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Abstract Web graphs are approximate snapshots of the
web, created by search engines. They are essential to mon-
itor the evolution of the web and to compute global prop-
erties like PageRank values of web pages. Their continuous
monitoring requires a notion of graph similarity to help mea-
sure the amount and significance of changes in the evolving
web. As a result, these measurements provide means to vali-
date how well search engines acquire content from the web.
In this paper, we propose five similarity schemes: three of
them we adapted from existing graph similarity measures,
and two we adapted from well-known document and vector
similarity methods (namely, the shingling method and ran-
dom projection based method). We empirically evaluate and
compare all five schemes using a sequence of web graphs
from Yahoo!, and study if the schemes can identify anom-
alies that may occur due to hardware or other problems.

Keywords Anomaly detection - Graph similarity - Locality
sensitive hashing

1 Introduction

A search engine has two groups of components: online and
offline. The online group processes user queries in real time
and returns search results. The offline group collects content
from the web and prepares it for the online part.
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The offline group essentially consists of three main com-
ponents: a crawler component to find and download web
pages, a web graph component to create graphs out of pages
and their links, and an indexer component to index pages
using their content.

The quality of the search results produced by the online
components depends on the data and structures generated by
the offline components: If the crawler has missed a “signifi-
cant” number of important pages, then the search results are
frequently incomplete. If the web graph is not an accurate
representation of what was crawled, then the ranking of web
pages in search results is negatively affected. Finally, if the
index is not consistent with the crawl and the graph, then the
search results may be irrelevant to user queries.

In practice, the quality of the offline components can be
affected by a variety of what we call anomalies. For in-
stance, a web host that is unavailable at crawl time may
cause us to miss its content, as well as the content reachable
from that host. Since the offline data is massive, spread over
1000s of machines and files, and gathered and manipulated
over relatively long periods of time (hours to days), proces-
sor, network or software problems can corrupt parts of the
data. Similarly, new policies put in place (e.g., to combat
web spam or to for grouping virtual hosts into hosts) may
have unexpected effects and lead to invalid data.

It is very hard to detect problems with the offline data
simply by examining a single snapshot or instance. For ex-
ample, how can one tell that an important part of the web
is missing? Or that IP addresses were not properly grouped
into hosts?

Because of the difficulty of identifying anomalies in a
single data snapshot, it is more practical to identify anom-
alies based on “differences” with previous snapshots. The
idea is to compute one or more similarity measures between
two snapshots (of the crawl, the web graph or the index) and
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anomalies will result in similarities that are too low (or too
high). For instance, one similarity metric for the web graph
may reflect how many hosts the two graphs share in com-
mon. If many hosts are missing from a new web graph, it
probably indicates that something went wrong in the crawl
or in the graph building. The similarity between graphs can
also be used to tune the frequency of crawls. That is, if the
similarity between one graph and the next is very high, it
may indicate that it is unnecessary to crawl and build the
graph so frequently. If the similarity is too low, we may need
to crawl more often.

The challenge in this approach to anomaly detection is
in developing similarity metrics that (a) can be computed
in a reasonable time and in an automated way, and (b) are
useful for detecting the types of anomalies experienced in
practice. A metric that is too sensitive or sensitive to differ-
ences that do not impact the quality of search results will
yield too many false positives. Similarly, a metric that is not
sensitive enough will yield too many false negatives. There
is also the challenge of selecting the proper thresholds that
tell us when similarities are “too high” or “too low.”

In this paper, we focus on anomaly detection for the web
graph component. In Sect. 3, we provide examples of anom-
alies that we target. They are similar to real anomalies we
have observed at Yahoo!. Anomaly detection in other com-
ponents is also as important and challenging but not covered
here. However, note that crawl anomalies will often also be
reflected as web graph anomalies, so our web graph work
will also be helpful for dealing with many crawl issues. To
the best of our knowledge, this is the first work in the area
that addresses the anomaly detection problem for web graph
component through the calculation of similarities or differ-
ences between consecutive snapshots.

We note that our work is empirical in nature. We take a
variety of existing similarity schemes from other areas and
apply them to our problem. The domain specificity or high
time complexity of these schemes prevent us from applying
them directly to web graphs in general and huge web graphs
in particular. Hence, we modify and extend the schemes to
make them work on the very large web graphs we have in
our dataset.

To summarize, the main contributions of this paper are:

e We propose detecting anomalies through their impact on
the web graph rather than their causes (Sect. 3).

e We propose using graph similarity for web graphs as a
way to detect anomalies (Sect. 4);

e We present five scalable schemes for graph similarity
(Sect. 5).

e We propose a locality sensitive hashing (LSH) function
for web graphs in the context of our Signature Similarity
scheme (Sect. 5.5);

e We provide experimental results using real web graphs
from Yahoo!, and anomalies based on actual problems ob-
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served at Yahoo!, and compare all the presented schemes
and discuss their pros and cons (Sect. 6).

2 Web graphs

Web graphs are useful to compute properties that need a
global view. PageRank is one such property but there are
usually hundreds of similar properties.

Web graphs from crawlers are at page level, called page
graphs. By aggregating the vertices on some property, e.g.,
host, language, or domain, a hierarchy of web graphs can be
created. The resulting graphs are often smaller in size, al-
lowing efficient processing. In this paper, we focus on host-
level web graphs, called host graphs. For some advantages
of host graphs, see [23].

A host graph G = {V, E} is a directed, weighted graph
whose vertices V correspond to web hosts, and whose
weighted edges E aggregate the hyperlinks of web pages
in these hosts. G has an edge (u, v) if there is at least one
hyperlink from a web page of host u to a web page of host v.
Each vertex and edge can have one or more weights. For the
purpose of this paper, the weight w(u, v) of an edge (u, v) is
equal to the number of hyperlinks from pages of u to pages
of v.

