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Abstract 

In spatial crowdsourcing services, the trajectories of the workers are sent to a central server to provide more per-
sonalized services. However, for the honest-but-curious servers, it also poses a challenge in terms of potential pri-
vacy leakage of the workers. Local differential privacy (LDP) is currently the latest technique to protect data privacy. 
However, most of LDP-based schemes have limitations in providing good utility due to extensive noise in perturbing 
trajectories. In this work, to balance the privacy and utility, we propose a novel pattern-aware privacy protection 
method called trajectory-aware privacy-preserving with local differential privacy (TALDP). The key idea is that, rather 
than applying the same degree of perturbation to all location points, we employ adaptive privacy budget alloca-
tion, assigning varied privacy budgets to individual location points, thereby mitigating the perturbation’s impact 
and enhancing overall utility. Meanwhile, to ensure the privacy, we give the different perturbing points to different 
privacy budgets according to their important degree for the patterns of the trajectories. In particular, we use Kar-
man filter method to select the important location points and decide their privacy budgets. We conduct extensive 
experiments on three real datasets. The results show that our approach improves the utility over many other current 
methods while still provide good the privacy protection.
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1  Introduction
With the proliferation of mobile smart devices, such as 
smartphones and smart wristbands, and the rapid devel-
opment of crowdsourcing applications, the relationship 
between crowdsourced data generated by citizens and the 
concept of a smart city is becoming increasingly relevant. 
The availability of data is crucial for the functionality of a 
smart city [1]. In the crowdsourcing service model, task 
requesters disseminate tasks with specific target locations 
or routes through a centralized third-party server, which 
then allocates these tasks to the respective workers. This 
process generates a substantial amount of spatiotemporal 

data associated with the patterns of workers’ behavior. 
While the collection and analysis of this data provides an 
effective way for servers to assign tasks to workers [2], it 
also poses privacy threats by potentially exposing sensi-
tive workers’ data, such as their locations and movement 
trajectories. Recent studies have demonstrated that even 
the disclosure of a small amount of mobile path or loca-
tion data can result in attacks on anonymous users [3].

In order to mitigate such risks, differential privacy 
provides a robust protection mechanism [4]. Currently, 
differential privacy is a practical remedy for preserving 
the privacy of location and trajectory information [5]. 
However, in the design of scenarios involving differential 
privacy [6–8], it requires an authorized and trustworthy 
data center to collect users’ mobile path data. Yet, accord-
ing to current investigations, 78% of users are still reluc-
tant to let applications collect their mobile path data, 
fearing that such data collection poses a significant threat 
to their privacy [9, 10]. As a result, industrial applications 
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have extensively utilized local differential privacy (LDP)
[11] (such as Google [12], Apple (https://​www.​apple.​
com/​priva​cy/​docs/​Diffe​renti​al_​Priva​cy_​Overv​iew.​pdf ), 
and Microsoft [13]) making it a more appropriate choice 
for gathering private trajectory data since it does not rely 
on a trusted third-party server, enables users to locally 
modify data, and transmits the modified data to an 
untrusted third-party server. However, some studies have 
shown that the effectiveness of LDP in protecting privacy 
is hampered by its emphasis on utility, which comes at 
the cost of privacy protection [14, 15], particularly, the 
existing LDP schemes add noise to all points in the tra-
jectory which reduces the utility for the application. To 
deal with this issue, Haydari [16] adopted a method that 
involved random sampling of path points and applying 
noise to the selected points. This approach enabled the 
construction of random paths between road segments 
through the utilization of the exponential differential pri-
vacy mechanism. However, it relies on a trusted external 
party to gather and alter the data, and the privacy budget 
cannot be adaptively adjusted for different path points. 
In the differential privacy model proposed by Wang.H 
[17], local differential privacy is primarily used, and the 
server allocates privacy budgets to achieve efficient adap-
tive privacy budget allocation for local differential pri-
vacy. It focuses on perturbing individual location points 
by analyzing their distribution within the area, neglecting 
the correlation between the various location points along 
the trajectory. On the other hand, Z.Wang [18] took into 
account the interdependencies between location points 
in the process of differential privacy protection, reduc-
ing the impact of noise on data patterns by minimizing 
unnecessary perturbations. It has been demonstrated 
that for time-series data collection, the addition of dif-
ferential privacy noise alters the original pattern of the 
data, which subsequently leads to a reduction in utility. 
Although his research is based on time-series data col-
lection, it aligns well with our trajectory data protection 
needs.

