

Journal of
Information
Systems
Education

Volume 35

Issue 2
Spring 2024

Cognitive Aspects in Problem Solving: The Case of a Data
Structures Course for IS Students

Orly Barzilai, Sofia Sherman, Moshe Leiba, and Hadar Spiegel

Recommended Citation: Barzilai, O., Sherman, S., Leiba, M., & Spiegel, H. (2024).
Cognitive Aspects in Problem Solving: The Case of a Data Structures Course for IS
Students. Journal of Information Systems Education, 35(2), 175-188.
https://doi.org/10.62273/JJUB4136

Article Link: https://jise.org/Volume35/n2/JISE2024v35n2pp175-188.html

Received: March 13, 2023
First Decision: May 5, 2023
Accepted: September 18, 2023
Published: June 15, 2024

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/JJUB4136
https://jise.org/Volume35/n2/JISE2024v35n2pp175-188.html
https://jise.org/

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

175

Cognitive Aspects in Problem Solving: The Case of a Data
Structures Course for IS Students

Orly Barzilai
Sofia Sherman
Moshe Leiba

Hadar Spiegel
School of Information Systems

The Academic College of Tel Aviv Yafo
Tel Aviv Yafo, Israel

orlyba@mta.ac.il, sofiash@mta.ac.il, mosheli@mta.ac.il, hadarsp@mta.ac.il

ABSTRACT

Data Structures and Algorithms (DS) is a basic computer science course that is a prerequisite for taking advanced information
systems (IS) curriculum courses. The course aims to teach students how to analyze a problem, design a solution, and implement it
using pseudocode to construct knowledge and develop the necessary skills for algorithmic problem solving and abstract thinking.
While the literature acknowledges the difficulty of this course, few references were found that examine the process students undergo
while solving DS algorithmic problems. The study’s objective is to explore and describe IS students’ problem-solving processes
and challenges requiring a high level of abstract thinking in a “black box” approach. During the study, 13 students were observed
while solving a complex problem, using “think aloud” (TA) techniques. Each observation was recorded, transcribed, and iteratively
analyzed using principles of provisional coding in qualitative data analysis. The findings suggest that the quality and correctness
of the solutions depend on three main factors: abstract thinking, flexibility applied during the solution process, and an absence of
misconceptions related to concepts and the basic understanding of the problem. The students’ levels of abstract thinking also
influenced the quality of visualization used while trying to solve the problem. This study’s findings may raise the awareness of DS
course designers and instructors regarding the importance of the role of abstract thinking, possible misconceptions, and strategies
used in problem solving as factors influencing students’ ability to solve complex problems.

Keywords: Data structures course, Problem-solving process, Complex algorithmic problems, Abstract thinking, Qualitative study

1. INTRODUCTION

The “Data Structures and Algorithms” (DS) course consists of
two main aspects: data structures and algorithms. Wang (2012)
defines the two aspects as complementary and inseparable for
the design of such a program, where “data structure” refers to
the problem of information presentation, and “algorithm” refers
to the problem of information processing.

The Overview Report of Computing Curricula (Leidig &
Salmela, 2020) identifies the DS course as a required course in
the information systems (IS) discipline, with emphasis on
finding solutions to programming problems, developing proof-
of-concept programs, and determining whether faster solutions
are feasible. The knowledge and skills this course offers to
students are often a prerequisite for taking advanced courses in
the IS curriculum (Databases, Data Retrieval, etc.) and may be
very useful to graduates in their career development (Kramer,
2007; Nazir et al., 2019; Wall & Knapp, 2014).

Problem solving is generally regarded as one of the most
important cognitive activities in everyday and professional
contexts. Most people are required to solve problems and are
rewarded for it (Jonassen, 2000). The term itself has been
extensively discussed during the second half of the 20th century
in general terms (e.g., Newell& Simon, 1972), mainly within

the field of mathematics (e.g., Pólya, 1945; Schoenfeld, 1992),
and later applied to the field of algorithmic problems in
computer science. For example, the later work of Çakıroğlu and
Mumcu (2020) examined problem-solving steps in block-based
programming environments.

In computer science problem solving, abstraction has been
recognized as a fundamental and essential principle (Haberman,
2004). According to Aharoni (2000b), during the DS course,
students are exposed to different levels of abstract thinking. The
abstract nature of the concepts taught in this course can often
be difficult for students in general to grasp (Odisho et al., 2016),
and for IS students in particular (Wall & Knapp, 2014). Several
studies identified the reasons for these difficulties as (1) low
motivation of students, especially for those who do not perceive
computational skills as being important (Meisalo et al., 1997;
Wang, 2012); (2) weak programming skills, which hinders the
implementation of the possible solution (Wang, 2012); and (3)
perceived difficulty of the course topics, which prevents
students from dealing with the tasks (Wall & Knapp, 2014).

Recognizing DS as a difficult field to teach and learn, DS
instructors have proposed various methods and techniques to
help students and teachers deal with different aspects of this
unit (e.g., Biernat, 1993; Hakulinen, 2011; Odisho et al, 2016;
Wang, 2012).

https://doi.org/10.62273/JJUB4136
mailto:orlyba@mta.ac.il
mailto:sofiash@mta.ac.il
mailto:mosheli@mta.ac.il
mailto:hadarsp@mta.ac.il

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

176

To that end, the literature refers to the challenges of
problem solving and abstract thinking from different points of
view, such as students’ solution evaluation (Ginat & Blau,
2017), prediction of abstract thinking level (Perrenet, 2010),
and the development of teaching methods (Ginat & Blau, 2017).
An early study investigated the thinking process of students
when dealing with simple data structures (Aharoni, 2000b) and
defined different abstraction levels.

In the current study, we focus on the students’ problem-
solving processes and challenges requiring a high level of
abstract thinking in a “black box” approach, an approach in
which the internal workings and implementations of a system
are ignored, to simplify the problem and make the system’s
general behavior easier to understand. The results of this study
may shed light on the problem-solving processes that students
experience and reveal possible deficiencies in their knowledge
or the orientation of their abstract thinking levels, which are
needed for successfully dealing with complex algorithmic
tasks. In addition, these results may serve as a basis for
developing teaching methodologies to scaffold students’
problem-solving processes and develop problem-solving skills.

2. LITERATURE REVIEW

2.1 Problem Solving
Problem solving can be regarded as any goal-directed sequence
of cognitive operations (Anderson, 1980) and occurs in a
situation where an individual responds to a problem that they
do not know how to solve with routine or familiar procedures.
Problem solving can be described as composed of three
dimensions: the problem, the process, and the outcome (Leiba,
2010). Pólya’s (1945) seminal work suggested that solving a
problem involves four phases (or episodes): understanding the
problem, developing a plan, carrying out the plan, and looking
back.

Çakıroğlu and Mumcu (2020) compared problem-solving
processes in programming environments to the framework
proposed by Pólya (1945). The research concluded that various
studies in computer science and mathematics addressed similar
problem-solving steps. Çakıroğlu and Mumcu (2020) identified
three steps performed during problem solving in block-based
programming environments: the “focus step,” containing the
reviewing, understanding, and thinking activities; the “fight
step,” containing the implementation activity; and the “finalize
step,” containing awareness regarding the solution. Focus,
fight, and finalize steps can occur in a sequential manner or, in
some cases, in a cyclic transition between these steps. When
students turn back from the fight to the focus step, their main
purpose is rethinking. When they turn back from the finalize to
the fight step, they mostly notice the mistakes.