A subgraph G’ of a web graph G is a directed, weighted
graph whose vertices and edges are subsets of G. We rep-
resent subgraph G’ as G’ = {V', E’}, where V/ C V and
E’' C E. We call G’ a vertex-induced subgraph of G if G’
includes all the edges of E whose endpoints are in V’. In the
rest of the paper, we refer to the vertex-induced subgraph of
vertices V' simply as the subgraph of G with vertices V'.

Besides its topological features, a web graph has called
properties. These properties can be numerical (scalars or
distributions) or categorical (labels or lists). Some vertex
properties that we will focus on are PageRank of a vertex
as a “quality” score (computed in a host graph [12]), the list
of hosts pointing to the vertex (called its inlinks), and the list
of hosts the vertex is pointing to (called its outlinks).

3 Potential anomalies

Since our goal is anomaly detection, we now give examples
of the types of anomalies we are interested in detecting. For
illustration, we will use the Tiny Web Graph in Fig. 1(a)
that contains 8 vertices and 15 edges. A search engine starts
crawling from a web page of host A and discovers the rest
of the hosts-vertices of the Tiny Web Graph. For each ver-
tex v the search engine keeps three properties: name of the
vertex, outlinks and quality g (v), computed from its PageR-
ank. The graph is stored in a column-oriented representation
on a 4-machine computer cluster. The files on each machine
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(a) Tiny Web Graph.

(b) Representation.

Fig. 1 The Tiny Web Graph and its columnwise representation. The
graph on the left has 8 vertices, from A to H, and 15 edges. The repre-
sentation on the right shows the vertices, their outlinks, their quality or
PageRank scores, and how they are stored in a distributed system with
4 machines

correspond to vertex properties: the vertex name, outlinks,
and quality. Each machine contains only a fragment (rows)
of each file that corresponds to two vertices.

An anomaly occurs when the stored graph representation
does not reflect the topology and the properties of the actual
web graph at crawl time. An anomaly can be caused by ei-
ther the problems in the search engine infrastructure, e.g.,
hardware failures, crawler bugs and web graph data man-
agement code bugs, or from problems in the public Internet
infrastructure, e.g., host failures and network outages. Al-
though there are ways to handle and fix the problems that
arise individually by each of these causes, the problem of
monitoring all the infrastructure that is involved in the web
graph creation and verifying its proper function is expensive
and has no guaranteed overall solution. In this paper we fo-
cus on the effects anomalies have on web graphs rather than
on the causes of anomalies. Our goal is either to detect an
anomaly even if we are unaware of its cause or quantify the
effect of an anomaly if we are aware of it. Web graph simi-
larity helps for both goals.

Next we provide a classification of anomalies into three
categories based on their impact on the web graph represen-
tation with respect to the actual web graph. For each cate-
gory we provide some anecdotal example causes and illus-
tration in Fig. 2(a).

Missing connected subgraph Anomalies during crawling
or machine failures in the storage cluster may result in a

stored web graph that lacks a connected subgraph of the ac-
tual web graph. In Fig. 2(a), an anomaly making host F un-
reachable results in missing the entire component of hosts
C,F,and H.

Missing vertices Suppose that machine 4 fails. There are
obviously many fault tolerance mechanisms that will re-
cover the data on the failed machine but let us assume the
worst case scenario that the data is lost. In this case, we will
lose all the information about vertices G and H as shown in
Fig. 2(b).

Note that the consequences of a machine failure can be
different based on how the vertices are distributed to the ma-
chines. If the distribution is such that each machine contains
vertices sharing a common property, say, the same country,
the failure will lead to the loss of part or all of this country’s
data. This case is similar to the removal of a subgraph from
the web graph that we discussed above. However, if the dis-
tribution is random, the failure will lead to “cuts” all over
the web graph. The problem gets more serious if the miss-
ing vertices are important vertices in that they have very high
rank in quality, or they are major authorities or hubs. For ex-
ample, failure of machine 3 is more serious than failure of
machine 4, since vertices £ and F have higher PageRank
values than G and H.

Connectivity change Connectivity change refers to anom-
alies where scalar graph properties such as the total numbers
of vertices and edges do not change but for some vertices,
the edges these vertices are adjacent to change. This anom-
aly may be caused by a variety of phenomena. For example,
the crawler may misinterpret the hyperlinks of some web
pages because of error encoding assumptions. In Fig. 2(c),
the crawler failing to discover the edges DA and EG end up
inventing two non-existent edges F'G and GH.

Note that even if the hyperlinks are correctly collected by
the crawler and the corresponding edges are correctly stored,
there is no guarantee that the code that is used to access
the web graph data is bug-free. For example, modern search
engines use column-orientation in flat fragmented files to
store graph data, since this approach has many advantages
for storing and processing search engine data [3, 7]. How-
ever, this approach requires the development of custom code

(a) Missing Connected Subgraph.

Fig. 2 Examples of anomalies acting on the tiny web graph

(b) Missing Random Vertices.

(c¢) Connectivity Change.
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to access the graph data, e.g., to fetch vertex names, to join
vertices with edges, etc. If there is bug in the code that joins
vertices with edges the search engine will rely on a graph
with altered edges.

A connectivity change is conceptually simple but is diffi-
cult to detect using scalar properties of web graphs. It may
also have drastic consequences for a real web graph, since
it alters the graph topology that affects the quality scores of
the edges in case of PageRank.

4 Web graph similarity
4.1 Problem formulation

We have a sequence of web graphs Gy, ..., G, built con-
secutively and we quantify the changes from one web graph
to the next. We do this by computing one or more similarity
scores between two consecutive web graphs, G; and G;41.
Similarity scores, when viewed along the time axis, create
a time series. Anomalies can be detected by comparing the
similarity score of two graphs against some threshold, or by
looking for unusual patterns in the time series.