In this paper, inspired by [18], we focus on protect-
ing the workers’ job location privacy and their trajectory 
information, and propose a segmented differential pri-
vacy with noise method. Aiming to preserve the usabil-
ity of trajectory data while protecting the privacy of user 
trajectories, we strive to maintain the trajectory patterns 
even after the introduction of differential privacy noise. 
To achieve this goal, there are several challenges: (1) how 
to determine the interdependencies between location 
points in a trajectory, specifically the importance of each 
location point. In [18], they suggest using piecewise lin-
ear approximation (PLA) in conjunction with a pattern-
aware sampling technique to decide whether to sample 
and disturb the current data point. However, determining 

the interdependencies between location points in a tra-
jectory poses a significant challenge. (2) How to deter-
mine the privacy budget allocation for location points 
involves deciding how much privacy protection should 
be allocated to each point. Assigning an equal privacy 
budget to all location points is not conducive to the usa-
bility of the trajectory. Therefore, this becomes another 
challenge that we need to address. (3) Striking a balance 
between privacy and the utility of pattern. Preserving 
patterns in sequences entails sacrificing a certain degree 
of privacy protection, where larger perturbations often 
discard more pattern sequences to achieve better privacy 
protection. Retaining useful pattern information within 
the preserved pattern sequences while meeting the 
required privacy protection demands poses a challenge.

To address the aforementioned challenges, this paper 
proposes a trajectory-aware privacy preserving method 
with local differential privacy in a new crowdsourcing 
service model, called trajectory-aware local differential 
privacy (TALDP). Specifically, regarding challenge (1), 
we determine the interdependencies between location 
points by employing a Kalman filter-based trajectory 
prediction method. When the predicted positions of two 
consecutive points closely align with the actual positions, 
we believe that the correlation between points is rela-
tively weak, indicating a minor impact on the trajectory. 
Conversely, if the predicted positions deviate significantly 
from the actual positions, we consider the correlation 
between the points to be strong, indicating a greater 
impact on the trajectory. In challenge (2), we adaptively 
allocate privacy budgets based on the importance of loca-
tion points in the trajectory. As opposed to allocating the 
same budget for privacy to every location, our approach 
adaptively allocates a privacy budget based on how much 
each point affects the trajectory while preserving the 
pattern of the original trajectory as much as possible. 
We quantify the dependency between location points 
through importance assessment, using it as a criterion to 
adaptively allocate privacy budgets to points of different 
importance. Our principal contributions are listed below:

•	 We have designed a novel method for trajectory pat-
tern-aware differential privacy protection, aiming to 
safeguard the trajectory privacy of workers in crowd-
sourcing services while ensuring the utility of per-
turbed trajectory information. Specifically, we have 
devised a new differential privacy protection scheme 
tailored to the way servers collect trajectory informa-
tion from worker users in crowdsourcing services. 
This technique improves the usefulness of partially 
perturbed trajectory details while still safeguarding 
worker trajectory information privacy.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
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•	 We propose a method for allocating privacy budget 
for path points. By using Kalman filtering and infer-
ring the next location point based on the uploaded 
location points, we compare the prediction error 
with the actual location point to determine its impor-
tance. Adaptive privacy budgets of different sizes are 
then allocated to perturb location points according to 
their importance, meeting the requirements of loca-
tion point privacy protection.

•	 We run experiments on three real datasets, and the 
results show that our system preserves significant 
trajectory patterns while performing better than cur-
rent mechanisms.

The rest of this paper is organized as follows. In Sect.  2, 
we present problem formulation in this domain. Then, we 
show some preliminaries in Sect. 3 and detail our frame-
work in Sect. 4. Finally, we wrap up this paper and give an 
outlook in Sect. 5 and related work in Sect. 6.

2 � Problem formulation
In this section, we first present the description of the sys-
tem model in Sect.  2.1, and then introduce some back-
ground knowledge in Sect. 2.2.

2.1 � System model
In a crowdsourcing service, there are typically three 
parties involved: the server, the task requester, and the 
workers. We make the assumption that the server is trust-
worthy yet inquisitive, which means it will faithfully carry 
out all of the responsibilities assigned to it but might be 
tempted to look through private user information. Here, 
we focus on the relationship between the workers and the 
server because sensitive user data may be compromised 
through the sensitive data generated during the workers’ 
task processes.

In Fig.  1, every worker generates data while work-
ing, locally perturbs the raw data, and at predetermined 

timestamps transmits the perturbed data to the server. In 
order to complete all tasks requested by the requester, the 
server can assign tasks to all workers and provide public 
services. To improve the efficiency of task completion by 
workers, the server can provide personalized services by 
analyzing the data uploaded by the workers.

Current work mainly focuses on protecting the privacy 
of worker trajectories, for instance, employing probabil-
ity distributions with superior effectiveness, leveraging 
exponential mechanisms, and adopting alternative defi-
nitions of differential privacy methods. But how to pro-
tect the privacy data of each worker while improving data 
utility to achieve personalized services has not been well 
addressed.

2.2 � Preliminaries
We introduce the background information in this section. 
Table 1 contains a list of this paper’s primary annotations.

Given two datasets D and D′ , They are defined as 
neighboring datasets if there is only one record that dif-
fers between the two datasets. The function φ is added 
noise to serve the purpose of achieving ǫ-differential pri-
vacy. Privacy budget ǫ and privacy protection exhibit an 
inverse relationship, whereby a smaller ǫ cause stronger 
privacy protection. The amount of noise is measured by 
sensitivity �φ . A widespread noisy method is Laplace 
mechanism Lap(�φ

ǫ
).

