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Abstract

An image sensor can measure only one color per pixel through the color filter array. Missing pixels are estimated
using an interpolation process. For this reason, a captured pixel and interpolated pixel have different statistical
characteristics. Because the pattern of a color filter array is changed when the image is manipulated or forged, this
pattern change can be a clue to detect image forgery. However, the majority of forgery detection algorithms
assume that they know the color filter array pattern. Therefore, estimating the configuration of the color filter array
can have an important role as a precondition for image forgery detection. In this paper, we propose an efficient
algorithm for estimating the Bayer color filter array configuration. We first construct a color difference image to
reflect the characteristics of different demosaicing methods. To identify the color filter array pattern, we employ
singular value decomposition. The truncated sum of the singular values is used to distinguish the color filter array
pattern. Experimental results confirm that the proposed method generates acceptable estimation results in
identifying color filter array patterns. Compared with conventional methods, the proposed method provides
superior performance.

Keywords: Color filter array, Bayer pattern identification, Forgery detection, Singular value, Color difference image,
Demosaicing

1 Introduction
In recent years, image manipulation has been actively
employed as simple entertainment or as the initial step
of a photomontage. The use of manipulated images for
malicious purposes can have a negative impact on hu-
man society because it is difficult to detect forged im-
ages with the human eye. Therefore, the development of
a reliable image forgery detection method is required to
determine the authenticity of an image. It is difficult to
verify this authenticity. Hence, considerable research has
been undertaken for addressing the detection of image
forgeries using different types of features [1, 2]. If we
can uncover evidence of alterations, we can conclude
that the image has been forged.
In general, digital image forensics can be divided into

two types, forgery detection and forgery localization.
Forgery detection aims to discriminate whether a given

image is original or manipulated. One of the most widely
used forgery detection methods is image splicing detection
[3–6]. If a part of an image is spliced to a part of another
image, the two parts have different statistical properties.
Discriminating the different statistical characteristics of
the two parts of the image is the basis for detecting a
spliced image. In practical forensic applications, it can be
more effective to identify tampered regions compared to
forgery detection. Because all image manipulations leave
traces, the traces of the image forgery can be a clue for lo-
calizing the forged regions.
It is an important issue to choose what characteristics

appear differently owing to image tampering. The statis-
tical inconsistencies of blur [7, 8], noise [9, 10], and
JPEG artifact [11, 12] are commonly used as clues to
localize forged image regions. The photo-response non-
uniformity (PRNU) noise appears as one of the most
promising tools to detect image forgery [13, 14]. Re-
cently, watermarking-based algorithms [15, 16] are
exploited for detecting image tampering. The image
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tamper detection techniques based on artifacts gener-
ated by color filter array (CFA) pattern [17, 18] are also
presented. There have been various digital forensic re-
searches based on the characteristics of the CFA pattern,
such as camera model classification [19], color change
detection [20], and image authentication [21, 22]. How-
ever, many methods using CFA pattern distortions [17–
20] do not explicitly incorporate knowledge of the actual
configuration of the CFA pattern. The exact CFA pattern
configuration is an important factor in digital image fo-
rensics based on CFA pattern artifacts. The purpose of
this paper is to accurately estimate the configuration of
the CFA pattern.
There are many types of CFA patterns. To classify the

types of CFA patterns, Huang et al. presented an effi-
cient frequency-domain method [23] to identify the CFA
structure when it is not available. A four-step training-
based scheme was proposed to build the model maps for
the 11 concerned CFA structures including the Bayer
pattern. Based on the 11 constructed model maps, a
three-step-matching scheme was introduced to identify
the corresponding CFA structure of the input mosaic
image. In their experiments, they achieved 100% classifi-
cation accuracy. However, this algorithm does not deter-
mine the specific CFA pattern configuration. Therefore,
it is useful to identify the type of CFA pattern with this
method and to then estimate the configuration of the
specific CFA pattern using this information.
In recent years, two promising algorithms [24, 25] for

