
Appendix: Strategy and Skill Learning for
Physics-based Table Tennis Animation

Jiashun Wang
jiashunw@cs.cmu.edu

Carnegie Mellon University
USA

Jessica Hodgins
jkh@cmu.edu

Carnegie Mellon University
and The AI Institute

USA

Jungdam Won
jungdam@imo.snu.ac.kr
Seoul National University

South Korea

We describe the details of the states and actions used in our con-
trollers, the training, and the implementation of the network archi-
tecture and hyper-parameters. We also provide more details of the
skill and strategy evaluation.

A STATES AND ACTIONS
We describe the states and actions for both skill-level and strategy-
level controllers.

Skill-level controller. We follow [Peng et al. 2022] to use the
agent’s local coordinate frame for the skill-level controller. The
agent’s local coordinate frame is defined with the origin located at
the root, the x-axis oriented along the root link’s facing direction,
and the y-axis aligned with the global up vector. Agent’s state
𝑠 ∈ R226 consists of the height of the root, the rotation and position
of the root in the local coordinate frame, the rotation and position
of each joint in the local coordinate frame, the linear and angular
velocity of each joint in the local coordinate frame, and the position
of the paddle in the local coordinate frame. Ball state’s 𝑏 ∈ R9
includes the ball velocity, the distance between the ball and root,
and the distance between the ball and paddle, computed in the
agent’s local coordinate frame. Target 𝑦 ∈ R3 includes the distance
between the ball and target in the agent’s local coordinate frame. 𝛿 is
a one-hot vector determining the skill to use. Agent’s action 𝑎 ∈ R31
is the target joint angles except for the root for PD controllers and
the blending weights 𝜑 ∈ R31 is used to mix the skill actions in a
joint-wise manner.

Strategy-level controller. Agent’s state 𝑠 ∈ R6 consists of the root
position and paddle position in the table frame. Opponent’s state
𝑠 ∈ R6 consists of the root position and paddle position of the
opponent in the table frame. Ball’s state 𝑏 ∈ R6 includes the ball
position and velocity in the table frame. The table’s longer edge
is the x-axis, its shorter edge is the y-axis, and the z-axis is the
gravity axis. Agent’s strategy action 𝑐 ∈ R6 includes the 𝛿 ∈ R5
determining the skill to use and 𝑦 ∈ R2 the target landing location
on the table in the table frame.

B TRAINING DETAILS
We utilize IsaacGym [Makoviychuk et al. 2021] to train the agents
with a simulation frequency of 120 Hz. For control policies, imi-
tation policies run at 30Hz. Mixer and ball control policies run at
15Hz. The RL policies 𝜔 and 𝜋 are trained with proximal policy
optimization (PPO) [Schulman et al. 2017]. We collect 18 minutes of
reference motion of a high-ranking player with the Vicon Motion
Capture system. We perform a broad categorization including drive,
push, and smash.

All the networks are trained with Pytorch [Paszke et al. 2019]
and all training processes are performed on NVIDIA RTX 4090.
For the VR experiments, we finetune the policies to run with a
control frequency of 60 Hz to enhance the interaction experience.
Each imitation policy is trained with 2 billion samples, taking 12
hours. Each ball control policy and mixer policy is trained with
4 billion samples, taking about 1 day. The strategy learning takes
about 3 minutes to collect data and 5 minutes to train for one
iteration. We apply 5 iterations for agent-agent experiments and
2 iterations for human-agent experiments. We split the reference
motion into five subsets: Forehand Drive, Forehand Push, Forehand
Smash, Backhand Drive and Backhand Push. A drive is a stroke that
is primarily used to keep the ball in play with a fast and flat shot. A
push is a stroke that requires the player to strike downwards on
the back and underneath the ball to create a backspin. A smash is a
fast, hard and powerful stroke that drives the ball downward. We
train imitation and ball control policies with each skill separately.
We train the universal imitation policy and mixer policy with all
the data.