Definition 1  (ǫ-Differential Privacy [19]). For two 
neighboring datasets D and D′ , a privacy mechanism 
F  satisfies ǫ-differential privacy if, and for every output 
� ⊂ range(F) , it has:

Definition 2  (Sensitivity [19]). Given query function 
φ : D → R

n on dataset R with n attributes, and any two 
neighboring datasets D and D′ , the sensitivity �φ is:

(1)Pr[F(D) = �] ≤ Pr[F(D′) = �] × eǫ

Fig. 1  The model of worker’s data collection
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In general, p = 1,which corresponds to the L1 norm.

Definition 3  (Laplace Mechanism [19]). The result of 
query function φ over a dataset D is φ(D) = (X1,X2, . . . ,Xn) . 
The privacy mechanism F  satisfies ǫ-differential privacy if 
F  is defined as follow:

Definition 4  (ω-neighboring). For a non-zero positive 
integer ω , database D and D′ of length l are ω-neighbor-
ing if: for each i ∈ l , D[i] �= D′[i] , it holds that D and D′ 
are neighboring, and for each i1 < i2 and i1 + i2 + 1 ≤ ω , 
D[i1] �= D′[i1] and D[i2] �= D′[i2].

(2)�φ = max
D,D′

||φ(D)− φ(D′)||p

(3)

F(D) = φ(D)+ Lap1
�φ

ǫ
, . . . , Lapn

�φ

ǫ

Definition 5  (Metric-based ω-Event ǫ−Differential 
Privacy). D is a dataset, and F  be a privacy mechanism, 
metric-based ω-event ǫ−differential privacy is defined as 
follows: all ω-neighboring dataset D,D′ and each possible 
output � ⊂ Range(F) , it has:

where d(D,D′) is the Euclidean distance between D and 
D′ . The mechanism adhering to metric-based ω-event ǫ−
differential privacy offers the minimal utility loss while 
safeguarding the privacy of general time-series data 
across consecutive ω timestamps.

3 � Trajectory‑aware local differential privacy
In this section, we introduce TALDP, in Fig. 2, a privacy 
protection mechanism for worker trajectory pattern 
perception in crowdsourcing services. In the material 
that follows, we give a brief introduction to TALDP 
before going into greater detail on its main elements and 
architecture.

3.1 � Overview of TALDP
Our goal is to perturb the trajectory information while 
preserving useful pattern information in the trajectory. 
Therefore, our main idea is to adaptively perturb useful 
patterns based on their importance levels. TALDP mainly 
comprises three mechanisms: trajectory pattern predic-
tion, trajectory pattern importance evaluation, impor-
tance-aware perturbation.

3.1.1 � Trajectory pattern prediction
In this module, we employ Kalman filtering to predict 
the possible future trajectories due to its high accuracy 

(4)Pr[F(D) = �] ≤ Pr[F(D′) = �] × eǫd(D,D
′)

Table 1  Main notations

Symbol Definition

D,D′ Original dataset and neighboring dataset

φ,�φ Query function and sensitivity

F ,ǫ Privacy mechanism and privacy budget

� All possible outputs of the privacy mechanism

ω The size of metric-base ω-event privacy

Fk State transition matrix

x̂k|k , x̂k|k−1 Estimated value and predicted value

Bk Disturbance transfer matrix

Qk Process noise covariance matrix

Hk Observation matrix

zk Current observed actual

Rk Covariance matrix of observation noise

Fig. 2  The overview of the TALDP
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and correctable characteristics in trajectory predic-
tion and target tracking. Kalman filtering dynamically 
estimates the next state at each iteration, considering 
both historical states and observation data. Kalman 
filters offer real-time capability, accuracy, robustness, 
and cost-effectiveness in trajectory prediction, making 
them one of the preferred methods in numerous appli-
cation areas. Therefore, we adopt Kalman filtering as 
the method used for trajectory prediction.

3.1.2 � Trajectory pattern importance evaluation
This module is designed to quantify the importance 
of each position point. When the degree of change in 
position point data is equivalent, the rapid changes in 
short-term position point data possess a stronger influ-
ence on the overall pattern of the trajectory compared 
to the slow changes in long-term position point data. 
This phenomenon is reflected in the trajectory predic-
tion module by observing whether the error between 
the predicted values and the actual values is experienc-
ing sharp fluctuations. Therefore, We use the PID algo-
rithm to dynamically evaluate data, measuring both the 
error and importance of position points.

3.1.3 � Importance‑aware perturbation
This module aims to leverage the importance of each 
position point obtained, determined in the previous 
module, to describe the budget that should be allo-
cated to that position point. Based on this budget value, 
Laplace noise is added to the position point. We ensure 
that the importance-aware budget allocation is sen-
sitive to trajectory patterns and minimizes the loss of 
patterns resulting from the addition of noise.

Finally, the perturbed data is transmitted to the server 
to complete the data upload task. The servers can uti-
lize the approximate results for analyzing the interests 
and hobbies of workers, aiming to achieve more effec-
tive task allocation. We shall provide a thorough intro-
duction to each component module in the text that 
follows.