identifying the Bayer CFA pattern type have been re-
ported. The CFA pattern configuration is estimated by
minimizing the difference between the raw sensor signal
and the inverse demosaiced signal in [24]. This method
yields promising results; however, it demonstrates weak-
ness in post-processing environments such as blurring,
sharpening, and JPEG compression. An improved ap-
proach for Bayer CFA pattern identification was pre-
sented using an intermediate value-counting algorithm
[25]. The concept of this approach is that the interpo-
lated color samples are not greater than the maximum
value of the neighboring samples and not less than the
minimum value of the neighboring samples. Based on
this assumption, an estimation algorithm for the Bayer
CFA pattern configuration was developed. This algo-
rithm demonstrates superior performance to the method
of [24]; however, it continues to have a weak point in
post-processing. Further, both existing algorithms have
low estimation accuracy for complex demosaicing
methods.
In this paper, we introduce an efficient Bayer CFA pat-

tern identification method based on singular value de-
composition. For a given image, we crop the square
block located at the center of the image. For the three-
color component of the cropped block, we construct

two-color difference blocks, that is red (R) minus green
(G) and blue (B) minus G blocks. Because both the ori-
ginal pixels and the interpolated pixels are assumed to
have similar singular values in the background region,
we use the truncated sum of the singular values for the
color difference blocks. First, we determine the diagonal
pair consisting of R and B in the Bayer CFA pattern by
comparing the difference of the sum of singular values
for the diagonal and anti-diagonal term pairs. Next, the
CFA configuration is determined by estimating the R
position because the type of Bayer CFA pattern is deter-
mined according to the R pixel location.
We perform various experimental simulations to dem-

onstrate the effectiveness of the proposed method. We
employ eight demosaicing algorithms to estimate the
Bayer CFA configuration and include different post-
processing such as blurring, sharpening, and JPEG com-
pression. In our experiments, we confirm that the pro-
posed method generates acceptable estimation results in
identifying the Bayer CFA pattern. Compared with con-
ventional methods, the proposed method provides su-
perior results.
This paper is organized as follows. Section 2 describes

the problem statement for identifying the type of the
Bayer CFA pattern and describes conventional ap-
proaches. Section 3 presents the proposed CFA pattern
identification method. Section 4 reports the experimen-
tal results obtained using the proposed approach, and
Section 5 draws conclusions from this paper.

2 Related works
Among the various CFA patterns, the Bayer CFA pattern
[26] is commonly used in digital cameras. It features B
and R filters at alternating pixel locations in the horizon-
tal and vertical directions, and G filters organized in a
quincunx pattern at the remaining locations. Because
each pixel has only one color sampled, a demosaicing al-
gorithm must be employed to recover the empty infor-
mation using a demosaicing process. There are four
possible Bayer color filters as indicated in Fig. 1. Figure 1
presents the 2 × 2 Bayer pattern with its R, G, and B
color filter elements, where two G elements are arranged
in a diagonal setup and each R and B element fills the
remaining space. In general, one of the four possible
Bayer patterns can be used to capture the image under
investigation. Let Cb(b = 1, 2, 3, 4) be a specific Bayer
CFA configuration that is one of the four possible con-
figurations C1 = [RGGB], C2 = [GRBG], C3 = [GBRG],
and C4 = [BGGR]. The type of Bayer CFA pattern is de-
termined according to the order of the R pixel location
(from left to right and from top to bottom) as indicated
in Fig. 1.
In the conventional method of [24], a cost function is

defined as the difference between the raw sensor signal
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and the inverse demosaiced signal with respect to all
possible Bayer CFA configurations. The configuration
that minimizes this cost function is selected as the spe-
cific Bayer CFA pattern. The count of the intermediate
values for various neighbor pixel patterns is defined as
the cost function to identify the Bayer CFA pattern in
[24]. This algorithm is based on the assumption that the
majority of the interpolated values exist between the
maximum and minimum values in the neighboring re-
gion. Using the maximum counting value for each color
channel, the specific Bayer CFA pattern is configured.
However, the two conventional algorithms assume that
the demosaiced image can be obtained based on a linear
interpolation manner. The estimation error caused by
these algorithms cannot be ignored for complex demo-
saicing methods. We experimentally investigate that the
assumption based on linear interpolation is not suitable
for Bayer pattern identification.
For example, let us consider the C1 Bayer pattern. In the