C NETWORK ARCHITECTURE AND
HYPER-PARAMETERS

The imitation policies are modeled by a neural network to map to a
Gaussian Distribution 𝜋𝑖 (𝑎𝑖 |𝑠, 𝑧𝑖 ) = N(𝜇𝜋𝑖 (𝑠, 𝑧𝑖 ), Σ𝜋𝑖 ), where 𝑖 ∈
{1, 2, 3, 4, 𝑢}. Specifically, the mean 𝜇𝜋𝑖 is predicted by an MLP with
three hidden layers of [1024, 1024, 512] units followed by a linear
output layer, and the diagonal covariance matrix Σ𝜋𝑖 is set to 0.0025
on each diagonal element. The value network is a similar archi-
tecture but the final output is a scalar. The encoder 𝑞𝑖 (𝑧𝑖 |𝑠, 𝑠′) and
discriminator 𝐷𝑖 (𝑠, 𝑠′) are modeled by a single network which out-
puts both the mean of the encoder 𝜇𝑞𝑖 (𝑠, 𝑠′) and the discriminator
value. The ball control policies 𝜔𝑖 (𝑧𝑖 |𝑠, 𝑏,𝑦) = N(𝜇𝜔𝑖 (𝑠, 𝑏,𝑦), Σ𝜔𝑖 )
are also modeled by a neural network to map to a Gaussian Distri-
bution. Specifically, the mean 𝜇𝜔𝑖 (𝑠, 𝑏,𝑦) is predicted by an MLP
with two hidden layers of [1024,512] units followed by a linear
output layer, and the diagonal covariance matrix Σ𝜔𝑖 is set to 0.01
on each diagonal element. The output 𝑧𝑖 is normalized with its
norm before sending to the imitation policies. The mixer policy
is similar to the ball control policy except it takes 𝑠 , 𝑏, 𝑦 and 𝛿 as
inputs and outputs 𝜇𝜔𝑚 (𝑠, 𝑏, 𝛿,𝑦) and blending weight 𝜑 . 𝑓 takes
the strategy observation 𝑜 = (𝑠, 𝑠, 𝑏) as input and outputs the strat-
egy action 𝑐 = (𝛿,𝑦). It is modeled by an MLP with three hidden
layers of [1024, 1024, 512] followed by a linear output layer. We use
ReLU for all the activations except the outputs of the discriminator
value and blend weight 𝜑 , which use a Sigmoid. Table 1 reports the
hyper-parameters used in our experiments.



Jiashun Wang, Jessica Hodgins, and Jungdam Won

Table 1: Hyper-parameters.

Parameter Value
Discount factor 𝛾 0.99
GAE and TD 𝜆 0.95
Episode length 500
Learning rate 1.0𝑒−5
# tuples per update 258944
Policy Batch Size 16384
Discriminator Batch Size 𝛾 4096
PPO Clip Threshold 0.2
Latent Space Dimension 64
Gradient Penalty Weight 𝜆𝑔𝑝 5
Diversity Objective Weight 𝜆𝐷 0.01
CVAE KL Divergence Weight 𝛽𝐾𝐿 0.01
Skill Discovery Objective Weight 𝛽 0.5
Paddle Reward Weight𝑤𝑝 0.8
Ball Reward Weight𝑤𝑏 0.8
Style Reward Weight𝑤𝑟 0.2

D SKILL EVALUATION
ASE [Peng et al. 2022], CASE [Dou et al. 2023], and ET are trained
under the same setting as our mixer policy. ET learns a high-level
policy to output the latent action for the universal imitation policy.
For ET, we train the five skills first and then we fix the individ-
ual skill controllers and let the ET controller take control during
the transition (when the ball passes the net until it is returned to
the agent). For other time steps, we directly let each individual
controller control the agent. For training the CASE method, we
modify their code by applying the 𝛿 as their conditions and keep
the same dimension of the latent 𝑧 as ours because there are only
five skill categories in our setting. To train each evaluation discrim-
inator 𝐷𝑖𝑡𝑒𝑠𝑡 , we utilize the reference motions of the 𝑖-th skill as
positive data and all the other reference motions as negative data.
We use the same hyperparameters as those used in training the
imitation policies; however, the discriminators for evaluation are
independently trained for fair evaluation. During the skill evalua-
tion, we collect 1 hour of ball tracking data of a match between two
high-ranking players using the SPINSIGHT software1 including
the speed, including the position and speed of the ball when it
contacts the paddle, touches the table, and passes the net. We use
this ball tracking data to test the skill controller’s ability with more
challenging cases.