4.2 Similarity requirements

A similarity function sim(G, G’) € [0, 1] has value 1 if G
and G’ are identical, and value O if G and G’ share no com-
mon features. The similarity function needs to satisfy the
following requirements to be useful for our domain:

1. Scalability. The similarity function must produce its re-
sult in linear or sublinear time with very small constant
factors. This requirement is needed due to the huge size
of web graphs.

2. Sensitivity. The similarity function must be more sensi-
tive to changes in high-quality vertices and their connec-
tivity. Changes in low-quality vertices are less important
and should have a significant impact on the similarity
computation only in cases where they affect a large pro-
portion of the web graph vertices.

3. Coverage. The similarity function must be sensitive to
changes in both topology and the different properties
of the web graph. Topological changes include intro-
duction of new hosts, eliminations of existing hosts and
changes in the hyperlinks of hosts web pages. As far as
the changes in properties, we are mainly concerned about
changes in the hosts’ quality scores.

The similarity computation schemes we propose are all
scalable by our choice and design. We use experimental
analysis over different anomaly scenarios to evaluate their
sensitivity and coverage for real web graphs.
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5 Computing similarities

The problem of comparing graphs or computing their sim-
ilarity has been an important problem with applications in
many areas, from biological networks to web searching. For
an overview, see the book [6] and two web documents [22,
24], or search on the Internet using the query “graph simi-
larity”, which returns many useful links in major search en-
gines. Naturally, the diversity of the areas has created differ-
ent approaches to graph similarity.

After carefully reviewing the families or types of pro-
posed schemes, we identified some families as the most
promising for our problem at hand. Within each family, we
then developed a particular algorithm that was scalable and
would be sensitive to anomalies with high coverage. We dis-
cuss these algorithms in Sects. 5.1, 5.2 and 5.3.

In Sects. 5.4 and 5.5, we propose two new approaches to
graph similarity [10, 11]. They are inspired by two success-
ful methods for document similarity: the shingling method
and the random projection based method. The latter relies on
a novel application of a Locality Sensitive Hashing (LSH)
function to web graphs.

In the following five subsections, we first describe the
family of similarity schemes, then one or more existing al-
gorithms in the family, and then our particular proposed
algorithm adapted from that family. The families of graph
similarity schemes that we considered inappropriate for our
problem are briefly discussed in Sect. 7.

5.1 Vertex/edge overlap (VEO)

This family uses the rule that “two graphs are similar if they
share many vertices and/or edges”. Although this approach
seems to ignore the sensitivity and coverage requirements,
it is effective in detecting some type of anomalies that we
discuss in Sect. 6. Two main ways of computing this kind
of similarity is graph edit distance and the Jaccard index [5]
(as we apply to graphs). Graph edit distance [6] counts the
number of some operations on vertices and edges to trans-
form one graph to the other. The operations consist of in-
sertions, deletions, and in the case of labeled graphs, renam-
ings. The Jaccard index is one way to compute the overlap
between two graphs. It is defined as the intersections of ver-
tices/edges divided by the union of vertices/edges.

For this family, we defined the similarity of two graphs
G and G’ using a form of edit distance as

[VNVI|+|ENE

sim G,GH)=2 . 1
VEO(G G = 2V B 1 E] )

We can compute this measure by scanning the vertices
(time linear on |V |) and checking if each occurs in V' (and
similarly for E). If we assume that fetching a specific vertex
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or edge by name takes O(1) time, then this similarity compu-
tation takes O(|V |+ |V’| + | E| + | E’|) time. The algorithm
implementing this scheme is called the Vertex/Edge Overlap
Algorithm (VEO).

5.2 Vertex ranking (VR)

This family uses the rule that “two graphs are similar if the
rankings of their vertices are similar”. In this family, the ver-
tices are usually ranked using their qualities, and the similar-
ity of rankings is usually computed using a rank correlation
method such as Spearman’s rho (denoted p). Although rank
correlation is well known in the information retrieval field,
its application to graph similarity appears to be new. A very
related application, proposed in [4], is to the similarity of
ranking algorithms.

Our particular vertex ranking algorithm proceeds as fol-
lows. Let G = (V, E) and G’ = (V’, E’) be the two graphs
that we want to compare. For each graph we rank the ver-
tices using their quality (scores), producing a sorted list of
vertices. Then we find the correlation of the two lists using
a modified version of Spearman’s p. The modified version
satisfies the constraints that (1) the rank correlation needs to
be sensitive to quality and (2) it needs to work for partial
lists, i.e., the lists that are not permutations of each other. As
such, we define p as

2> pevuy Wo X (T — ”;)2

i G,GH)=1-—
simyg ( ) D

, @)

where 7, and 7, are the ranks of v in the sorted list for
G and G’, respectively, w, is the quality of v, and D is a
normalization factor that limits the maximum value of the
fraction to 1.

One subtleness is, what are the quality and rank of a ver-
tex if it does not exist in one of the graphs? Inspired by [13],
we resolve it as follows: If a vertex exists in both graphs, its
final quality is the average of its qualities from both graphs;
otherwise, its final quality is equal to its quality in whichever
graph it exists. Moreover, if a vertex does not exist in one
graph, say, G, its rank is equal to |V’| + 1. Vertices not in
|G| are handled analogously.

Given that vertex quality scores have been precomputed
and that the vector of vertices for one graph fits in mem-
ory, we can compare two graphs with one scan of their ver-
tex files and an expected running time O (|V|+ |V’|). If the
second condition fails, the computation can still be done in
linear time after the ranked lists are joined on disk based on
vertex names. The algorithm implementing this scheme is
called the Vertex Ranking Algorithm (VR).