RGGB Bayer pattern, demosaicing is an interpolation
process used to estimate R2;R3;R4;G1;G4;B1;B2;B3f g
from the acquired R1;G2;G3;B4f g. Figure 2 shows a typ-
ical demosaicing process. Because the kernel of the linear
interpolator has the basic characteristics of a low-pass fil-
ter, we assume that the variance of the original image
block is greater that of the interpolated image block. To
verify this assumption, we randomly extract 10,000 image
blocks of size 256 × 256 from the Dresden image dataset
[27] and calculate the probability that the variance of the
original block is larger than that of the interpolated block.
For this test, we exploit various demosaicing methods
such as bilinear interpolation, adaptive homogeneity-
directed (AHD) method [28], variable number of gradients
(VNG) algorithm [29], aliasing minimization and zipper
elimination (AMaZE) [30], DCB demosaicing [31], IGV
demosaicing [32], linear minimum mean square error
(LMMSE) demosaicing [33], and heterogeneity-projection
hard-decision (HPHD) color interpolation [34].
Table 1 indicates the probabilities that the variance of

the original block is larger than that of the interpolated

block in various interpolation methods. In this test, only
four of the ten possible cases for the C1 Bayer configur-
ation are selected. For the bilinear interpolation, all
probabilities are greater than 0.95 (bold numbers in
Table 1). In this case, the probability itself is a reliable
measure to estimate the Bayer CFA configuration. How-
ever, we observe that the probabilities are significantly
lower for the AMaZE, IGV, LMMSE, and HPHD demo-
saicing methods. Therefore, the estimation of the CFA
configuration based on the linear assumption is difficult
to apply other than the demosaicing algorithm method,
except for bilinear interpolation.
The conventional algorithms extract a fixed block at

the center of the given image to estimate the Bayer CFA
pattern configuration. Because an image is composed of
backgrounds, edges, and textures, the fixed center block
may have various types of image components depending
on the given image. Therefore, the conventional
methods could have an inefficient identification process
because they use the same block regardless of the char-
acteristics of the image. Furthermore, the background
region can have a negative influence on estimating the
Bayer pattern configuration because the characteristics
of the background regions are similar to those of the ori-
ginal pixel and the interpolated pixel. In this paper, we
solve these problems by employing singular value
decomposition.

3 Proposed Bayer CFA pattern identification
method
Because the position of the R pixel is always diagonally
opposite the position of the B pixel, the Bayer CFA pat-
tern can be easily identified by only the position of the R
or B channel. As indicated in Fig. 1, the four patterns
are grouped by two categories according to the G pos-
ition, that is, [XGGX] and [GXXG], where X ∈ {R, B}.
After the G position is determined, the position of the R
and B pattern can be selected. The two-step Bayer CFA
pattern identification is depicted in Fig. 3. Both the pro-
posed method and existing methods exploit this two-

Fig. 1 Four possible Bayer color filter arrays
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step identification process. We first determine the diag-
onal pair with R and B. Then, we estimate the position
of R because the position of R directly determines the
Bayer CFA pattern configuration.

3.1 Construction of color difference block
For a given color image I, let I(x, y) be the pixel value at
the (x, y) position. We extract an image block M of size
M ×M located at the center of the image. In this paper,
we will omit the variables indicating position, such as x
and y, as long as there is no confusion. Bold characters
represent matrices, and non-bold italic characters imply
scalar values. Let Α ∈ {R,G, B} be a color component of
the cropped image block M. The color component can
be rearranged to four down-sampled blocks according to

the location of the pixels in the 2 × 2 Bayer pattern
matrix as indicated in Fig. 1. Α can be expressed as

Α ¼ AmA 1ð Þ
1 AmA 2ð Þ

2 AmA 3ð Þ
3 AmA 4ð Þ

4

h i
; ð1Þ

where ΑmΑ ið Þ
i is the down-sampled color component

with size M/2 ×M/2, i ∈ {1, 2, 3, 4} is the location of the
pixel in the 2 × 2 Bayer pattern matrix, and mA(i) ∈ {O, I}
is the indicator that represents whether the down-
sampled block is interpolated or not, depending on its
position i at the Bayer CFA. In (1), O and I indicates
whether the block is original or interpolated, respect-
ively. Figure 4 shows an example of color component
decomposition for the C1 Bayer pattern.