Chinn et al. (2007) characterized the students’ problem-
solving process in DS by five stages: understanding the
problem, developing a possible solution, looking back,
students’ meta-comments, and interviewer intervention. The
first three stages mirror Pólya’s (1945) problem-solving
framework, which views the process as a progression, much
like the waterfall model of software development, whereas the
fourth and the fifth stages do not neatly fit into that progression.
They found that time spent, stage and step transition rates, and
whether the student solved the problem were not able to predict
performance in the course.

Parham et al. (2009) used Bloom’s taxonomy for cognitive
process types (understand, apply, analyze, evaluate, create) to
describe the thinking processes of computer science students
when solving a complex algorithmic problem. Their study
results showed that the successful problem solver seems to
move from one type of cognitive process to another more
frequently than the unsuccessful problem solver. In further
research, Parham et al. (2010) provided more detailed insights
regarding the types of metacognitive processes that occurred
while solving complex data structure problems.

2.2 Abstract Thinking
Thinking like a computer scientist means more than being able
to program a computer. It requires thinking at multiple levels of
abstraction (Wing, 2006). Abstraction can be defined as an
activity of reorganizing familiar structures used to solve known
problems into new structures and relations adapted for the
solution of a new problem (Armoni et al., 2006). The structures
can be treated using a black box approach, where a black box is
a system with a particular behavior and an unknown internal
structure. The user can impact the whole system via the black
box inputs and observe its reactions via its outputs (Cápay,
2014).

Recognizing familiar structures and patterns is called a
reduction strategy. It offers the thinker a more global view of a
problem by ignoring the details and enhances the possibility of
strategic planning and an intuitive feel for the problem (Armoni
et al., 2006). Hazzan (2002) showed a tendency to reduce a
problem by adhering to familiar mathematical concepts from
previous learning when solving problems in computability
theory. The tendency to use reduction is influenced by the topic
with which the problem deals, the way solvers conceive the
legitimacy of reduction as a problem-solving heuristic, and the
extent to which they consider that abstraction contributes to
their problem solving. In addition, reduction seems illegitimate,
like cheating, when using black boxes without knowing the
implementation details (Armoni et al., 2006). Obstacles
encountered during the transfer of prior knowledge to a new
problem were related to “blurred” and vague pictures that
solvers had about relevant data in the tasks to be solved, about
proper utilization of basic algorithmic patterns, and about
interconnections between these patterns. This may explain why
less than 30% of a senior students’ class used higher abstraction
level solutions characterized by treating the problem as an
object with properties (Ginat & Blau, 2017).

In the course described in this paper, we used a black box
approach to teach students new simple or complex data
structures. Each data structure was presented twice: first, as a
black box with its defined operations – an abstract data type
(ADT); and second, as its implementation. A more detailed
description of this approach within the course may be found in
the next section.

Some studies exist where the majority of the discussion
revolves around abstract thinking and problem-solving aspects
of computer science. For example, Haberman (2004) studied
abstract thinking and concentrated on understanding the
concepts of an algorithm. Perrenet (2010) proposed an
instrument for the measurement of students’ abstract thinking
levels for the concept of an algorithm. Ginat and Blau (2017)
used algorithm riddles having several solutions differing in
their levels of abstraction to analyze computer science (CS)
students’ thinking abstraction levels.

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

177

Aharoni (2000a) investigated the thinking process
experienced by CS students when solving data structure
problems in a DS course. He presented three different levels of
abstract thinking observed among students explaining different
data structures: programming-language-oriented thinking,
programming-oriented thinking, and programming-free
thinking.

Programming-language-oriented thinking is a low level of
abstract thinking, where the student uses programming
language implementations to describe data structures. In other
words, students who solved the problems at this level ignored
the given structure and instead opted to create new ones while
dealing with the implementation details by using a specific
programming language.

Programming-oriented thinking is a middle level of abstract
thinking, where the student thinks of new data structures in
terms of their implementation by some program, without
referring to a specific programming language.

Programming-free thinking is a high level of abstract
thinking, where the solution is not related to the implementation
of a data structure but to its concept as an object. In other words,
students who solved the problems at this level used black box
techniques, using familiar or given structures to create new ones
without implementing the former.

Programming-free thinking may be invoked only if the
concept of the data structure at hand has already been developed
to its object stage, the only stage that enables thinking about
abstract data structures. If the concept is still in its process stage,
we are witnessing programming-language-oriented thinking
and programming-oriented thinking, where the learner must
still think about the data structure as being implemented within
some program (specific or not). Aharoni (2000a) also proposed
that there are two abstract thinking levels: the high abstract
thinking level, as described in programming-free thinking, and
the low abstract thinking level, which can be further subdivided
into programming-language-oriented thinking and
programming-oriented thinking.

There are several empirical studies that research
undergraduate students’ processes of solving complex data
structure problems, as discussed above. We found no empirical
studies that examine the problem-solving processes of IS
students in the field of data structures. IS students differ from
CS students in the basic mathematical courses they are given as
part of their curricula. IS students are less exposed to higher-
level mathematical courses and thus are less likely to encounter
and practice abstract thinking. This study focuses on IS
students’ problem-solving processes and challenges requiring a
high level of abstract thinking and the use of a “black box”
approach.

3. METHODOLOGY AND CONTEXT

The Data Structures (DS) course is a first year, basic,
mandatory course for IS students studying for the s’bachelor
degree (BSc.) in the Information Systems school. This course is
designed to demonstrate and study various data structures and
how they are used to effectively solve computational problems.
The curriculum of IS students involves fewer mathematical
courses than that of CS students. As a result, they have less
experience in solving complex tasks that require advanced
algorithmic and abstract thinking.

To achieve the study’s goal, students were given a task that
consolidated the “black box” thinking approach. As they solved
it, their problem-solving and thought processes were
documented and later analyzed to capture the different
cognitive aspects and challenges they had.

3.1 The Context (Course)
The study was conducted during a DS course. Students taking
this course learn complex data structures, such as stack, queue,
and tree, as well as how to calculate and compare different
algorithms in terms of their time and space complexities. The
course is based on the Cormen et al. (2022) textbook. During
the course, the following teaching techniques were used: a
black box approach to develop abstract thinking skills,
visualization techniques to support the black box concepts, and
algorithm development and execution. All techniques were
practiced in lectures, tutorials, and home assignments.

To help students develop abstract thinking skills, each data
structure (starting from simple ones and progressing to intricate
ones) was presented by using the black box approach. Figure 1
presents the three concepts used to present the black box
approach. Each black box was presented twice: first by its
capabilities (see (a)) and then by its internal structure
(implementation) (see (b)). Each new black box presented in
class was constructed from previously learned black boxes (see
(c)).

Figure 1. Different Modes Used to Present the Black

Box Approach

The use of visualization and simulation was presented and

demonstrated in class as a strategy for understanding the
problems, testing ideas for algorithms, and verifying those ideas
(Aharoni, 2000b). We used visualization techniques such as
drawing the structures on the board and referring to them as
objects, and simulation tools (automatic and manual) to run
examples and mimic the black box capabilities.

Due to the COVID-19 pandemic, the course was conducted
remotely, using Zoom video conferencing software. During
these weeks, students continuously practiced abstract data
structures using the black box approach in tutorials and home
assignments. Each student attended classes remotely, which
contributed to a suitable environment for independent work on
the assignments. Questions were sent to the lecturer via a
private chat.