5.3 Vertex/edge vector similarity (VS)

This family uses the rule that “two graphs are similar if
their node/edge weight vectors are close”. For this fam-
ily, the weights usually represent quality. More formally, if

v, U2, ... are the vertices shared by two graphs G and G/,
then we build vectors ¢ and g’ for these graphs, respectively,
where ¢; is the quality score of vertex v; in graph G. Then
we compare the two vectors by computing the average dif-
ference between ¢ and ¢’ for all i. For some works that use
similar approaches, see [6, 20, 21, 25].

For our particular similarity measure, we compare edges,
giving each edge a weight that captures the local topology.
As a base, for edge (u,v), we compute weight
#outlinks(u, v) as the number of outlinks from u to v, where
these vertices can be pages, hosts, or domains. Then we
compute y (u, v) to capture the relative importance of this
edge to other edges leaving node u:

qu X #outlinks(u, v)
y(u,v) = . - (3
Z{v’:(u,v’)EE} #Outllnks(u, v )

where ¢, gives the quality of u.

This approach assigns higher weights to edges that start
from high quality vertices. Using these y weights, we cal-
culate the similarity between two graphs G and G’ as
3 _ly@.v) =y w.v)]
(u,0)€EVE" max(y (u,v),y’ (u,v))

] G,GH=1-
simys( ) EUE

“

where the denominator is a normalization factor.

In cases where an edge (u, v) appears in G but not in G/,
we let y'(u, v) = 0 to set the numerator to one, resulting in
a lower similarity between G and G'. The case where (u, v)
is in G’ but not in G is handled analogously.

This similarity computation runs in O (|E| + |E’|) time.
The algorithm implementing this scheme is called the Vector
Similarity Algorithm (VS).

5.4 Sequence similarity (SeqS)

This family uses the rule that “two graphs are similar if they
share many sequences or short paths of vertices and edges”.
The algorithms in this family are used to compare objects
that are naturally sequenced, e.g., documents that consist
of a sequence of words. For example, shingling [5] is fre-
quently used to detect near-duplicate web pages [16].

Because sequence comparison algorithms are efficient
and can operate on large inputs, we want to consider them
as candidates for our problem. Thus, here we use a sequence
comparison scheme, shingling in particular, to compare two
graphs. The main challenge for us is converting the graphs
into linear sequences that can then be compared using shin-
gling. As far as we know, our proposal is the first applica-
tion of shingling to graph similarity. However, in a related
work [15], shingling was applied to the detection of large
dense subgraphs.

We start the description of our Sequence Similarity Al-
gorithm by reviewing the base shingling scheme of [5]. We

@ Springer



24

J Internet Serv Appl (2010) 1: 19-30

then provide a function ¢ that transforms a graph into the
input required by shingling, i.e., into a sequence of tokens.
The goal for our function ¢ is to produce a sequence that is
strongly correlated with the features of the graph so that the
sequence similarity reflects graph similarity.

The shingling method works as follows. First, we con-
vert every document into a canonical sequence of tokens
T ={t1,...,t,). We then extract all the subsequences of k
tokens (k = 3 for this work) and fingerprint them using a
fingerprinting mechanism that maps each token to a number
in a set U. Each of the n — k + 1 fingerprints so obtained
are called shingles. We use S(T') to represent the shingles
resulting from the token sequence 7. The similarity of two
sequences T and 7, and consequently the similarity of the
respective documents d and d’, is computed by the ratio
%ﬁgg , which is the Jaccard index.

For storage and performance reasons, the shingling
scheme actually uses an unbiased estimate to approximate
the ratio above. We choose m random permutation functions
wi: U — U,1 <i<m and apply them to the elements of
S(T). From the ith permutation ; (S(T)) of S(T) we keep
the minimum element min(s; S(7)), which is called the ith
minvalue. In this way, we end up with an m-dimensional
vector w for each document. The similarity estimate for
documents d and d’ is equal to the percentage of agreeing
entries in vectors w and w'.

We now turn to the description of our proposed function
¢ that has a graph as its input and produces a sequence ele-
ments out of it. In general, the problem of converting a graph
into a serial representation such that strongly correlated ver-
tices are placed next to each other is known as the graph se-
riation problem [21]; the exact algorithms for this problem
has exponential complexity [21]. To satisfy our similarity
requirements from Sect. 4, we propose the following heuris-
tic algorithm called the walk algorithm to compute ¢. This
algorithm is similar to the one in [21].

The walk algorithm starts off by visiting the vertex as-
sociated with the highest quality, and repeats the following
process: (i) Among the unvisited neighbors reachable from
the currently visited vertex, visit the neighbor with the high-
est quality; (ii) If the currently visited vertex does not have
any unvisited neighbors, jump to the vertex that has the high-
est quality among all the unvisited vertices.

To illustrate this algorithm, with Fig. 1, we start with the
highest quality vertex F. Then we do a traversal following
the links that lead to the highest quality (unvisited) vertices.
The highest quality neighbor of F is E, so we visit it next.
From there we visit E’s highest quality neighbor, D. After
D we visit A. Since A’s neighbors have all been visited,
we jump to the highest quality unvisited vertex, C or H.
We pick C at random. From C we cannot reach unvisited
vertices, so we again jump, this time to H. From H we jump
to B and then we jump to the last unvisited node G. The final
serializationis F, E,D,A,C,H, B, G.
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Given the quality values of the vertices, the walk algo-
rithm runs linearly in the size of the graph. After the walk
algorithm, the calculation of shingles and of the vector with
the minvalues takes time proportional to the number of ver-
tices of the graph. The algorithm implementing this scheme
is called the Sequence Similarity Algorithm (SeqS).