Table 1 Probabilities that the variance of the original block is larger than that of the interpolated block for various demosaicing
algorithms (Bayer configuration C1 is used)

Demosaicing
method

Probabilities

Pr[σ2(R1) > σ2( 4)] Pr σ2 G2ð Þ > σ2 G1ð Þ½ � Pr σ2 G3ð Þ > σ2 G1ð Þ½ � Pr σ2 B4ð Þ > σ2 B1ð Þ½ �
Bilinear 0.9655 0.9512 0.9509 0.9596

AHD 0.4920 0.6865 0.7136 0.5236

VNG 0.7702 0.8749 0.8589 0.6934

AMaZE 0.5483 0.5345 0.5638 0.5843

DCB 0.8439 0.9588 0.9559 0.7331

IGV 0.5872 0.6816 0.6900 0.5794

LMMSE 0.5947 0.6600 0.6779 0.6623

HPHD 0.5139 0.4408 0.4538 0.5348

Average 0.6646 0.7235 0.7336 0.6588

Fig. 2 Typical demosaicing process for Bayer CFA pattern
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Many demosaicing algorithms exploit spectral and
spatial correlation for estimating empty pixels using
neighboring pixels. Spectral correlation is based on the
assumption that the color difference is virtually constant
in a flat area. Spatial correlation means that the color
values in a homogeneous image region are similar to

those in the neighboring regions. Therefore, the esti-
mated missing color components are composed of the
difference between the original sample and the filtered
sample or between two interpolated samples in the ma-
jority of the color interpolation algorithms. Based on this
fact, we present a new CFA pattern identification algo-
rithm using color difference image blocks.

Let DmD ið Þ
i be the color difference blocks between

RmR ið Þ
i and GmG ið Þ

i . That is,

DmD ið Þ
i ¼ RmR ið Þ

i −GmG ið Þ
i ; ð2Þ

where mD(i) ∈ {O, I} is the indicator representing the

characteristics of the difference block DmD ið Þ
i . In (2),

mD(i) =O when (mR(i),mG(i)) = (O, I) or (mR(i),mG(i))
= (I,O); mD(i) = I when (mR(i),mG(i)) = (I, I). In a similar

manner, let FmF ið Þ
i be the color difference blocks between

BmB ið Þ
i and GmG ið Þ

i .

FmF ið Þ
i ¼ BmB ið Þ

i −GmG ið Þ
i ; ð3Þ

where mF(i) ∈ {O, I}. Figure 5 represents an example of
constructing a color difference block for the C1 Bayer
CFA configuration. As indicated in Fig. 5, two dark gray

Fig. 3 Two-step Bayer CFA pattern identification process

Fig. 4 Example of color component decomposition for RGGB Bayer CFA configuration
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regions (DI
4 and F I

1 ) consist of interpolated pixels; the
remaining six light gray areas consist of the difference
between the original pixel and the interpolated pixel.
The two difference blocks (DO

2 ¼ RI
2−G

O
2 and DO

3 ¼ RI
3−

GO
3 ) are composed of the original G pixels and the inter-

polated R pixels. It is assumed that the statistical charac-
teristic of DO

2 and DO
3 is similar. This will be the same

for FO
2 and FO

3 . This fact is a clue to determining the R
and B diagonal pair in the Bayer CFA pattern.