E STRATEGY EVALUATION
For the opponent used in strategy evaluation, the random op utilizes
a strategy that uniformly samples the skill to use and the target
land location of the ball. For the video op, we collect 20 minutes of
high-ranking player broadcast video and followed the annotation
process of [Zhang et al. 2023] to get the video expert demonstration
{(𝑜video

𝑘
, 𝑐video
𝑘

)}𝐾
𝑘=1, by which the video strategy is trained.

We utilize reinforcement learning (RL) trained with PPO [Schul-
man et al. 2017] as a baseline. We collect state action pairs (𝑠, 𝑠, 𝑏, 𝑐)
to update the policy. For the competition setting, the reward is

1https://spinsight.com/

defined as 𝑟𝑔 , which is the task goal reward applied to the final step,
𝑟𝑔 = 10 if the agent wins and 𝑟𝑔 = −10 if it loses. Empirically, we
find this sparse goal reward is actually better than the combination
of 𝑟𝑔 and the continuous reward 𝑟 described in Section 4.2. For the
cooperation setting, the reward is 1 for each time step and we set
the episode length to 1000.

We also report the results of our strategy learning approach
at each iteration. We report the winning rate for each iteration in
Table 2 and average rounds for each iteration in Table 3. We observe
that the improvements in the winning rate at the first iteration are
the most significant and then it converges gradually. For example,
the winning rate increases by about 8% in the first iteration and
then only increases by about 10% in the next four iterations. For
the cooperation setting, the average rounds at the first iteration are
close to that of the last iteration. We think the cooperation task is
easier to learn compared to the competition match.

The video op incorporates real-world demonstrations, making
them initially more challenging to defeat (48% winning rate). How-
ever, with more iterations, the random op can sample a broader
and more diverse set of strategy decisions. We can observe the final
winning rates are similar. In addition, the more predictable nature
of the video op makes cooperation easier. On the other hand, as
an opponent, video op provides a relatively fixed challenge while
random op provides more diverse and unpredictable challenges,
which leads to our method being stronger when trained against a
random op, as shown in Table 4 in the main paper.

Table 2: Winning rate for each iteration.

Iteration 0 1 2 3 4 5

Random op 0.500 0.582 0.639 0.640 0.659 0.687
Video op 0.482 0.549 0.599 0.628 0.662 0.681

Table 3: Average rounds for each iteration.

Iteration 0 1 2 3 4 5

Random op 10.9 13.4 14.2 14.9 15.7 16.4
Video op 12.8 14.3 16.9 17.2 17.8 18.2

REFERENCES
Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023.

C·ASE: Learning Conditional Adversarial Skill Embeddings for Physics-based
Characters. In SIGGRAPH Asia 2023 Conference Papers, SA 2023. ACM, 2:1–2:11.
https://doi.org/10.1145/3610548.3618205

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU Based Physics Simulation
For Robot Learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2). https://openreview.net/forum?
id=fgFBtYgJQX_

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019. 8024–8035. https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

https://spinsight.com/
https://doi.org/10.1145/3610548.3618205
https://openreview.net/forum?id=fgFBtYgJQX_
https://openreview.net/forum?id=fgFBtYgJQX_
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html


Appendix: Strategy and Skill Learning for Physics-based Table Tennis Animation

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE:
large-scale reusable adversarial skill embeddings for physically simulated characters.
ACMTrans. Graph. 41, 4 (2022), 94:1–94:17. https://doi.org/10.1145/3528223.3530110

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347
Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin

Peng, and Kayvon Fatahalian. 2023. Learning Physically Simulated Tennis Skills
from Broadcast Videos. ACM Trans. Graph. 42, 4 (2023), 95:1–95:14. https://doi.
org/10.1145/3592408

https://doi.org/10.1145/3528223.3530110
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3592408
https://doi.org/10.1145/3592408

	A States and actions
	B Training details
	C Network architecture and Hyper-parameters
	D Skill evaluation
	E Strategy evaluation
	References