3.2 � Trajectory pattern prediction
This section describes a method for perceiving trajec-
tory patterns based on the Kalman filter that is consistent 
with the visual experience. This method is used to assess 
the extent to which the current trajectory position point 
influences the current trajectory pattern. The prediction 
phase and the update step are the two stages that make 
up the Kalman filter process.

3.2.1 � Prediction step
In the prediction step, the current state is linearly pro-
jected to obtain the next state prediction based on the 
system’s dynamics model. Additionally, the uncertainty 
of the system state is estimated using the process noise 
model. The predicted value of the state vector and the 
estimated covariance matrix can be calculated using the 
following formulas:

where Fk is the state transition matrix that describes how 
the current state evolves from the previous state, x̂k−1|k−1 
is the estimated value of the state vector at the previous 
time step, Bk denotes the disturbance transfer matrix, uk 
denotes the system state noise of the motion model, Pk is 
the posterior estimation error covariance matrix, and Qk 
is the process noise covariance matrix that describes the 
uncertainty in the system’s dynamic model.

The predicted value of the state vector is updated using 
the state transition matrix and control input, while the 
estimated covariance matrix is updated based on the 
system’s dynamic model and process noise. Through the 
prediction step, the next time step’s state prediction value 
and covariance matrix can be obtained, preparing for the 
subsequent update step.

3.2.2 � Update step
In the update step, the predicted state is compared with 
the actual observed value based on the observation 
model. The difference between the prediction and obser-
vation is calculated, and the weights of the state predic-
tion are adjusted accordingly to make it closer to the 
actual observation. The uncertainty of the observation 
is also estimated using the observation noise model. The 
updated values of the state vector and covariance matrix 
can be calculated using the following formulas:

where Hk is the observation matrix that describes the 
relationship between observations and the state vector, zk 
is the current observed actual, and Rk is the covariance 
matrix of observation noise, which stands for the obser-
vation model’s uncertainty.

Update step adjusts the state estimate based on the 
new observation and updates the covariance matrix 
to reflect the revised uncertainty. By calculating the 
Kalman gain, information from the observation is 

(5)
x̂k|k−1 = Fk x̂k−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(6)
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)

−1

x̂k|k = x̂k|k−1 + KK (zk −Hkx̂k|k−1)

Pk|k = (I − KkHk)Pk|k−1
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integrated into the state estimate, improving the accu-
racy of the estimation of the true system state. The 
updated values of the state vector and covariance 
matrix are then used as the initial values for the predic-
tion step at the next time step.

By iteratively performing the prediction and update 
steps, the Kalman filter progressively estimates the opti-
mal state of the system. It not only considers the current 
observation but also utilizes the statistical properties of 
the historical state information and observation data, 
resulting in accurate and adaptable state estimation. In 
trajectory prediction, the Kalman filter continuously 
estimates the state of each position point in the trajec-
tory, allowing for the prediction of the next position at 
a given time. This approach, which is based on historical 
data and dynamic estimation, provides high accuracy 
and robustness in trajectory prediction tasks.

3.3 � Trajectory pattern importance evaluation
Due to the varying impact of different location points on 
trajectory patterns, in this section, we use data dynamics 
to quantify their significance.

Through the trajectory prediction using the Kalman fil-
ter in the previous section, we can determine the impact 
of each location point on the uploaded trajectory. This is 
because the predicted results of the Kalman filter reflect 
to some extent the current trend of the trajectory pattern 
and provide the possible next location point based on the 
current trajectory pattern. When the error between the 
predicted location point and the actual location point is 
within a certain range, we consider that the changes in the 
location point are in a certain pattern, which we refer to 
as a long-term pattern. In this case, the influence of the 
location point on the trajectory pattern is relatively small. 
However, when there is a significant deviation between 
the predicted location point and the actual location point, 
indicating a rapid change in the location, we refer to this 
as a short-term pattern. In this case, the influence of the 
location point on the trajectory pattern is relatively large.

We determine the importance level of each location 
point by using the PID error. First, we define feedback as 
the difference between the expected and actual values:

where xi is the actual location point and x̂i is the pre-
dicted location point.

Hence, the importance, which is represented by the 
PID error, can be computed as follows:

(7)Fi = |xi − x̂i|

(8)γ [i] = KpFi + Ki

i
∑

n=0

Fn + Kd(Fi − Fi−1)

The PID control comprehensively considers the current 
error, historical error, and the rate of change of error, by 
adjusting the proportional coefficients of each compo-
nent, thereby changing the emphasis on the focus of con-
sideration. Through this approach, we can better assess 
the influence of the current location point on the trajec-
tory pattern, thus more accurately evaluating its level of 
importance.

3.4 � Trajectory‑aware perturbation
In this section, we employ an trajectory-aware rand-
omization mechanism that adaptively allocates privacy 
budget and injects noise into various locations to mini-
mize the leakage of trajectory patterns. Privacy budget is 
allocated based on importance, and each location point 
in the trajectory receives an addition of Laplace noise. 
The experimental results demonstrate that the trajectory 
pattern is successfully protected by this technique.