3.2 Identification process using singular values
Many demosaicing algorithms attempt to preserve or
enhance edge components in the image. Therefore,
various operations are performed in the edge compo-
nents. For this reason, whereas the original edge and
interpolated edge are easily distinguishable, it can be
difficult to distinguish between the original and in-
terpolated background areas. Hence, eliminating the
background components in the image block can be
useful for estimating the Bayer pattern configuration.
Singular value decomposition can be one solution to
remove the background components from the image
block. The large singular values of an image block
mainly contain low-frequency background informa-
tion. Conversely, small singular values are associated
with the high-frequency components of the block.
They are likely to represent texture and edge re-
gions. These characteristics of singular values have
been applied to image compression [35, 36] and sali-
ency detection [37] methods. In this paper, we at-
tempt to remove large singular values to eliminate
the background effect and present a CFA pattern
identification algorithm using the sum of the
remaining singular values.
The singular value decomposition of a square matrix J

with size M/2 ×M/2 is the factorization of J into the
product of three matrices as follows.

J ¼ UΣVT ; ð4Þ
where U and V are orthogonal matrices and Σ is an di-

agonal matrix with singular values on the diagonal.
There are M/2 singular values with the condition of
λ(1) ≥ λ(2) ≥⋯ ≥ λ(M/2) ≥ 0, where λ(n) is the nth singu-
lar value. Let λDi nð Þ and λF i nð Þ be the nth singular

values for DmD ið Þ
i and FmF ið Þ

i , respectively. Let SDi and SF i

be the sums of the truncated λDi nð Þ and λF i nð Þ values
from t(t > 0) to M/2, respectively. Then, SDi and SF i are
obtained by

SDi ¼
XM=2

n¼t

λDi nð Þ; ð5Þ

SF i ¼
XM=2

n¼t

λF i nð Þ: ð6Þ

At this point, we define d(i) as the position facing i di-
agonally. For example, if i = 1, then d(i) = 4; if i = 2, then
d(i) = 3. The statistical characteristic of the two G com-
ponents composing a diagonal pair are assumed to be
similar. Therefore, the first purpose of the proposed
method is to determine a pair of more similar SDi and
SF i . If the pair of SD1 and SD4 is more similar than the
pair of SD2 and SD3 , then SD1 and SD4 are assumed to
compose the diagonal pair of the two G components.
This process is the same for SF i and SFd ið Þ . As a measure
for the similarity of each pair, we use the absolute differ-
ence of the sum of truncated singular values.
Let VD

k k ¼ 1; 2ð Þ be the absolute difference between
SDi and SDd ið Þ . That is

VD
k ¼ SDk−SDd kð Þ

��� ���: ð7Þ

In a similar manner, we define V F
k as the absolute dif-

ference between SF i and SFd ið Þ as follows.

Fig. 5 Example of constructing color difference block for the RGGB Bayer CFA configuration
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VF
k ¼ SFk−SFd kð Þ

��� ���: ð8Þ

Among VD
k , we assume that having a larger difference

value forms a diagonal pair of R and B. This assumption
is the same for V F

k . To verify this assumption, we calcu-
late three probabilities of Pr VD

1 > VD
2

� �
, Pr V F

1 > V F
2

� �
,

and Pr VD
1 þ V F

1 > VD
2 þ V F

2

� �
for the C1 CFA configur-

ation. We randomly selected 10,000 256 × 256 image
blocks for this test. The other simulation conditions are
the same as in Table 1. As illustrated in Table 2, the
average probabilities ranged from 0.9910 to 0.9961. Pr

VD
1 þ V F

1 > VD
2 þ V F

2

� �
achieved the highest probability.

From these facts, we can verify that the probabilities of
VD

k and V F
k are useful measures for estimating the CFA

pattern configuration.