5.5 Signature similarity (SS)

This family is based on the rule that “two objects are similar
if their signatures are similar”. Instead of converting a graph
into a sequence, we convert it into a ser of features, which
are then randomly projected into a smaller-dimensionality
feature space (signatures) for comparison.

There are many ways to compare sets of features, but here
we focus on a scheme called SimHash; it is originally devel-
oped for high-dimensional vector comparison [8] and is ap-
plied to documents comparison [16]. Again, our challenge
is in converting our graphs into appropriate sets of features
to be input into the SimHash algorithm.

The SimHash algorithm works as follows. Initially, a
document d is transformed to a set of weighted features
L = {(t;, w;)} where feature #; is a token of d and w; is
its frequency in d. Tokens are also obtained as in shingling
and appear only once in set L. This weighted set can be
viewed as a multidimensional vector. The dimensions of the
vector space are defined by the distinct features that can be
found across all documents. Using this weighted set as in-
put, SimHash provides a b-bit fingerprint as follows. Every
token ¢; is randomly projected into a b-dimensional space by
randomly choosing b entries from {—w;, +w;}. We perform
this projection using a hash function to obtain the digest for
every token ¢;. The length of the digest must be equal to b
bits (or greater, since we can crop it and reduce it to b bits).
We associate +w; with every 1 and —w; with every O of the
digest. The final fingerprint of the document is produced by
summing up all the b-dimensional vectors to a single vector
h of length b and then converting it to a bit string as follows:
the ith entry of 4 is set to 1 if the entry is positive and O if
it is negative. The similarity of two documents with finger-
prints & and 4’ is assumed to be equal to the percentage of
agreeing bits in & and h’.

The size of the final fingerprint depends on the size of
the digest of the hash function we apply to every token. We
used 512 bits, which was the largest digest available in the
programming language libraries we used (see Sect. 6).

We can view SimHash as a method that provides a simi-
larity estimate between two weighted sets L and L’ as

Hamming(h, h')

SimsimHash(L, L") =1 — b , 5
where i and k' are the b-bit vectors corresponding to L

and L', respectively, and Hamming(h,h’) is equal to the
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number of bit positions in 4 and &’ for which the correspond-
ing bits are different.

We now move to the problem of defining an appropriate
function ¢ that transforms a graph into a weighted set L.
Function ¢ returns for each graph a set of weighted features
that represent the properties of the graph. Using function ¢,
the similarity between two graphs is then expressed as

simss (G, G') = simsimHash (¢ (G), ¢(G")), (6)

which is in turn given by (5).

To satisfy our similarity requirements from Sect. 4, we
selected the vertices and edges as the features. We assign to a
vertex v its quality, and to an edge (u, v) the quality of vertex
u normalized by the number of its outlinks, as in Sect. 5.3.
For example, the set of weighted features for subgraph G’
containing only vertices C, F' and H of Fig. 1 is:

L(G') = {(C,0.51), (CF,0.51), (F, 1.29),
(FC,1.29 x 0.5), (FH, 1.29 x 0.5),
(H,0.51), (HF,0.51)}. (7

Since the features of the weighted set are vertices and edges
of the graph, we penalize or reward the absence or presence
of such common features among different graphs. The use
of quality as a weight attributes to every vertex and edge the
proper significance from a search engine perspective. The
disappearance of a high-quality vertex of a web graph in a
new snapshot is penalized more than the disappearance of
low-quality vertices.

Assuming again that the quality scores of the vertices
of the graph are precomputed, the calculation of its finger-
print requires just one scan of its edge file. This takes time
O(|E]). Then, given the fingerprints of two graphs we can
compare them in O (b) time, which is O(1) as b is a con-
stant. The algorithm implementing this scheme is called the
Signature Similarity Algorithm (SS).

6 Experiments and results

We performed experiments to evaluate the similarity mea-
sures and algorithms presented in Sect. 5. The experimental
section is divided into three subsections.

In Sect. 6.1, we describe the dataset that we used for our
experiments and introduce some notation. We also provide
some basic statistics about our dataset.

In Sect. 6.2, we experimentally show how similarity
varies over time for the different similarity measures and al-
gorithms. This analysis helps us determine the thresholds
that identify “significant” changes in a graph.

Finally, in Sect. 6.3, we evaluate how successful the al-
gorithms are in detecting anomalies. In particular, we check

whether significant changes in a web graph affect its similar-
ity score relative to its predecessor graph so that an anomaly
can be detected.

6.1 Dataset and setup

For our experiments, we selected a sequence of host web
graphs generated by the Yahoo! search engine over a month
long period in 2007. These graphs come from crawls that
were performed a few times a day to track some “impor-
tant” web sites with fast changing content such as news sites.
Anomaly detection in such graphs is more challenging than
in regular web graphs: the fast evolution of the graph, e.g.,
with addition of new vertices and edges, with elimination
of old edges, etc., makes it difficult to determine whether
changes in the crawled web graph reflect changes in the ac-
tual web graph or are caused by an anomaly.

We refer to a web graph obtained on the Xth day of the
month as GX. Since for each day we had multiple graphs,
we append lower-case letters to distinguish the ones we
chose to use. For example, G18a and G18b are two web
graphs built on the 18th day consecutively.

In Fig. 3(a), we show the size of our web graphs on a
daily basis. The average size was around several tens of mil-
lions. For each day X, we report the number of average num-
ber of vertices and edges in graphs GXa, GXb, ... normal-
ized by the number of edges of the first graph of our dataset
V(Gla).

In Fig. 3(b), we plot the out-degree distribution of ver-
tices of the web graph G29b, normalized by the number of
edges in this graph. Both axes are in logarithmic scale. The
plot confirms that the number of outlinks per host follows
a distribution similar to the power law distribution; a few
hosts have a huge number of outlinks whereas almost 60%
of hosts have at most one outlink.