Algorithm 1 Trajectory-aware perturbation

3.4.1 � Importance budget allocation
For trajectory sequence data, the metric-based ω-event 
privacy requirement states that the cumulative budget 
for any sliding window of ω location points should not 
exceed ǫ . This means that each location point in the tra-
jectory can be allocated a certain amount of budget.

In TALDP, our goal is to maintain the pattern of tra-
jectories as much as possible. The position locations that 
significantly affect the trajectory patterns should undergo 
only minimal alterations. Therefore, the location points 
with higher importance should receive a larger privacy 
budget. To elaborate, the following is the definition of the 
percentage function that allocates the remaining budget 
to the current sampling point:

(9)p = 1− exp(−γ [i])
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The range of p from 0 to 1 is guaranteed by the expo-
nential function. The privacy budget allocated to the 
current location point is calculate as ǫ[i] = p ∗ ǫ′ , 
where ǫ′ is the remaining budget in the ω-event window 
ǫ′ = ǫ −

∑i−1
j=i−ω+1 ǫ[j].

As mentioned in [18], when there are consecutive sig-
nificant points (location points), it can rapidly deplete 
the privacy budget, resulting in insufficient alloca-
tion of budget to subsequent highly important sig-
nificant points (location points). This is similar to our 
approach, with the difference being that [18] focuses 
on data sampling points in a data stream, whereas we 
concentrate on the process of workers’ location upload-
ing for crowdsourcing services. We employ the Kalman 
filtering method to predict the location points in the 
trajectory. Kalman filtering provides accurate predic-
tions of future location points, regardless of whether 
the uploaded location points are sparse or dense and 
whether they have a significant impact on the trajec-
tory pattern. By using Kalman filtering to compare the 
predicted and actual position points, we can draw rela-
tively accurate conclusions, without facing the issue of 
rapid privacy budget consumption. Therefore, we can 
determine the privacy budget for a particular location 
point using this method.

3.4.2 � Laplace perturbation
Laplace perturbation is a commonly used method for 
adding noise in differential privacy. It utilizes random 
numbers generated from the Laplace distribution to per-
turb the original data, thereby achieving differential pri-
vacy protection. Its definition is as follows:

where the b represents the scale parameter, and their val-
ues determine the shape and peak degree of the Laplace 
distribution. And b has the following relationship with ǫ:

where △φ represents the sensitivity in differential pri-
vacy, which is also the range of oscillation after adding 
noise. We represent the sensitivity by the maximum dis-
tance between adjacent location points in the trajectory:

To give the distribution of Laplace noise a more com-
prehensible picture, we showed its probability density 
function; as shown in Fig.  3, Laplace noise is related to 
the sensitivity of the data and has been proven to have 
ability to provide strong privacy protection.

(10)Laplace(x|b) =
1

2b
exp

(

−
|x|

b

)

(11)b =
△φ

ǫ

(12)△φ = max||xi, xi−1||1

Fig. 3  The probability density function of Laplace
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Since the position points are two-dimensional data, 
and Laplace noise generates one-dimensional values, we 
have transformed the obtained Laplace noise accordingly. 
We conceptualize the Laplace noise result as defining a 
circle centered on the original position point. Conse-
quently, the original position point is perturbed to a ran-
dom location within that circular range. This approach 
achieves the intended purpose of adding noise.

When Laplace noise, adapted to the level of impor-
tance, is added to important data, it becomes easier to 
distinguish between data points when a pattern change 
occurs. This makes trajectory data more useful, while also 
providing privacy protection by reducing distinguishabil-
ity between data points when no pattern change occurs.

3.5 � Theoretical analysis
We demonstrate that the TALDP method maintains dif-
ferential privacy in this subsection.

Theorem  1  The importance-aware perturbation satis-
fies ǫ-LDP.

Proof  For two location point x, x′ , where x denotes the 
latitude and longitude coordinates of the location points 
and x′ another location point adjacent to x, abbreviated 
as x and x′ , assuming that the current remaining privacy 
budget is ǫ[i] . As per the Laplace perturbation definition, 
we can obtain:

It can always be true that ||x∗ − x|| − ||x∗ − x
′|| ≤ ||x − x

′|| . 
Thus Eq. 13 can be updated:

where −||x,x′||
△φ

 is constant. Thus, our importance-aware 
perturbation satisfies ǫ-LDP.

Theorem 2  TALDP satisfies metric-based ω-event ǫ-dif-
ferential privacy.