Let ~b ∈ 1; 2f gð Þ be the candidate index of the Bayer
CFA configuration. We obtain the k value with the lar-

gest VD
k þ V F

k as the ~b value. That is,

~b ¼ arg max
k

VD
k þ V F

k

� �
: ð9Þ

From (9), we can determine the diagonal pair of R and

B. For example, if ~b ¼ 1, then the position of the R block

will be 1 or 4. If ~b ¼ 2, then the R position will be 2 or
3. Consequently, the Bayer configuration index b will be
~b or d ~b

� �
. The next step is to determine the location of

R. In the R-G blocks, the difference block having the ori-
ginal R has higher frequency components than the dif-
ference block having the interpolated R. Therefore, the
singular value sum of the difference block having the
original R will be larger than the difference block having
the interpolated R. This fact is the same for the B and G
blocks. Hence, we compare SDi þ SFd ið Þ and SDd ið Þ þ SF i to
estimate the Bayer CFA configuration. If SDi þ SFd ið Þ

> SDd ið Þ þ SF i , then the final CFA configuration will be
C~b ; otherwise, the final CFA configuration will be Cd ~bð Þ .
That is,

b ¼ ~b; if SDi þ SFd ið Þ > SDd ið Þ þ SF id ~b
� �

; otherwise

�
: ð10Þ

From (9) and (10), we can easily estimate the CFA pat-
tern configuration.

3.3 Summary of proposed method
We first determine the size of the square image block to
identify the CFA pattern. We choose the image block M
located at the center of the given image and decompose
the color component Α into four sub-blocks using (1).
For the decomposed color sub-blocks, we construct R
minus G and B minus G difference blocks using (2) and
(3), respectively. Then, the two sums of truncated singu-
lar values are obtained using (5) and (6). The two abso-
lute difference values are calculated using (7) and (8).

The candidate index of the Bayer CFA configuration ~b is
estimated using (9). Finally, the Bayer CFA pattern index
b is determined using (10). The overall algorithm for the
proposed method is summarized in Table 3.

4 Simulation results and discussion
4.1 Test data sets and simulation conditions
We used 1460 raw images provided by the Dresden
database [27] for our simulations. The camera types and
detailed information regarding the test images are pre-
sented in Table 4. We generated four Bayer CFA pat-
terns for testing from the raw image data. For CFA
interpolation, eight demosaicing algorithms including bi-
linear interpolation, AHD method, VNG algorithm,
AMaZE [29] method, DCB demosaicing, IGV demosai-
cing, LMMSE demosaicing, and HPHD color
interpolation were used in our experiments. CFA inter-
polations were performed using RawTherapee [32], a

Table 2 Probabilities of VD
1 > VD

2 , V
F
1 > VF

2 , and VD
1 þ VF

1 > VD
2

þV F
2 for various demosaicing algorithms (Bayer configuration

C1 is used)

Demosaicing
method

Probabilities

Pr VD
1 > VD

2

� �
Pr VF

1 > VF
2

� �
Pr VD

1 þ VF
1 > VD

2 þ VF
2

� �
Bilinear 0.9964 0.9958 0.9999

AHD 0.9937 0.9947 0.9981

VNG 0.9940 0.9969 0.9992

AMaZE 0.9903 0.9916 0.9974

DCB 0.9987 0.9925 0.9953

IGV 0.9907 0.9858 0.9868

LMMSE 0.9863 0.9805 0.9926

HPHD 0.9778 0.9925 0.9996

Average 0.9910 0.9919 0.9961

Table 3 Overall algorithm for proposed method

Input: A suspicious image.

Input parameters: Square block size M and truncated singular value
point t.

Output: Bayer CFA pattern configuration, Cb

1.Choose the image block M located at the center of the given image.

2.For each color component, decompose the block into four sub-blocks
using (1).

3.Compute DimD ið Þ and F imF ið Þ using (2) and (3), respectively.

4.Compute SmD ið Þ
D;i and SmF ið Þ

F;i using (5) and (6), respectively.

5.Compute VD
k and VF

k using (7) and (8), respectively.

6.Determine candidate index ~b using (9).

7.Determine Bayer CFA pattern index b using (10).