In the last figure, Fig. 3(c), we plot the evolution of the
web graphs over time. This figure shows the percentage of
overlapping vertices and edges between graphs obtained x
days apart, as a function of x. Note that x has decimal values
due to having multiple graphs per day. We calculated the
overlap between the vertices and edges of two graphs G and
G’ with the Jaccard index.

This figure shows that the overlap for both vertices and
edges decreases significantly for graphs less than 5 days
apart but far more slowly for larger time differences. The
overlap between two graphs built on the same day is higher
than 90% but it drops to less than 50% in five days. This
rapid decrease in overlap may be attributed to these hosts
having fairly fast changing content as in news and blog
hosts.

The Yahoo! search engine has reported no anomalies in
the software and hardware used to obtain these web graphs.
Also, since all of them were successfully used by the search
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Fig. 3 Statistics of the host web graphs in our dataset. The overlap computation was done using the Jaccard index. The time difference between

two graphs refers to the difference between their build times

engine, it is reasonable to assume they had no anomalies.
Thus, we may consider the information in Figs. 3(a) and (c)
as areliable evidence of the evolution of the web graphs over
time.

We performed the calculation of all the similarity mea-
sures locally using a single machine with CloverTownLLV
1.86 GHz processor and 6 GB RAM memory. We imple-
mented all the algorithms in Perl and Java. Each similar-
ity computation for one pair of graphs took approximately
20 minutes (wall time), independent of the algorithm used.
The running times were dominated by the input—output time
spent during the linear scan over the edges file, which is why
the running times were similar for all schemes. For this rea-
son, we do not discuss performance further.

6.2 Definition of similarity threshold

A similarity threshold ¢ for an algorithm A is used to iden-
tify an anomaly. If two graphs that are expected to be sim-
ilar, e.g., generated a day apart, have similarity less than
t, then we will suspect an anomaly has corrupted one of
the graphs. To determine similarity thresholds automatically
and in a statistically sound way, we use in our production
implementation both non-parametric and parametric meth-
ods from time series forecasting, e.g., see [9, 14]. However,
the discussion of these methods is beyond the scope of this
paper; we refer to [19] for a longer discussion on our selec-
tion. Here, we use a simple method with a fixed threshold ¢
for each algorithm that works very well in practice: We set
the threshold to the similarity score between two graphs that
are built more than one day apart.

6.3 Detecting anomalies

In this section, we try to address the following question: Can
our similarity measures be used to detect common anom-
alies and quantify their extent (as discussed in Sect. 3)?
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In the following experiments, we select pairs of consec-
utive web graphs GXa and GXb of the same day X and
we inject different anomalies into GXb to get GXb'. We
study the impact of the injected anomalies on the similarity
between the two web graphs and the sensitivity of the dif-
ferent algorithms to anomalies. Our goal is to see whether
we can detect the anomalies in the corrupted GXb’ and es-
timate their extent, using the similarity score between G Xa
and GXb' and the threshold ¢ from Sect. 6.2. Note that we
are comparing G Xb' to G Xa, notto GXb, since G Xb is the
one that has been corrupted and in practice is not available
in its uncorrupted form.

The anomalies that we study are missing connected sub-
graph (Sect. 6.3.1), missing random vertices (Sect. 6.3.2)
and connectivity change (Sect. 6.3.3). Our results for each
kind of anomaly have two parts:

e We show how each similarity measure captures the effects
of an anomaly at different extents. This part of our results
provides an insight to the sensitivity and the coverage of
each similarity measure that is independent from the ap-
plication where the measures will be used.

e We also discuss whether a corrupted web graph is accept-
able or not and decide whether a similarity measure is
good or bad at detecting each anomaly. This part of our
results is application dependent and our conclusions are
not necessarily valid in different applications.

6.3.1 Missing connected subgraph

We use five pairs of consecutive graphs to simulate the
anomaly of missing a connected subgraph: Gla-Glb,
G18a-G18b, G29a-G29b, G30a—G30b, and G31a—-G31b.

Let a consecutive pair be GXa-GXb. We created three
corrupted versions of every G Xb by eliminating connected
subgraphs that account approximately for 3.5%, 7.0%,
10.5% of its vertices, corresponding to a small, medium,
and large amount of corruption, respectively. We refer to the
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Fig. 4 Similarity of a web graph with its corrupted versions due to
missing connected subgraphs. The x-axis (log-scale) shows the per-
centage of the missing vertices and the y-axis shows the ratio of the
similarity scores

resulting web graphs as G Xb100—q%, Where ¢ is the percent-
age of the eliminated vertices of GXb. To eliminate highly
connected subgraphs, we removed vertices that belong to
specific country domain(s). To create the corrupted version
with 3.5%, 7%, 10.5% of missing vertices, we removed ver-
tices of two, one, and three country domains, respectively.
We selected domains from the top ranked domains when we
sorted them in decreasing order of their contribution to the
total number of vertices.

We calculated the similarity of every corrupted version of
G XD with the corresponding G Xa and compared the result
with the similarity of the original web graphs of the pairs,
as shown in Fig. 4. Each point on a plot shows the average
similarity of an algorithm over the five different pairs. The
deviation of similarities around the average is small for all
algorithms and we do not report it here to make the plot
easier to read.

We observe that the plots of all algorithms decrease
monotonically with the extent of changes, but their slopes
vary. The Vertex Ranking plot has the steepest descent while
the Vertex/Edge Overlap plot decreases more gradually than
that of any other algorithm does. Except for the Sequence
Similarity and Vertex/Edge Overlap, all the other algorithms
successfully detect the two largest corruptions as anomalies.
Some algorithms do also detect the smallest corruption as an
anomaly but the similarity score is too close to the similarity
threshold to make the outcome reliable. Moreover, missing
the smallest one is acceptable as the overlap between con-
secutive web graphs is already in 90-95% range.