3.2 Research Methods
To examine the processes students experienced while solving
problems that require a high level of abstract thinking, and to
gain a better understanding of their thinking characteristics, we

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

178

employed a qualitative case study methodology. The
methodology, according to Stake (1995), is a “study of the
particularity and complexity of a single case, coming to
understand its activity within important circumstances” (p. xi).
The characteristics of a case study are holistic (considering the
interrelationship between the phenomenon and its contexts),
empirical (basing the study on their observations in the field),
interpretive (resting upon their intuition and seeing research
basically as a researcher–subject interaction), and emphatic
(reflecting the vicarious experiences of the subjects in an emic
perspective) (Yazan, 2015). Yin (2014) offers a more detailed
and technical definition of a case study as an empirical inquiry
that investigates a contemporary phenomenon within its real-
life context, especially when the boundaries between
phenomenon and context are not evident. For this exploratory
study, we conducted a singular case study using TA protocol
analysis.

TA protocol analysis (Ericsson & Simon, 1980; 1993)
requires participants to actively engage in the process of
verbalizing their experiences, thoughts, actions, and feelings
while interacting with a task. TA investigation seeks to place
the participant in their most natural state of design thinking
during the protocol sessions (van Someren et al., 1994). In
addition, the TA method requires participants to use their own
language and to approach the assigned task as they would
naturally solve it. According to Ericsson and Simon (1984),
there are traditionally two basic types of TA methods: the
concurrent TA (CTA) method, in which participants “think
aloud” at the same time as they are carrying out the
experimental tasks; and the retrospective TA (RTA) method, in
which participants verbalize their thoughts after they have
completed the experimental tasks. TA has three distinct levels
of verbalization (Ericsson & Simon, 1980; 1993), with each
being representative of the amount of cognitive processing
required. Level one verbalization requires vocalization of task-
relevant thoughts only. Level two verbalization requires
participants to recode visual stimuli not regularly verbalized
prior to providing verbalization on the task. Verbalizations
should reflect stimuli affecting the focus of the participant
through the task; for example, a participant might provide
vocalization of stimuli within a task, including sight, sound, and
smell. Eccles (2012) indicated that level one and level two
verbalizations are the result of conscious thought processing in
the short-term memory (STM) during the execution of a task,
providing concurrent verbalization during or immediately after
a task has been completed. Verbalizations occur most often in
environments where participants are provided with undirected
prompts to think aloud naturally during the execution of a task
(Ericsson & Simon, 1980). Lastly, level three verbalization
requires participants to provide explanations, justification, and
reasoning for cognitive thoughts throughout the task. TA
enables us to profile students based on their actual behavior as
observed during the sessions. In this study, we performed a
CTA with level one and level two verbalizations. While solving
the problem, during the TA process, the students raised several
ideas. The researcher did not intervene in this process but only
observed it.

All TA sessions were recorded, transcribed, and analyzed.
The quotes in this study are translations of the original TA
protocols and are as close as possible to the original expressions
and idioms. To secure anonymity and confidentiality, we
anonymized our respondents using a code number.

3.3 Case Description and Data Collection
The DS course is thirteen (13) weeks long, and the research task
was administered during the 9th week of the course. The
research task (as described in Section 3.3.1) is built upon three
prior assignments that were administered throughout the course
(Table 1) and serve as its baseline.

Week Activity Details
Week
6

Assignment
1

The queue and stack structures
were practiced using the black
box model. Students were asked
to implement a queue using two
stacks. Afterward, the solution
was presented and discussed by
the tutors. The solution was
demonstrated using a
visualization of the data structure,
and then through pseudocode.

Week
7

Assignment
2

The queue and stack structures
were practiced using the black
box approach. Students were
asked to implement a stack using
two queues. Afterward, the
solution was presented and
discussed by the tutors. The
solution was demonstrated using
a visualization of the data
structure, and then through
pseudocode.

Week
8

Assignment
3 (starter
assignment)

This assignment’s purpose was to
prepare the students for the
research assignment. Students
were asked to solve it
independently during the lecture
class. Afterward, the solution was
presented and discussed by the
tutors. One of the main goals of
this assignment was to present
and familiarize the students with
the new data structures.

Table 1. Preparation for the Study as Part of the
Course Schedule

3.3.1 The Research Task. The principle that guided us
throughout the task’s construction was to create a compound
yet complex data structure that embodies the “black box”
approach’s characteristics – an object assembled from other
“black box” objects. This approach enables the students to
propose and devise new structures with minimal regard to their
particular implementation details. However, only high levels of
abstract thinking will allow students to achieve the required
solution.

For that purpose, we constructed unfamiliar compound data
structures (double-ended queue and central queue, described in
Appendix A) and asked the students to create a central queue
using two double-ended queues. Since the purpose was to learn
about abstract thinking levels rather than test students’ ability
to grasp a new data structure, in Assignment 3 (starter
assignment), students were asked to solve the same assignment
without the space and time complexity requirements. This made
it possible for us to investigate the students’ abstraction

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

179

thinking levels, as they were using familiar compound data
structures. The research task is described in Appendices B and
C. Table 2 describes the main features of the research task.

Description Solution Principles Abstract

Thinking
Construction

Construct a
central queue,
(required,
compound,
familiar data
structure) using
two double-
ended queues
(required,
compound,
familiar data
structure).
Required time
complexity –
O(1).

At any given
moment the data is
divided between
two given data
structures. No data
transference is
needed here except
for a single item
transference to
balance the data
between two given
data structures.
This allowed the
extraction and
insertion of data in
the required
complexity.

The purpose of
this assignment
was to test the
students’ ability
to use high levels
of abstraction
when developing
a new algorithm,
using familiar
data structures
learned in
Assignment 3.

Table 2. Main Features of the Research Task

3.3.2 Participants and Data Collection. This study focuses on
an algorithmic problem given to students in a DS course taught
at the School of Information Systems, in a higher education
institution during the 2020–2021 academic year.

The course participants were 136 undergraduate students
studying in their first year toward a BSc. in IS. Thirteen students
studying this course, aged 22 to 27, 6 males and 7 females,
volunteered to participate in this study. Each student was
assigned the abbreviation ST (student), which was
accompanied by a unique number for the purpose of
identification (ST01 to ST13). The size of this study population
corresponds with the other studies in this field. For example,
Aharoni (2000a) studied students’ thinking processes while
dealing with simple data structures. In this qualitative research,
nine students studying a CS course were interviewed, using
semi-structured observational interviews. Aharoni (2000a) and
Çakiroğlu and Mumcu (2020) explored problem-solving steps
using qualitative method tools on 15 students studying an IT
course.

All participants had the following prerequisites: a
programming introduction course (course taught in the C++
language), and mathematical introduction courses (including
proofs using induction). In parallel to this course, the students
participated in a Python programming language course. All the
students participated in lectures and tutorials and submitted
homework assignments.

This study is based on the TA protocols of students’
solutions to the algorithmic problem given. The quotes in this
study are translations of the original TA protocols. We
remained as close as possible to the original expressions and
idioms. To secure anonymity and confidentiality, we
anonymized our respondents with code numbers.

3.4 Data Analysis
Our data analysis was based on principles of provisional coding
(Miles et al., 2014), according to which: “Prior theorizing and
empirical research are, of course, important inputs. It helps to
lay out your own orienting frame and then map onto it the
variables and relationships from the literature available, to see
where the overlaps, contradictions, qualifications, and
refinements are” (p. 41). Each step of the coding method was
first performed by each of the authors of the paper separately
and then discussed in a joint coding session. This resulted in the
construction of categories and, ultimately, a conceptual
framework. In this analysis approach, categories emerge from
the data and are then validated and refined throughout the
analysis process. Unanimous agreement on the emergent
categories was achieved by all authors in this joint coding
session. This was done to maintain a continuous dialogue
between researchers and consistency of the coding (Walther et
al., 2013) and to establish reliability to ensure the
trustworthiness of the study (Miles et al., 2014).