Jeon et al. EURASIP Journal on Image and Video Processing  (2017) 2017:47 Page 7 of 11



well-known cross-platform raw image-processing pro-
gram. To identify the Bayer CFA pattern type, we tested
the performance of the proposed algorithm for different
block sizes including 512 × 512, 256 × 256, 128 × 128,
64 × 64, and 32 × 32. The cut point to obtain the trun-
cated sum of singular values was set to t = (M/2)/2 in
our simulations.

4.2 Comparisons of estimation performance
We compared the proposed method with the conven-
tional method [25] in an environment without post-
processing. Table 5 displays the Bayer CFA pattern iden-
tification performance for the proposed method and
conventional algorithm. The estimation accuracies for
CFA pattern configuration were drawn from the eight
demosaicing algorithms for different block sizes. The
bold numbers in Table 5 indicate the highest identifica-
tion performance. The average values in the horizontal
direction represent the average for the demosaicing

method regardless of the block size. For all demosaicing
algorithms except bilinear interpolation, the results of
the proposed method are superior to those obtained
using the conventional method. The conventional ap-
proach has good identification performance for bilinear
interpolation. This fact is because that the existing
method basically exploits the characteristics of bilinear
interpolation. However, the conventional method has
poor detection rates for the more complex demosaicing
methods that preserve or enhance high-frequency com-
ponent of an image as shown in Table 5.
The proposed algorithm tries to achieve good identifi-

cation performance for all demosaicing methods even
with a slight performance degradation for bilinear inter-
polating. In particular, the estimation accuracies of the
proposed method demonstrate more than 92% for all
demosaicing algorithms except the IGV interpolation
method. The average values in the vertical direction in
Table 5 indicate the average for the cropped block size
regardless of the demosaicing algorithm. The estimation
accuracy obtained by our identification method in-
creased from 91.20 to 97.97% as the block size increased.
From Table 5, we observe that the estimation perform-
ance for the CFA configuration increased as the block
size increased.
We compared the computation time of the proposed

and existing methods. All tests were performed on a
desktop running 64-bit Windows 7 with 16.0 GB RAM
and an Intel(R) Core(TM) i7-870 2.93 GHz CPU. For a
256 × 256 image block, the average CFA pattern identifi-
cation time of the proposed method was approximately
0.035 s. The computation time of the conventional
method for estimating the CFA configuration was ap-
proximately 0.176 s. The proposed method was approxi-
mately five times faster than the conventional approach.

4.3 Estimation performance with post-processing
We evaluated the proposed algorithm for different simu-
lation conditions such as blurring, sharpening, and JPEG
compression. For the blurring operation, we used a
Gaussian blur with five different parameters (σ =
0.50, 0.75, 1.00, 1.25, 1.50). The sharpened images were
generated using a Laplacian operator with five different
parameters (α = 0.1, 0. 2, 0.3, 0.4, 0.5). JPEG compressed
images were tested in our experiment (QF =
100, 90, 80, 75, 70). All tests were performed for a 256 ×
256 block.
Table 6 displays the comparison between the existing

algorithm and the proposed method with Gaussian blur
for the different demosaicing methods. As indicated in
Table 6, the proposed method is superior to the conven-
tional method in terms of the average estimation per-
formance according to both demosaicing algorithm and
blur parameter. The average estimation accuracy of the

Table 4 Camera models and image information in the
experiments

Camera model Number of images Image size

NIKON D200 728 3904 × 2616

NIKON D70 361 3040 × 2014

NIKON D70s 371 3040 × 2014

Table 5 Estimation accuracy comparison between existing
algorithm and proposed method for various demosaicing
methods (unit: %)

Demosaicing
method

Block size (M)