6.3.2 Missing random vertices

We used five pairs of consecutive graphs Gla—-G1b, G18a—
G18b, G29a-G29b, G30a—-G30b, G31a-G31b, and we
simulated the removal of random vertices from the GXb
graph of each pair. We experimented with different numbers
of vertices and vertices of different significance. First, we
discuss how we selected the vertices we removed and then
we provide the results of our experiments.

We removed from the graph GXb exactly 3.5%, 7.0%
and 10.5% of its vertices to create the graphs G Xbog 59,
G Xbo3q, and G Xbgg 59, respectively. However, for each
percentage, we removed vertices of low, medium, or high
quality, where each case is denoted by appending the let-
ters L, M, or H to the name of the resulting graph. For ex-
ample, we removed three different sets of 7.0% vertices of
the web graph G29b to create G29b939,1., G29b939,p and
G29b939, .

We used reservoir sampling to obtain uniformly random
samples of fixed size. To bias to the selection of vertices
to form GXb,q with different aggregate quality scores, we
performed the following process: we sorted the vertices of
G Xb in the descending order of their quality scores and di-
vided the resulting list into three subsets. The high, medium,
and low quality subsets contained n, 2n, and 4n vertices of
GXb so that n + 2n + 4n = |Vgxp|. The increasing sizes
of subsets were motivated by the power law distribution of
the quality scores [1]. Finally, we removed vertices with the
given percentages from each subset separately.

Before presenting the experimental results, we comment
briefly on which corrupted graphs were considered to have
significant anomalies. On the one hand, we consider the
elimination of high quality vertices as a significant anomaly
for all different percentages of the removed vertices (3.5—
10.5%). Note that only 3.5% vertices of high quality account
for approximately 17% of the aggregate quality score of the
web graph. On the other hand, the elimination of medium
and low quality vertices should affect the similarity score,
but we believe the resulting graph should be considered as
not corrupted. Due to the power law distribution of the qual-
ity scores, both low and medium quality vertices of any per-
centage (3.5-10.5%) account for a small portion of the ag-
gregate quality score of the whole graph. In the worst case of
removal of 10.5% vertices of medium quality, the removed
quality scores account for approximately 6% of the aggre-
gate quality score of the web graph. Given that the overlap
of vertices and edges between consecutive graphs with no
anomalies is in 90-95% range, e.g., see Fig. 3(c), we can
still use the resulting web graph without major problems.

Figure 5 shows our experimental results. We used the
same corrupted versions of the web graph GXb to test
the different algorithms. Each plot again looks at one sim-
ilarity algorithm. The x-axis of each plot shows the ratio
of the aggregate quality score of the corrupted subgraph
GXbyay,Y € {L,M, H} to the aggregate quality score of
G Xb. The y-axis shows the similarity of a corrupted version
of GXb with G Xa. There are three plots in each graph, each
of the them corresponds to the three different percentages ¢
of removed vertices (3.5%, 7.0%, and 10.5%). There are also
two additional straight dashed lines that show the similarity
score of G Xa with the original GXb and the threshold ¢ of
each algorithm for comparison purposes.
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Fig. 5 Similarity of a web graph with its corrupted versions due to missing random vertices. The x-axis shows the percentage of the missing

vertices and the y-axis shows the ratio of the similarity scores

We see that Vector Similarity, Vertex/Edge Overlap, and
Signature Similarity depend on the significance of changes
in the desired way. They give acceptable or nearly accept-
able similarity values for changes that affect only insignif-
icant vertices (with Low and Medium quality scores). We
see in Fig. 5(c) and in Fig. 5(a) that Vertex Similarity and
Vertex/Edge Overlap give similarity scores above or slightly
below the threshold for the comparisons of GXa with all
corrupted versions of GXb with the missing vertices of
Low and Medium quality except from G Xbjo.5%. Signa-
ture Similarity, shown in Fig. 5(e), gives similarity scores
above the threshold for all such comparisons. Although we
expected this behavior from Vertex Similarity and Signa-
ture Similarity, as they consider explicitly weights for edges
and vertices associated with the quality scores of vertices,
Vertex/Edge Overlap seems to perform unexpectedly well.
We had expected that a similarity measure like Vertex/Edge
Overlap that considers only the overlap of features between
two graphs would not discriminate between the removal of
significant and non-significant vertices. However, the per-
formance of Vertex/Edge Overlap is determined by the way
we selected the removed vertices. When we selected vertices
with high quality score, we implicitly selected vertices with
large number of edges. Since the number of edges is 10:1 to
the number of vertices the calculation of the ratio of union
to intersection of vertices and edges is dominated by the cor-
responding ratio of edges. If we had performed the random

@ Springer

selection of the subgraph using random selection of edges,
Vertex/Edge Overlap would not have been as successful.

On the contrary, Vertex Ranking and Sequence Similar-
ity showed undesired high sensitivity even in small changes.
We see in Fig. 5(b) and Fig. 5(d) that these algorithms give
similarity scores below the threshold for all corrupted ver-
sions of G Xb. These versions include web graphs with only
minor changes such as missing 3.5% of low quality vertices
of the original graph. This sensitivity would not allow us in a
real case to use a web graph where 3.5% of insignificant ver-
tices were missing, even though such a web graph includes
most of the desired features to be used by a search engine.

To sum up, Signature Similarity has the desired sensi-
tivity at anomalies of different significance, and that the
behavior of Vector Similarity and Vertex/Edge Overlap is
close to the desired one. In contrast, Vertex Ranking and
Sequence Similarity fail to discern significant from insignif-
icant anomalies.