Our aim was to identify problem-solving processes and
their characteristics while solving complex data structure
problems. Thus, the categories materializing from the analysis
referred to process-related phenomena. These categories are
presented in the results section. We utilized Aharoni’s (2000a)
framework as a base for the conceptual framework, which
consists of two levels of abstraction.

4. FINDINGS

The findings of this study point to three cognitive components
that affect the quality and correctness of the problem’s
solutions: abstract thinking, knowledge toolbox, and solution
approach. In Section 4.1 these cognitive components will be
detailed, and Section 4.2 will focus on the students’ problem-
solving processes.

4.1 Cognitive Components

4.1.1 Abstract Thinking. The abstract thinking ability affected
the problem-solving process. Students demonstrated different
levels of abstract thinking, which we grouped into two
categories: programming-free thinking and program-context
thinking.

4.1.1.1 Programming-Free Thinking. Programming-free
thinking is a high level of abstract thinking where the solution
is unrelated to the implementation of a data structure but
regards each component as a black box. In this study, six
students were observed acting at a high level of abstract
thinking while solving the given problem. They used a double-
ended queue ADT, without referring to its implementation or
other programming-oriented details. For example, ST08 said:
“I understood that a central queue is based on two double-
ended queue structures, and therefore there is no need to use
other structures such as a linked list.” Although all six students
presented a programming-free thinking level, only three of
them successfully solved the given problem.

4.1.1.2 Programming-Context Thinking. The programming-
context thinking level combines low and middle levels of
abstract thinking (Aharoni, 2000b). We decided not to
differentiate between these two abstraction levels since we did

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

180

not find evidence of a specific language being used while
solving the problem. Although the students had successfully
completed the CS1 course, taught in the C++ language, and had
studied the Python language in a parallel course, we decided to
use pseudocode when describing the data structures, without
any reference to a specific language.

Five students presented programming-context thinking. For
example, ST03 conceptualized the central queue as an array: “I
can describe the central queue as an array where the first index
is the head, and the last index is the tail.” ST13 internalized the
central queue as a linked list receiving its input from the double-
ended queues: “I am thinking of how to connect the two double-
ended queues to a linked list which is a central queue.” ST04
was not sure how to address the functions of the double-ended
queues: “I am not sure whether to implement the double-ended
queue functions or just use them.”

Two other students shifted between the programming-
context thinking level and the programming-free thinking level
during the problem-solving process. The first student, ST06,
presented the programming-free thinking level during the
problem-understanding phase: “The two double-ended queues
behave like a central queue.” However, at the solution phase,
ST06 suddenly started to use programming-context thinking:
“In order to count the number of items in the double-ended
queue I should subtract the head from the tail.” (the terms head
and tail referred to the indices). The second student, ST09,
presented the opposite behavior, starting from the
programming-context thinking level during the problem
comprehension phase, using the concepts of arrays and indices:
“In order to insert an item into the central queue tail, I should
define some pointer to the end. I should define it as an array,
this double-ended queue.” Later, when ST09 was asked to write
pseudocode, she re-read the problem description and started to
show the programming-free thinking level: “I should use the
following double-ended queue functions: extraction from tail
and insertion to head.” This phenomenon may happen when the
formation of the data structure type has started but is still a weak
mental structure that does not take control unless there is no
other option (Aharoni, 2000b).

4.1.2 Knowledge Toolbox. The students’ control of the
knowledge toolbox affected the problem-solving process.
Students are expected to use previous knowledge and
experience they had acquired and accumulated, which we refer
to as the knowledge toolbox. This toolbox is built from layers
of knowledge, including programming concepts and languages
acquired in CS courses, ADTs acquired in this course,
knowledge of compound data structures acquired in the solution
of preliminary assignments 1 to 3 (see Table 1), and the
internalization of the “black box” approach.

A lack of knowledge fostered misconceptions, which
ultimately affected the solution to the task. For example, ST01
said: “We will move to another structure which is an array,
which is a stack.” The student confused a data structure,
“stack,” with its implementation, “array.” Another example was
ST05, who said: “I should insert items to both sides of a new
stack […] Items should be inserted into a new array or queue.”
In this case, we can see the former misconception along with a
misconception regarding the “stack” data structure’s
capabilities. Some students mixed basic data structures with the
complex data structures described in the given assignment. An
example is ST03, who said: “The central queue is a data

structure of a queue, which is similar to a stack or an array.”
In addition, this student said: “What I can think of is a linked
list. This is what we learned in a CS course. I programmed a
linked list in this course.” We can learn from this statement that
this student chose to rely on his most “accessible” knowledge,
although it contradicted the black box approach.

4.1.3 The Approach to Solution. The manner in which
students approached the task and its solution affected their
problem-solving process. The research task (see Table 2)
included a list of operations that had to be implemented.
However, the order in which they were presented is not
necessarily the optimal order in which they should be
implemented (see Appendix A). Although the first operation
has a simple solution per se, in combination with the two
subsequent operations, its solution needs to be reconstructed
and refined. In this regard, we observed two solution processes:
the linear process – where students solved the problem based
on the presentation order of the assignment operations – and the
flexible process – where students demonstrated flexibility in
changing earlier proposed algorithms or changing the order of
the operation’s execution based on an overview of the entire
assignment.

Six students followed the linear process approach. We
found that none of them were successful in solving the given
problem. In this category, we identified students from both
abstraction levels (programming-free thinking level and
programming-context thinking level). Consequently, we may
conclude that the linear approach hinders the ability to conceive
and promote successful problem-solving algorithms that
involve data structures. Students who used this approach
reported that they felt stuck and did not know how to proceed.
For example, ST12 said: “From what I understand, to insert
and extract an item (referring to the edges) is not a problem.
The only issue is what to do with the middle. I should do
something different with it. I feel stuck.”

Seven students demonstrated the flexible process approach.
A single student (ST11), who exhibited the programming-
context thinking level, solved the assignment’s operations in the
order of their occurrence and then retraced back to adjust the
algorithms of the previous operations. During the solution-
planning step, when he recognized that the algorithm he had
initially proposed failed, he returned to his prior steps in order
to review their solutions: “The length of the central queue is the
sum of the double-ended queue lengths. This requires me to
change the insertion [meaning the insertion to the tail].” He
successfully solved the problem. The other six students began
by overviewing the operations in an attempt to identify the main
requirement of the assignment, and they then used this as the
starting point for the development of an algorithm. Three of the
students (ST02, ST07, ST08) had a programming-free thinking
level. Of these, ST08 and ST02 successfully solved the given
problem. The other three students (ST03, ST05, ST13), who
were at the programming-context thinking level, failed to solve
the given problem.

4.2 Problem-Solving Process
We identified three main steps of problem solving, which are
aligned with the problem-solving steps defined in the literature
by Pólya (1945) in the field of mathematics and adjusted by
Çakiroğlu and Mamcu (2020) for CS. The steps we identified

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

181

in the current study are: (1) understanding the problem, (2)
planning the solution, and (3) implementation.

4.2.1 Step 1 – Understanding the Problem. In the TA
sessions, all (13) students demonstrated an attempt to
understand the given problem. Following the research task
description in Table 2, at this stage, the students had already
solved Assignment 3 (which was identical to the research task
except for the required complexity). All aspects of Assignment
3 were explained in class, including the given abstract data
structures, the required complexity, and the solution. It was
expected that after all these explanations, students would
adequately understand the task’s data structures and
requirements.