Proof  In Proof 1, we show that TALDP satisfies ǫ-LDP. 
As for the ω-event ǫ-differential privacy, any perturbed 
point with an allocated budget of kǫ/ω , it recycles the 
privacy budget in the previous k − 1 points. Thus, its pre-
vious k − 1 points and following k − 1 points all have zero 
allocated privacy budget. As a result, the sum of budgets 
of any ω successive points satisfies 0 ≤

∑i+ω
k=i+1

ǫ[k] ≤ ǫ . 
We recover the privacy budget for k ≤ i in the process of 

(13)
Pr[x∗|x]

Pr[x∗|x′]
=

1

2b
e

(

− |x|
b

)

1

2b
e

(

− |x′ |
b

) = e
− ǫ[i]

△φ
(||x∗−x||−||x∗−x′||)

(14)e
− ǫ[i]

△φ
(||x∗−x||−||x∗−x′||)

≤ e
− ǫ[i]

△φ
(||x,x′||)

allocating the budget and adaptively allocate the privacy 
budget for the next location points in the remaining pri-
vacy budget.

Thus, TALDP satisfies metric-based ω-event privacy.

4 � Experiments
In this section, we assess the performance of the sug-
gested TALDP using four real-time series datasets. We 
approach our experiments from three different angles: 
evaluating the utility of statistical estimation of trajectory 
position points, assessing the utility of trajectory pattern 
analysis, and evaluating the impact of importance-aware 
randomization on pattern preservation.

4.1 � Experimental datasets
We use four real-world location datasets for our 
investigations.

•	 Gowalla dataset [20] is a classic dataset used for loca-
tion recommendation and social network analysis. 
It collects location check-in data from users of the 
social networking application Gowalla. Gowalla was 
a once-popular location-sharing app where users 
could mark their locations on a map and share their 
activities and travel experiences with other users.

•	 Geolife dataset (http://​snap.​stanf​ord.​edu/​data/​loc-​
gowal​la.​html) collects 17,621 trajectories from 182 
users during the period of April 2007 to August 2012. 
Each GPS trajectory in this dataset is represented as 
a sequence of time-stamped points, containing lati-
tude and longitude information, with various sam-
pling rates. Ninety-one percent of the trajectories are 
densely sampled. The dataset captures a wide range 
of users’ outdoor movements, including daily rou-
tines and leisure activities.

•	 ShangHai dataset [21] refers to the approximately 
100,000 aggregate GPS tracks collected from taxis 
operating in Shanghai in 2007. This dataset com-
prises extensive time-series data, documenting real-
time location information of each taxi across various 
areas of Shanghai, along with associated timestamps 
and speed information.

4.2 � Comparison
In this section, We compared TALDP with three meth-
ods focusing on position point privacy protection and 
two methods focusing on trajectory pattern privacy pro-
tection, as shown below:

http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-gowalla.html
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•	 GRR [22]: A commonly used and fundamental LDP 
scheme involves adding random perturbations based 
on pre-defined probabilities.

•	 PLDP [23]: An optimized LDP framework has been 
developed to achieve high availability, and the model 
proposed in this framework is suitable for other types 
of data, although it was specifically designed for spa-
tial data.

•	 L-SRR [17]: For various location-based LDP frame-
works, high availability is required to privately collect 
and analyze user locations. To address this challenge, 
a new randomization mechanism called “staircase 
random response” is proposed, which has theoretical 
guarantees for both privacy protection and availabil-
ity. Experimental results demonstrate the feasibility 
of the proposed mechanism.

•	 PLPC [24]: A differential privacy protection scheme 
proposed for vector-based and frequently accessed 
locations in trajectory databases.

•	 LDPTPM [25]: A trajectory privacy protection method 
is proposed, which focuses on protecting the regions of 
interest for users rather than their entire region.

4.3 � Experimental parameters
In performance comparison, we assess TALDP’s per-
formance from three perspectives: utility of trajectory’s 
position points and utility of trajectory pattern analysis 
and the effect of TALDP. Specifically, we use the average 
L1-distance method as a measure of utility for location 
point statistics analysis and estimate the error as a meas-
ure of utility for trajectory pattern analysis.

4.3.1 � L1‑distance (Manhattan distance)
A metric used in mathematics and computer science to 
measure the absolute difference between two points in a 
coordinate system. It calculates the sum of the absolute 
differences between the corresponding coordinates of the 
points along each dimension,which is defined as follows:

where, for i ∈ n , xi and yi are the real coordinate values, 
and x̂i and ŷi are the perturbed data of the actual position 
corresponding to index i.

4.3.2 � Dynamic time warping (DTW)
The DTW distance is commonly used to measure the 
similarity of patterns in time series matching and is also 
applicable for trajectory pattern matching. The DTW 

(15)L1 =
1

n

n
∑

n=1

|xi − x̂i| + |yi − ŷi|

distance is calculated using a dynamic programming 
approach, and the calculation formula is as follows:

where Ti and T̂i are the real trajectory positions and pri-
vacy-protect trajectory positions.

