis (m)
Ẏ  Linear velocity along the y-axis (m/s)
Ÿ  Linear acceleration along the y-axis ( m/s2)
Z  Position along the z-axis (m)
Ż  Linear velocity along the z-axis (m/s)
Z̈  Linear acceleration along the z-axis ( m/s2)
�/ω  Motor angular velocity (rad/s)
IXX  Moment of inertia in the x-axis ( Kgm2)
IYY  Moment of inertia in the y-axis ( Kgm2)
IZZ  Moment of inertia in the z-axis ( Kgm2)
Mθ  Pitch moment (Nm)
Mφ  Roll moment (Nm)
Mψ  Yaw moment (Nm)
ρ  Density ( Kg/m3)
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