Misconceptions were observed regarding the research task
requirements. Students were expected to refer to the central
queue as two double-ended queues that act together as a central
queue. Instead, some of them perceived the central queue and
the two double-ended queues as entirely separate structures.
Students with the programming-context thinking level did not
understand the ADTs defined in the assignment with their
operations and relationships, in addition to their black box
approach misconceptions. These students applied the same
solution given to Assignment 3 to the research task, ignoring
the required O(1) complexity. For example, ST13 said: “I need
to extract items from the double-ended queues and merge them
to a linked list … I am thinking how to connect H and T [the
double-ended queues] to a linked list, a structure called the
central queue.” Another example is ST01: “I am using an array
which is a queue, which is a double-ended queue. I will move
the data to another structure which is an array which is a
stack.”

Students exhibiting the programming-free thinking level
showed misconceptions related to the research task as well yet
showed no black-box approach misconceptions. It appears
these students did not fully internalize the knowledge related to
the assignment’s data structures, acquired in Assignment 3.

For example, ST07 said: “I am not sure whether to insert
items to H and T [the double-ended queues] separately or
whether I should refer to them together as a central queue.”
One of the students, ST11, managed to reach a solution once he
overcame this misconception and identified that the central
queue is constructed from two double-ended queues: “If the
central queue is composed of two double-ended queues, I can
say that the central queue is expressed by both of them. I can
insert an item at the head of one of them and say that I inserted
the item in the middle. The length of the central queue is the
length of both double-ended queues.”

4.2.2 Step 2 – Planning the Solution. To understand the
problem and devise a solution, students were aided by various
utility tools:

4.2.2.1 Visualization – A tool that helps lower the abstraction
level. Throughout the Data Structures course discussed in this
paper, visualization was constantly used to describe new
material and to solve problems. Visualizations were used for
both illustrations of the data structures and for simulating
algorithms.

Twelve (12) students visualized data structures in the first
two steps of problem solving (understanding the given problem
and planning the solution). Only one student, ST03, did not

draw any structure while planning his solution. Table 4 shows
the first use of a visualization in the process of solving the
assignment per student, divided between the two abstract
thinking levels observed.

Programming-Free Thinking Programming-Context

Thinking
Step
1

Step
2

Step 1:
Another
attempt

Step
1

Step
2

Step 1:
Another
attempt

ST12
ST10
ST07

ST08
ST02

ST11 ST09
ST04
ST05
ST06
ST01

ST13

Table 3. Students Mapped by Abstraction Level and
Problem-Solving Steps Related to the First Use of

Visualization

Half of the students located at the programming-free

thinking level (ST07, ST10, and ST12) began using
visualization during the “understanding the given problem”
step (step 1). They drew data structures while reading the
assignment. Later, they were aided by these visualizations
while designing algorithms for the solution. Two more students,
ST02 and ST08, began using visualizations only after reading
the entire assignment, during the solution-planning step (step
2), as they claimed they already understood the given data
structures from solving Assignment 3. A single student, ST11,
after several attempts to plan an algorithm that would solve the
assignment without using any form of visualization, returned to
re-reading the exercise and only thereafter started to draw data
structures. Students from this group drew central queues and
double-ended queues in an abstract manner without adding
specific details. For example, ST11, when starting to draw, said:
“I am drawing a queue that looks like an array. I am not writing
indices because it is not an array.”

None of the students with a programming-context thinking
level used visualization tools during step 1 (understanding the
given problem). After a while, most of them began sketching
during the solution-planning phase, and one of them, ST13, did
so after returning for further reading in an attempt to understand
the problem. As mentioned before, all of them failed to solve
the given problem.

Students from the abovementioned group drew visual
representations with implementation details, which led to some
misconceptions. For example, ST05, when starting to draw,
said: “I will draw again and see in the new array how I should
do it”; ST06 said: “I will try to draw. I have two arrays. I should
find the middle. I am wondering whether the head or the tail
marks some sort of an index?”

4.2.2.2 Pseudocode – A tool that can be used to understand a
problem and for considering algorithms. Using pseudocode to
formulate a solution corresponds to a level of abstraction that is
neither too low (it is not a programming language) nor too high
(a verbal description). Pseudocode can thus play an important
intermediate role in the decomposition of a problem (Copus &
Copus, 2018). We observed the use of pseudocode as a
solution-planning tool in four students, ST11, ST09, ST08, and
ST04. For example, ST11 (programming-free thinking): “I am

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

182

writing pseudocode in order to make it clear.” Another example
is ST09, who acted at the programming-context level, and the
use of pseudocode made her contemplate the way she
understood the problem: “I am not sure whether I can use the
function (the double-ended queue’s function) or if I should
implement it.”

4.2.2.3 The Quality of Algorithm Ideas. In general, when
solving programming assignments, an algorithm is first
planned, and then it is implemented in a computer program
environment. In data structure assignments, the culmination of
the solution occurs before the implementation phase. The
student must develop several propositions for algorithms that
aim to solve the problem at hand and test them using visual
simulations. For these reasons, the phases of planning and
execution that take place while solving data structure exercises
occur intermittently and are mixed with one another. Each
student considered several algorithms, from which, during the
analysis stage, they selected the highest quality algorithm. By
highest quality algorithm, we refer to the algorithm that is
closest to the solution. The following list includes five
algorithm categories, scaled from 1 to 5, where 1 represents the
highest quality algorithm.

1. Divide the items between the double-ended queues
during insertion while re-balancing the double-ended
queues. This is the correct solution (selected by three
students).

2. Divide the items between double-ended queues during
insertion without re-balancing (selected by three
students).

3. Moving items to another structure, to support operations
performed at the center of the queue. This algorithm is
a repetition of the starter assignment solution (selected
by three students).

4. Finding the item in the middle by using array indices
(selected by three students).

5. No solution. One student was not able to provide an
algorithm for a solution.

Table 4 summarizes the distribution of the students in

accordance with the above scale, vs. the previously described
cognitive attributes of the problem solver, detailed in Section
4.1. Six students who acquired the programming-free thinking
level suggested high-quality algorithms (categories 1 and 2
from the above scale). Of the three students who successfully

solved the problem (proposed the algorithm from category 1),
all displayed programming-free thinking, did not exhibit any
misconceptions, and solved the problem using the flexible
process approach. The other three students who displayed
programming-free thinking but exhibited misconceptions or
solved the problem in a linear approach came up with the
second-best solution. Misconceptions were apparent in all the
students who displayed a programming-context thinking level.
These students offered low-quality algorithms (categories 3–4)
or could not suggest one (category 5).

4.2.3 Step 3 – Implementation. The last step in problem-
solving activities is writing the solution and verifying the
correctness of the algorithm. This is achieved by running the
algorithm on all the required ADT operations using pseudocode
(as a solution to the assignment). In our study, we observed four
cases of writing pseudocode. However, only one student (ST08)
used pseudocode exclusively during the implementation step,
while the others used pseudocode as a supporting tool for their
thinking process (described in “planning the solution step”).

5. DISCUSSION

This study aimed to explore and describe IS students’ problem-
solving processes involving a high level of abstract thinking. To
achieve this aim, students’ problem-solving processes were
analyzed during a “black box” approach-based task in an effort
to capture different cognitive aspects and challenges.

This study mapped three main requirements that impact the
success of a problem-solving process: obtain program-free
thinking level, no misconceptions (which stems from a solid
“knowledge toolbox”), and exhibit flexibility during the
solution process. Only students who mastered these three
components could solve the research task (see Figure 2).
Students who lacked one or more components failed to solve
the research task.