In our assessment, each evaluation indicator is normal-
ized for comparison. We set Kp = 0.1,Ki = 0.15,Kd = 0.1 
for importance characterization as default. The privacy 
budget ranges are divided into two categories based on 
the comparison objects: 0.1 to 1.0 and 1.0 to 8.0. The rea-
son for selecting different differential privacy budgets is 
that when the budget is smaller, the added perturbation 
value is larger. At this point, the availability of the loca-
tion cannot accurately reflect the true data availability. 
Conversely, when the budget is larger, the calculated tra-
jectory similarity is generally lower, which also cannot 
accurately reflect the true data availability. All scenarios 
are budgeted to meet ω-event ǫ differential privacy for 
fairness.

4.4 � Performance comparison
In this section, we will first analyze the effective of 
Kalman filter for trajectory prediction. Next, we show the 
performance comparison on the utility of trajectory posi-
tion point statistical analysis, assessing the utility of tra-
jectory pattern analysis.

4.4.1 � Effective of Kalman filter
In this section, we have experimentally demonstrated 
the practical applicability of Kalman filter in predict-
ing trajectory patterns. We first compare the variability 
between real and predicted trajectories in terms of lati-
tude and longitude. In Fig.  4, Kalman filter predictions 
result in trajectories that exhibit a similar pattern to the 
original trajectory. This indicates that Kalman filter is 
able to accurately capture and predict the dynamics of 
the trajectories through its unique algorithmic logic. In 
Fig.  5, we present the errors between the Kalman filter 
prediction results and the original trajectory, along with 
the error variation, utilizing the same data set as in Fig. 4. 
We observe that when the trajectory pattern remains 
stable, the error variation tends to remain at a smoother 
level. Conversely, when the trajectory pattern undergoes 
significant changes, the error variation increases accord-
ingly. This aligns with our notion that the importance of 
the current location point is determined by the degree 
of error change. Specifically, a smaller error change 

(16)

DTW (i, j) = dist(Ti, T̂i)+ DTW ′

DTW ′ =







DTW (i − 1, j − 1)

DTW (i, j − 1)

DTW (i − 1, j)
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indicates a smoother trajectory pattern and thus a lower 
importance, while a larger error change signifies a more 
significant change in the trajectory pattern and thus a 
higher importance. Therefore, we utilize the Kalman 

filter to forecast trajectory variations and dynamically 
allocate the privacy budget by comparing the predicted 
outcomes with the actual results. This approach aims to 
enhance the utility of the data.

Fig. 4  Comparison of real and predicted trajectories

Fig. 5  Errors of real and predicted trajectories
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4.4.2 � Utility of trajectory’s position point
In this section, we compare TALDP with three exist-
ing trajectory protection schemes that focus on loca-
tion distribution. Figure 6 shows the average L1 distance 
of all four mechanisms decreases as the privacy budget 
increases. In differential privacy, as the privacy budget 
increases, the noise perturbation added at each loca-
tion point decreases, leading to a smaller sum of the cal-
culated offsets for each point. We can see that TALDP 
exhibits a transition from a rapid to a gradual change in 
the average L1 distance as the privacy budget increases. 
This is because TALDP allocates the remaining privacy 
budget based on the importance level of each location 
point, distributing it by a certain multiple. As the total 
privacy budget grows exponentially, the privacy budget 
allocated to certain location points also increases propor-
tionally, leading to a rapid decline in the L1 distance. This 
reflects the high utility of TALDP even with a small pri-
vacy budget. In the graph, we can see that our scheme has 
similar utility compared to other schemes at ǫ = 1 and 
ǫ = 8 , but it demonstrates better utility performance in 
the range of ǫ ∈ [1, 8] , which also reflects the significant 
improvement in the utility of trajectory data achieved by 
TALDP.

4.4.3 � Utility of trajectory’s pattern
In this section, we compare our approach with two exist-
ing methods that focus on improving the utility of tra-
jectory data. The comparison metric is the degree of 
pattern matching between the perturbed and original 
trajectory data. It is worth noting that DTW only repre-
sents whether the patterns between trajectories are simi-
lar. We normalize the DTW results obtained by TALDP 
and two existing methods for trajectory protection and 
compare them as shown in the graph. In Fig. 7, all three 
methods show a decreasing trend with the increase of ǫ , 
which matches the fact that higher perturbation is added 
with a smaller privacy budget. The faster rate of change 
in TALDP is consistent with our previous explanation. 
It can be seen that TALDP always presents a better util-
ity performance during the process of ǫ change. It can 
be observed that LDPTPM and TALDP exhibit similar 
levels of usability; however, our method still maintains 
certain advantages during the ǫ variation process. This is 
because LDPTPM is based on data-driven LDP, allocat-
ing budget based on the state of each location point. In 
contrast, TALDP considers the impact of location points 
on the entire trajectory, thus holding a certain advantage 
in terms of trajectory pattern usability.