6.3.3 Connectivity change

We simulated a connectivity change by exchanging outlinks
between vertices. In particular we assumed that links are
stored by column as discussed in Sect. 3: there is one column
for the first outlink of each vertex, another column for the
second outlink and so on. To create a corrupted web graph
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we skipped the first row of the ith outlinks column, chang-
ing the ith outlink of all vertices in the graph. For example,
if we skip the 3rd outlinks column in the Tiny Web Graph of
Fig. 1(a) we will replace edges DE, EG and F H with EE
(self-edge that we can ignore), F'G and G H, respectively.

We used five different pairs of consecutive graphs, each
pair obtained on a separate day. We simulated the same
anomalies in each pair. Let a pair of consecutive subgraphs
be GXa—-GXb. We created four different corrupted versions
of G X by skipping the rows in the ith outlinks column. Let
us call such a column a “corrupted column”. We named the
resulting corrupted graphs GXbgs;, i = 1,...,4, where i
indicates the index of the corrupted column.

Skipping a single row seems like a simple anomaly but
it can result in drastic changes in the topology of a web
graph. For example, corrupting the first column affects ap-
proximately 60% of the hosts, since we saw in Sect. 6.1
that approximately 40% of the hosts have no outlinks. Sim-
ilarly, corrupting the second column affects approximately
40% of the hosts since 40% of them have no outlinks and
20% of them have exactly one outlink (see Fig. 3(b)). Cor-
rupting the columns with higher indexes affects significantly
smaller number of hosts due to the power law distribution of
out-degrees. We chose to skip only the first four columns to
simulate significant anomalies on the web graphs.

We then calculated the similarities sim(G Xa, G Xbgs;),
i =1,...,4, of the corrupted web graphs to GXa. We
present the results only for the pair G29a—-G29b since
the results of other pairs were similar. Fig. 6 shows the
ratios of the computed similarities with the similarity
sim(G Xa, GXb) of the original web graphs of our pair. The
x-axis of Fig. 6 shows the percentage of affected edges of
G XD in each case. There are five plots in the plot, one for
each algorithm. Every plot has four points that correspond
to the similarity of G Xa to each of the four G X brs; graphs.

These results confirm that Vector Similarity, Sequence
Similarity, and Signature Similarity are sensitive to topo-
logical changes, as they detect this anomaly. In case of Se-
quence Similarity, topological changes lead the walk algo-

rithm to different hops while traversing the graph. In cases
of the other two algorithms, each edge is assigned weights
that are explicitly affected by the significance of its source
vertex, which in the case of PageRank as the quality score
is also affected by the topology of the graph. Finally, both
Vertex/Edge Overlap and Vertex Ranking fail to detect the
anomaly, indicating their lack of sensitivity to the topologi-
cal changes especially when the anomaly results in a small
drop in the vertex/edge overlap.

7 Other related work

As discussed in Sect. 5, graph comparison and graph sim-
ilarity has received a lot of attention in different domains.
The book [6] provides a good overview.

Some of the existing similarity schemes were discussed
in Sect. 5 as the basis for our own proposed algorithms. Be-
yond those schemes, there are other schemes that we think
are either not applicable to our problem or whose solutions
do not scale to the size of the web. Here we summarize two
of these well-known approaches.

Graph isomorphism This approach, which is discussed at
length in [6], is based on the rule that “two graphs are sim-
ilar if they are the same (up to labels) or one is contained
in the other”. In other words, this approach tries to find out
if two graphs are isomorphic to each other (graph isomor-
phism problem) or one is isomorphic to a subgraph of the
other (subgraph isomorphism problem). The former prob-
lem is believed to be NP-Complete, and the latter is prov-
ably NP-Complete. This approach is not applicable to web
graph similarity as isomorphism is too strong a requirement
for web graph comparison. Moreover, as the current exact
algorithms for this approach all take exponential time, they
cannot be applied to real web graphs at all.

Neighborhood similarity This approach is built upon the
notion of vertex similarity, which in turn is based on the
rule that “two vertices are similar if their neighbors are simi-
lar”. This rule appears to have been independently proposed
by [2, 17, 18]. These references proposed different ways of
computing similarity scores for pairs of vertices. For some
of these references, it is also possible to compute a similar-
ity score for graphs once a similarity score for vertex pairs
is known. The proposed algorithms have all been iterative,
usually involving a fixpoint computation. They are also ex-
pensive as their running times are at least quadratic in the
number of vertices of one or both graphs. Thus we believe
they are not appropriate for our problem either.
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Table 1 Effectiveness of similarity schemes in detecting anomalies.
Signature Similarity appears to be the most effective among these
schemes

Scheme Anomaly

Row Missing Missing

skipping connected random
Vertex ranking bad very good bad
Vector similarity good very good good
Vertex/edge overlap bad very good good
Sequence similarity very good good bad
Signature similarity very good very good very good

8 Conclusions

Web graphs are at the heart of search engines. Many com-
puters (both internal to the search organization and external
to it) are involved in its computation. They are massive and
stored on many computers. Because of these complexities
many things can go wrong and such anomalies are difficult
to detect.

Table 1 summarizes the results of our experiments on
real web graphs. Each row of the table refers to a different
similarity scheme and each column to a different family of
anomalies. Of the five schemes tested, Signature Similarity
performed the best followed by Vector Similarity; these two
schemes satisfy all three requirements of scalability, sensi-
tivity and coverage. The other three schemes, although they
can scale to large web graphs, failed to detect anomalies of
certain types.

The common feature of the two successful schemes is
the use of appropriately weighted web graph features. The
proposed algorithms are independent from the weighting
schema that is used and, hence, we believe that they can be
effective in anomalies that are not studied here. Our future
work will include research on feature selection and weight-
ing schemas for the detection of different types of anomalies
in the web graph component of search engine.
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