The study shows that only 6 out of 13 students (46%) were
able to apply the programming-free abstract thinking level
when solving the research task. This finding corresponds with
that of Aharoni (2000a), who concludes that the phenomenon
of low abstraction levels is common in DS courses and stems
from the fact that students were not sufficiently exposed to
abstract thinking practices. Although in our study, students
practiced problems involving different levels of complexity, it

Proposed algorithms
scale

Abstraction level Misconceptions Flexible process

 Programming
-free thinking

Programming
-context
thinking

Yes No Yes No

1 (The correct
solution)

ST02 ST08
ST11

 ST02 ST08
ST11

ST02 ST08
ST11

2 ST12 ST07
ST10

 ST07 ST12 ST10 ST07 ST10 ST12

3 ST01 ST05
ST13

ST01 ST05
ST13

 ST05 ST13 ST01

4 ST04 ST06
ST09

ST04 ST06
ST09

 ST04 ST06
ST09

5 (No solution) ST03 ST03 ST03

Table 4. Distribution of Students by the Proposed Algorithms Scale and by Cognitive Attributes of the Problem Solver

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

183

can be argued that at this stage of the course, students had not
yet acquired the required expertise.

Figure 2. Mapping of Students Based on Abstract

Thinking, Flexibility, and Misconceptions

We observed several types of misconceptions related to the

acquired knowledge in different data structures and to the black
box approach, which prevented students from solving the
complex problem. This finding is consistent with the claim of
Smith et al. (1994) that students’ prior knowledge is a major
source of their misconceptions. Following the findings
presented by this study earlier, all students who had
misconceptions failed to solve the assignment.

Two approaches were applied when solving the research
task: a linear approach and a flexible approach (non-linear).
These approaches are mentioned in several studies. Pólya
(1945) described four stages that must be followed in a linear
sequence when solving a problem. Mason et al. (1982) and
Schoenfeld (1985) suggested that the process of problem-
solving is not always strictly linear and that it can include
forward and backward steps between analyzing, planning, and
exploring a problem. Wilson et al. (1993) proposed a dynamic
and cyclic interpretation of Pólya’s stages, which allows for
forward and backward movement between all phases of
problem solving, even after the looking-back phase. Similarly,
Yimer and Ellerton (2010) proposed a model that includes
transitions between all phases of problem solving, emphasizing
the non-linear nature of the process. Our interpretation of the
flexible approach that was observed in our study is that students
apply a process of monitoring and self-regulation, which is
referred to by Schoenfeld (1992) as the “control” factor (ways
in which students monitor their own problem-solving process,
use their observations of partial results to guide future problem-
solving actions and decide how and when to use available
resources and heuristics). Following the findings presented
earlier in this study, all the students who used the linear
approach failed to solve the assignment.

We used visualizations throughout the course (mentioned
in Section 3.1) as a primary tool for explaining algorithms and
simulating their execution. Visual representation of a data
structure is used to reduce the abstraction level by making the
data structure more concrete and familiar (Aharoni, 2000b).
The use of visualization as a teaching tool is supported by
Akram and Fang (2015), who found that using visualization
prototype applications during lessons in a DS course engaged
students’ attention toward cognitive learning. They concluded
that graphic representations, such as pictures, graphs, charts,

and diagrams, help people grasp the meaning and attain an
understanding of information more easily and quickly.

In our study, visualization tools were used by most students
at various stages of solving the research assignment, but these
tools did not necessarily help. We found that the quality of the
use of the visual tools depended on the student’s level of
abstract thinking. This phenomenon can be explained by
students operating at an inadequate level of abstraction, which
caused difficulties in problem comprehension and an inability
to simplify the problem by drawing. Some of the students’
visualizations were not effective, because the drawings did not
fit the required data structures presented in the assignment. For
example, one student drew an array instead of a double-ended
queue. The ineffectiveness of using visualization is explained
by Aharoni (2000a) as being caused by misconceptions of some
of that data structure’s properties. When visualizing a data
structure, its picture should not include the implementation
details but only its properties and organization (Aharoni,
2000b). In our study, the drawings of the students located at the
programming-context thinking level contained implementation
details, which contributed to their misconceptions.

6. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this study was to characterize what is required
from IS students to solve complex problems. Results showed
that to solve a complex problem successfully, an IS student
should have a programming-free abstract thinking level, no
misconceptions regarding concept comprehension and problem
understanding, and be able to apply a flexible problem-solving
process. In our study, the assignments were designed with
increasing difficulty levels to prepare the students for the
research task (see Table 1). However, 10 out of 13 students
failed to solve the assignment. Most of these students (7 out of
10) did not exhibit the required level of abstract thinking. For
these students, using visualization as a supporting tool for
solving the problem contributed to their misconceptions.

Based on these results, recommendations can be made for
two groups of stakeholders. (a) Faculty members can consider
highlighting common misconceptions while teaching this
course (and similar ones); better explaining what an appropriate
visualization is vs. a lacking one; exploring more examples that
require a high level of abstraction during the class; and aiming
to develop in students a flexible approach to solving complex
problems by applying appropriate assignments, such as class
examples demonstrating the flexible approach to solving
problems and presenting common mistakes created by a linear
approach. In addition, faculty members should evaluate the
student’s level of abstraction and variations in abstract thinking
while the course is being taught and adjust their teaching
methodologies and assignments accordingly (formative
evaluation). (b) Policymakers can consider developing new
abstract thinking development tools in basic courses and
postponing this specific course (DS) to an advanced level of the
IS curriculum, where the students’ abstract thinking is likely to
be more developed.

7. LIMITATIONS AND FUTURE RESEARCH

This study was conducted as part of an introductory course
where students had not yet established and refined their
problem-solving skills. The study serves as a first step in

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

184

investigating thinking processes and solving complex problems
as performed by IS students. We suggest expanding this study
to more advanced courses, such as the Information Retrieval
course given to students in their last year, where complicated
algorithms using different data structures are presented.

Due to the COVID-19 pandemic, the course was conducted
through video conference meetings, and it is not entirely clear
how this might have affected teaching, learning, and data
acquisition. Out of 136 students in the course, only 13
volunteered for this study, which may limit the generalization
of the difficulties we observed. Quantitative tools should be
developed and implemented at a larger scale to overcome this
limitation.

8. REFERENCES

Aharoni, D. (2000a). Cogito, Ergo Sum! Cognitive Processes
of Students Dealing with Data Structures. Proceedings of
the Thirty-First SIGCSE Technical Symposium on
Computer Science Education (pp. 26-30).
https://doi.org/10.1145/331795.331804

Aharoni, D. (2000b). What You See Is What You Get: The
Influence of Visualization on the Perception of Data
Structures. Document Resume, 11(4), 10-17.

Akram, J., & Fang, L. (2015, April). Cognitive Effects of
Visualization on Learning Data Structure and Algorithms.
The Third International Conference on Digital Enterprise
and Information Systems (p. 70).

Anderson, J. R. (1980). Cognitive Psychology and Its
Implication. Worth Publishers.