Fig. 6  Experimental results of the statistical analysis

Fig. 7  Experimental results of the statistical analysis
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4.4.4 � The effect of TALDP
In this section, we compare the effectiveness of adap-
tive privacy budget allocation. We compare the adaptive 
privacy budget allocation method with traditional ran-
dom privacy budget allocation. From the Fig.  8, it can 
be observed that compared to the substantial degrada-
tion in utility of random privacy budget allocation at low 
privacy budgets, adaptive privacy budget allocation still 
maintains good utility. Allocating an equal level of pri-
vacy budget to each location point in a trajectory would 
result in each point experiencing the same degree of per-
turbation, thereby compromising the usability of trajec-
tory data. In contrast, our method takes into account the 
trend of trajectory changes, aiming to preserve the trajec-
tory patterns as much as possible, thus achieving better 
usability. Furthermore, as the privacy budget increases, 
the adaptive privacy budget allocation method exhibits 
better utility and stability compared to random privacy 
budget allocation.This demonstrates the advantages of 
the adaptive privacy budget allocation method over ran-
dom allocation.

In our experiments, we compare the different schemes 
by changing the budget to observe the changes of the 
utility. In the experiments, Figs. 6, 7, and 8 give the com-
paring results. In the figures, the smaller ordinate value 
means the better utility. The figures show that, for the 
same budget (meaning same privacy quality), our scheme 
has the best utility.

5 � Related work
The services for space crowdsourcing, or SC, have 
advanced significantly. Additionally, this has caused the 
problem of location privacy to become more compli-
cated. There are lots of well-liked ways to keep location 
privacy private. We review pertinent work in this section.

5.1 � Space crowdsourcing
Spatial crowdsourcing service is a service that employs 
crowdsourcing methods for the collection, process-
ing, and analysis of geographical spatial data. In spatial 
crowdsourcing services, individuals or organizations can 

use online platforms to post tasks such as map annota-
tion, geographical information collection, and route plan-
ning, which are then completed by a group of volunteers 
or professionals through online participation [26]. These 
tasks typically involve collecting, annotating, verifying, 
or analyzing data related to geographical locations, fea-
tures, and terrains [27]. The advantage of spatial crowd-
sourcing services lies in their ability to utilize large-scale 
volunteer networks to rapidly and efficiently complete 
tasks related to the collection and processing of geo-
graphic information, while also reducing costs. Through 
crowdsourcing, global volunteer resources can be mobi-
lized to collect and analyze large-scale geographic spatial 
data, particularly for tasks requiring extensive manpower 
and time, such as map updates, geographic information 
verification, and satellite image interpretation [28]. Fur-
thermore, spatial crowdsourcing services provide indi-
viduals with opportunities to participate in social welfare, 
academic research, and commercial projects, while also 
promoting the open sharing and widespread applica-
tion of geographic information data. However, spatial 
crowdsourcing services also face challenges in terms of 
data quality, privacy protection, and task management, 
requiring corresponding measures to ensure the accu-
racy, security, and credibility of the data.

5.2 � Differential privacy
Several traditional local-privacy protection patterns have 
been proposed to address the issue of privacy leakage, such 
as k-anonymity [29, 30]. These techniques, however, are 
quite susceptible to attacks leveraging previous knowledge. 
Higher security is attained by another kind of privacy pro-
tection technique that uses encryption [31]. However, the 
computational cost and communication overhead can be 
very high. In [32], Dwork developed the concept of differ-
ential privacy (DP) first. Many different privacy protection 
frameworks have been suggested for various spatial crowd-
sourcing perception tasks (such as data pushing [33], incen-
tive mechanism [34], task allocation [35]). However, in cases 
where users do not trust the server, it is possible that the 
DP model is not appropriate for real-world location uses. 

Fig. 8  Utility comparison with different randomization methods
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For privacy data collection, local-differential privacy (LDP) 
allows each user to upload data after perturbing it locally, 
which offers more security than centralized DP approaches. 
Additionally, Andrés et al. loosened the geo-indistinguisha-
bility protection of areas inside a radius. Loosened by Chen 
et al. [23], LDP enable users to choose customized privacy 
budgets for private location gathering. However, they can-
not guarantee strict LDP. Zhang et  al. [25] proposed the 
SPDM-TSR method, which is based on spatiotemporal 
constraint for mining interesting regions, focusing on pro-
tecting the areas of interest to users rather than the entire 
region. Wang, Han et al. [17] proposed the L-SRR method, 
which privately collects and analyzes user locations with 
high utility. However, They focus on the distribution of loca-
tion points while ignoring the impact of location points on 
trajectories, leading to the loss of trajectory information. In 
this paper, our solution has achieved better results in terms 
of the availability of trajectory information while protecting 
location point privacy. Testing on actual datasets has also 
shown the feasibility of this approach.

6 � Conclusions
In this paper, we focus on the real-time trajectory data 
collection of servers in crowdsourcing services during 
worker work and propose a pattern recognition-based 
trajectory privacy protection mechanism called TALDP. 
This mechanism aims to protect the privacy and security 
of worker trajectories while preserving the original pat-
terns in the trajectory data. We propose an importance-
aware scheme that evaluates the importance level of 
location points in the trajectory using Kalman filtering 
and adapts the perturbation level based on the impor-
tance level, rather than providing the same level of pri-
vacy protection for each location point. Numerous tests 
conducted on real-world datasets confirm that TALDP is 
a useful tool for enhancing pattern usability.
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