Armoni, M., Gal-Ezer, J., & Hazzan, O. (2006). Reductive
Thinking in Computer Science. Computer Science
Education, 16(4), 281-301.
https://doi.org/10.1080/08993400600937845

Biernat, M. J. (1993). Teaching Tools for Data Structures and
Algorithms. ACM SIGCSE Bulletin, 25(4), 9-12.
https://doi.org/10.1145/164205.164211

Çakıroğlu, Ü., & Mumcu, S. (2020). Focus-Fight-Finalize (3F):
Problem-Solving Steps Extracted From Behavioral Patterns
in Block Based Programming. Journal of Educational
Computing Research, 58(7), 1279-1310.
https://doi.org/10.1177/0735633120930673

Cápay, M. (2014, December). Algorithmic Thinking
Observation: How Students of Applied Informatics Break
the Mystery of Black Box Applications. 2014 International
Conference on Interactive Collaborative Learning (pp.
535-540). https://doi.org/10.1109/ICL.2014.7017829

Chinn, D., Spencer, C., & Martin, K. (2007, June). Problem
Solving and Student Performance in Data Structures and
Algorithms. Proceedings of the 12th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education (pp. 241-245).
https://doi.org/10.1145/1268784.1268854

Copus, B., & Copus Jr, W. P. (2018). Pseudocode Quality
Correlations With Ultimate Answer Quality in CS1.
Journal of Computing Sciences in Colleges, 33(5), 145-
150.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.
(2022). Introduction to Algorithms. MIT Press.

Eccles, D. (2012). Verbal Reports of Cognitive Processes. In G.
Tenenbaum, R. C. Eklund, & A. Kamata (Eds.), Handbook
of Measurement in Sport and Exercise Psychology (pp.

103-117). Champaign, IL: Human Kinetics.
https://doi.org/10.5040/9781492596332.ch-011

Ericsson, K. A., & Simon, H. A. (1980). Verbal Reports as
Data. Psychological Review, 87(3), 215-251.
https://doi.org/10.1037/0033-295X.87.3.215

Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis:
Verbal Reports as Data. MIT Press.

Ericsson, K. A., & Simon, H. A. (1993). Verbal Reports as
Data. MIT Press.

Ginat, D., & Blau, Y. (2017, March). Multiple Levels of
Abstraction in Algorithmic Problem Solving. Proceedings
of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 237-242).
https://doi.org/10.1145/3017680.3017801

Haberman, B. (2004). High-School Students’ Attitudes
Regarding Procedural Abstraction. Education and
Information Technologies, 9(2), 131-145.
https://doi.org/10.1023/B:EAIT.0000027926.99053.6f

Hakulinen, L. (2011, November). Card Games for Teaching
Data Structures and Algorithms. Proceedings of the 11th
Koli Calling International Conference on Computing
Education Research (pp. 120-121).
https://doi.org/10.1145/2094131.2094157

Hazzan, O. (2002). Reducing Abstraction Level When
Learning Computability Theory Concepts. ACM SIGCSE
Bulletin, 34(3), 156-160.
https://doi.org/10.1145/637610.544461

Jonassen, D. H. (2000). Toward a Design Theory of Problem
Solving. Educational Technology Research and
Development, 48(4), 63-85.
https://doi.org/10.1007/BF02300500

Kramer, J. (2007). Is Abstraction the Key to Computing?
Communications of the ACM, 50(4), 36-42.
https://doi.org/10.1145/1232743.1232745

Leiba, M. (2010). Assessing Mathematical Problem Solving
Behavior in Web-Based Environments Using Data Mining.
EC-TEL Doctoral Consortium (pp. 37-42).

Leidig, P., & Salmela, H. (2020). IS2020 A Competency Model
for Undergraduate Programs in Information Systems. The
Joint ACM/AIS IS2020 Task Force.

Mason, J., Burton, L., & Stacey, K. (1982). Thinking
Mathematically. Addison-Wesley.

Miles, M. B., Huberman, A. M., & Saldana, J. (2014).
Qualitative Data Analysis: A Methods Sourcebook (3rd
edition). Sage publications

Meisalo, V., Sutinen, E., & Tarhio, J. (1997, June). CLAP:
Teaching Data Structures in a Creative Way. Proceedings
of the 2nd Conference on Integrating Technology into
Computer Science Education (pp. 117-119).
https://doi.org/10.1145/268819.268854

Nazir, S., Naicken, S., & Paterson, J. H. (2019, November).
Teaching Data Structures Through Group Based
Collaborative Peer Interactions. Proceedings of the 8th
Computer Science Education Research Conference (pp. 98-
103). https://doi.org/10.1145/3375258.3375270

Newell, A., & Simon, H. A. (1972). Human Problem Solving
(Vol. 104, No. 9). Prentice-Hall.

Odisho, O., Aziz, M., & Giacaman, N. (2016). Teaching and
Learning Data Structure Concepts via Visual Kinesthetic
Pseudocode With the Aid of a Constructively Aligned App.
Computer Applications in Engineering Education, 24(6),
926-933. https://doi.org/10.1002/cae.21768

https://doi.org/10.62273/JJUB4136
https://doi.org/10.1145/331795.331804
https://doi.org/10.1080/08993400600937845
https://doi.org/10.1145/164205.164211
https://doi.org/10.1177/0735633120930673
https://doi.org/10.1109/ICL.2014.7017829
https://doi.org/10.1145/1268784.1268854
https://doi.org/10.5040/9781492596332.ch-011
https://doi.org/10.1037/0033-295X.87.3.215
https://doi.org/10.1145/3017680.3017801
https://doi.org/10.1023/B:EAIT.0000027926.99053.6f
https://doi.org/10.1145/2094131.2094157
https://doi.org/10.1145/637610.544461
https://doi.org/10.1007/BF02300500
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/268819.268854
https://doi.org/10.1145/3375258.3375270
https://doi.org/10.1002/cae.21768

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

185

Pólya, G. (1945). How to Solve It. Education and Information
Technologies, 15(2), 87-107.

Parham, J., Chinn, D., & Stevenson, D. E. (2009, March). Using
Bloom’s Taxonomy to Code Verbal Protocols of Students
Solving a Data Structure Problem. Proceedings of the 47th
Annual Southeast Regional Conference (pp. 1-6).
https://doi.org/10.1145/1566445.1566499

Parham, J., Gugerty, L., & Stevenson, D. E. (2010, March).
Empirical Evidence for the Existence and Uses of
Metacognition in Computer Science Problem Solving.
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (pp. 416-420).
https://doi.org/10.1145/1734263.1734406

Perrenet, J. C. (2010). Levels of Thinking in Computer Science:
Development in Bachelor Students’ Conceptualization of
Algorithm. Education and Information Technologies, 15,
87-107. https://doi.org/10.1007/s10639-009-9098-8

Schoenfeld, A. H. (1985). Mathematical Problem Solving.
Academic Press.

Schoenfeld, A. H. (1992). Learning to Think Mathematically:
Problem Solving, Metacognition, and Sense-Making in
Mathematics, In D. Grouws (Ed.), Handbook for Research
on Mathematics Teaching and Learning (pp. 334-370).
Macmillan.

Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994).
Misconceptions Reconceived: A Constructivist Analysis of
Knowledge in Transition. The Journal of the Learning
Sciences, 3(2), 115-163.
https://doi.org/10.1207/s15327809jls0302_1

Stake, R. E. (1995). The Art of Case Study Research. SAGE
Publications.

van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C.
(1994). The Think Aloud Method: A Practical Guide to
Modelling Cognitive Processes. Academic Press.

Wall, J. D., & Knapp, J. (2014). Learning Computing Topics in
Undergraduate Information Systems Courses: Managing
Perceived Difficulty. Journal of Information Systems
Education, 25(3), 245-259.

Walther, J., Sochacka, N. W., & Kellam, N. N. (2013). Quality
in Interpretive Engineering Education Research:
Reflections on an Example Study. Journal of Engineering
Education, 102(4), 626-659.
https://doi.org/10.1002/jee.20029

Wang, Z. (2012). Research on Teaching Ideas of “Data
Structures and Algorithms” in Non-Computer Majors.
Advances in Computer Science and Education (pp. 249-
254). Springer. https://doi.org/10.1007/978-3-642-27945-
4_39

Wilson, M. R., Lesh, R., & Pollock, E. (1993). Foundations of
Mathematics Assessment. ERIC.

Wing, J. M. (2006). Computational Thinking. Communications
of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Yazan, B. (2015). Three Approaches to Case Study Methods in
Education: Yin, Merriam, and Stake. The Qualitative
Report, 20(2), 134-152. https://doi.org/10.46743/2160-
3715/2015.2102

Yimer, A., & Ellerton, N. F. (2010). Problem-Solving in
Mathematics Education. Sense Publishers.

Yin, R. K. (2014). Case Study Research: Design and Methods.
SAGE Publications.

AUTHOR BIOGRAPHIES

Orly Barzilai is a lecturer at the School of Information Systems

at The Academic College of Tel Aviv
Yaffo. She has more than 20 years of
experience in the information
systems industry. She is signed on a
backup algorithm patent approved by
the US Patent Office. Her research
interests include smart
transportation, abstract thinking, and
data science. Orly received her Ph.D.

from the Industrial Engineering and Management department at
the Technion - Israel Institute of Technology.

Sofia Sherman is a senior lecturer in the School of Information

Systems at The Academic College of
Tel Aviv Yaffo. Her research
interests include requirements
engineering, architecture processes
and the role of the architect in
different development
methodologies, and human aspects
of software engineering. Sherman
received her Ph.D. from the

Department of Information Systems at the University of Haifa,
Israel.

Moshe Leiba is an assistant professor at the School of

Information Systems at The
Academic College of Tel Aviv Yaffo.
He also acts as Deputy Director
General of World ORT Kadima
Mada. Moshe holds a BSc. in
Electrical Engineering, a Teaching
Certificate, a MA (Magna Cum
Laude) and a Ph.D. focusing on
Digital Education from Tel Aviv

University. Moshe participated in several European ICT
research programs (FP7, FP6, Erasmus) as a researcher and has
experience as a policy maker in formal education systems at
governmental and municipal levels.

Hadar Spiegel is a mathematics lecturer in the School of

Information Systems, at The
Academic College of Tel Aviv-
Yaffo, Israel. Spiegel holds a Ph.D. in
Mathematics Education from Tel
Aviv University, Israel. Her fields of
research include heuristic techniques
for mathematical problem-solving,
aspects of analyzing mathematical
problems and their solutions,

mathematical creativity, and aesthetics in mathematical
problem-solving.

https://doi.org/10.62273/JJUB4136
https://doi.org/10.1145/1566445.1566499
https://doi.org/10.1145/1734263.1734406
https://doi.org/10.1007/s10639-009-9098-8
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1002/jee.20029
https://doi.org/10.1007/978-3-642-27945-4_39
https://doi.org/10.1007/978-3-642-27945-4_39
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.46743/2160-3715/2015.2102
https://doi.org/10.46743/2160-3715/2015.2102

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

186

APPENDICES

Appendix A. Research Assignment Description

The central queue is a data structure that supports all the activities defined for a regular queue, in addition to insertion, extraction,
and reading from the middle of the queue.

The index of the middle of the queue is defined as the highest integer at or below n/2 in a queue that contains n elements; for
example, if the queue contains 10 elements, then the index of the middle of the queue is the 5th element. If the queue contains 11
elements, then the index of the middle of the queue is also the 5th element.

Suggest an implementation of the central queue, based on two double-ended queue structures, H and T.

Below is the description of the structure of a double-ended queue:

Below is the description of the structure of a central queue:
Insert item (performed to the tail of the central queue): insert_tail(MQ, X) (complexity O(1))
Read item ((performed on the head of the central queue): read_head(MQ) (complexity O(1)).
Extract item ((performed to the head of the central queue): delete_head(MQ) (complexity O(1)).
Insert item in the middle (performed to the middle of the central queue): insert_mid(MQ,X) (complexity O(1)).

Read item from the middle ((performed on the middle of the central queue): read_mid(MQ) (complexity O(1)).
Extract item ((performed to the middle of the central queue): delete_mid(MQ) (complexity O(1)).
Is the central queue empty?: is_empty(MQ) (complexity O(1)).

a. Write a verbal description of a data structure than supports the description of the central queue.
b. Implement by a verbal description and by pseudocode the following activities which the central queue supports (all

activities with a time complexity of O (1)):
i. Insertion to the tail of the queue

ii. Insertion in the middle of the queue
iii. Deletion from the middle of the queue

c. Explain the complexity of each activity.

Double-ended queue
Data structure on which the following actions are defined:
Insert item to the head of the structure – insert_head(Q, X)
Insert item to the tail of the structure – insert_tail(Q, X)
Read item from the head of the structure – read_head(Q)
Read item from the tail of the structure – read_tail(Q)
Extract item from the head of the structure – delete_head(Q)
Extract item from the tail of the structure – delete_tail(Q)
Is the structure empty? – is_empty(Q)
Complexity
For all activities: time complexity O(1); space complexity
O(n)
*The double-ended queue structure is implemented via an
array

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

187

Appendix B. Research Assignment Description of Compound Data Structures and Solution

Central Queue

A central queue is a compound data structure that supports all data operations of a queue, in addition to supporting those activities
performed on the middle of the queue. Figure B-1 illustrates the operations performed on a central queue.

Figure B-1. Illustration of a Central Queue

Double-Ended Queues

The central queue is built from two double-ended queues. Figure B-2 illustrates the operations performed on a double-ended queue.
A double-ended queue is an enhancement of a queue that supports all data operations of a queue performed from both sides (front
and back).

Figure B-2. Illustration of a Double-Ended Queue

Central Queue Operations

Students were asked to solve three operations using double-ended queue operations:

• Insert to tail
• Insert in middle
• Delete from middle

The “insert to tail” solution is simple when considered independently of the two other operations. The insert_tail(Q, X) operation
of the double-ended queue is used (see Appendix A).

However, to support the other two operations, “insert in middle” and “delete from middle,” a new algorithm should be developed,
ensuring that items are divided between the two double-ended queues. Figure B-3 illustrates the “insert tail” operation using the
two double-ended queues.

Figure B-3. Illustration of the “Insert Tail” Operation

The “insert tail” operation contains the following actions:

• Insert an item to the front of H (head of the double-ended queue). To do that, use the double-ended queue’s
insert_head(Q, X) operation (see Appendix A).

• Balancing H (Head) and T (Tail) double-ended queues.

https://doi.org/10.62273/JJUB4136

Journal of Information Systems Education, 35(2), 175-188, Spring 2024
https://doi.org/10.62273/JJUB4136

188

The “insert in middle” operation contains the following actions:
• Insert an item to the tail of H. To do that, use the double-ended queue’s insert_tail(Q, X) operation.
• Balancing H (Head) and T (Tail) double-ended queues.

The “delete from middle” operation contains the following actions:

• Delete an item from the tail of H. To do that, use the double-ended queue’s delete_tail(Q) operation.
• Balancing H (Head) and T (Tail) de-queues.

Balancing H (Head) and T (Tail) double-ended queues:

• If H contains more items than T, pass one item from H to T.

https://doi.org/10.62273/JJUB4136

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2024 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2024 35(2) 175-188 First Page.pdf
	g-2303015 Final-TCS-LAM-XPZ.pdf
	3.3 Case Description and Data Collection
	3.4 Data Analysis

	JISE 2024 35(2) Copyright ISSN