32 64 128 256 512 Average

Bilinear [25] 99.66 99.93 100.00 100.00 100.00 99.92

Proposed 96.33 97.96 98.44 98.91 99.73 98.27

AHD [25] 54.29 56.53 58.44 58.64 61.70 57.92

Proposed 94.97 96.26 97.89 97.48 98.23 96.97

VNG [25] 84.15 87.69 90.41 94.08 95.03 90.27

Proposed 96.46 98.03 98.78 98.98 99.39 98.33

AMaZE [25] 59.86 64.90 68.16 71.43 76.94 68.26

Proposed 90.54 93.06 94.42 96.05 98.80 94.17

DCB [25] 95.24 98.44 99.45 99.66 99.86 98.53

Proposed 99.39 99.73 99.86 99.93 99.93 99.77

IGV [25] 67.01 69.87 72.96 75.85 80.00 73.14

Proposed 78.86 84.56 88.23 91.84 93.40 87.58

LMMSE [25] 56.05 61.02 64.35 70.00 75.72 65.43

Proposed 79.05 90.68 95.51 98.03 99.12 92.48

HPDH [25] 34.62 37.69 40.07 41.49 44.90 39.75

Proposed 92.99 94.90 97.21 97.21 97.14 95.89

Average [21] 68.86 72.01 74.23 76.39 79.27

Proposed 91.20 94.40 96.29 97.30 97.97
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proposed method ranged from 96.19 to 87.08% as the
blurring effect increased. However, the estimation accur-
acies for the bilinear interpolation case were significantly
reduced. This is because the proposed algorithm uses
primarily the high frequency components of the given
block. In the case of the conventional method, we ob-
serve that all the estimation results are degraded by per-
forming the blurring operation. The estimation accuracy
was significantly reduced when the blur parameter was
greater than 0.75. Conversely, the average identification
performance for bilinear interpolation was greater than
the proposed method. In conclusion, the overall per-
formance of the proposed scheme was superior to the
existing algorithm and we achieved usable results when
the blurring was applied.
The estimation results for sharpening post-processing

are displayed in Table 7. As indicated in Table 7, all esti-
mation results demonstrate 100% for all bilinear
interpolation cases. When sharpening operations are
performed, the estimation accuracies of the proposed
method increased for all demosaicing algorithms except
the LMMSE interpolation method. In terms of block
size, the estimation results generated by the proposed
method were slightly reduced. This is because that the
performance degradation has taken place considerably
with the LMMSE demosaicing method. However, all the

average accuracies according to the different sharpening
parameters are more than 91%. The estimation results
using the existing method slightly increased by perform-
ing a sharpening operation. The conventional method
that uses intermediate values to estimate the CFA con-
figuration is based on the unchanging factor after demo-
saicing (background component). Because the
sharpening operation has less impact on the back-
grounds and more on the high-frequency components,
we can expect that there would be no performance
change in the existing method. The overall average esti-
mation performances of the proposed method remain
high compared to the existing method for virtually all
sharpening cases.
The CFA pattern identification results of performing

various JPEG compressions are displayed in Table 8. As
indicated in Table 8, the estimated performance of the
proposed method is less than the conventional method
in the majority of cases. Because the proposed method is
based on truncated singular values, the increase in high
frequency components due to the quantization error has
a negative influence on the estimation of the Bayer pat-
tern configuration. The average estimation accuracies of
both methods are considerably low. Therefore, both al-
gorithms are difficult to use in practical applications. Fu-
ture studies on CFA pattern identification should

Table 6 Estimation accuracy comparison between conventional
algorithm and proposed method with Gaussian blur for
different demosaicing methods (unit: %). Block size fixed to
256 × 256

Demosaicing
method

Gaussian blur (σ)

0.50 0.75 1.00 1.25 1.50 Average

Bilinear [25] 100.00 99.93 98.50 66.67 45.03 82.03

Proposed 91.97 68.64 53.81 46.12 42.72 60.65

AHD [25] 49.66 44.29 45.85 37.86 29.52 41.42

Proposed 97.21 96.80 96.67 96.19 95.92 96.56

VNG [25] 90.75 88.91 89.17 74.49 50.95 78.86

Proposed 99.05 99.12 98.44 98.10 97.48 98.44

AMaZE [25] 60.68 42.86 32.86 26.05 25.37 37. 56

Proposed 95.44 94.29 93.33 91.90 91.29 93.25

DCB [25] 98.64 92.45 81.02 48.10 33.81 70.80

Proposed 99.93 99.93 99.93 99.86 99.73 99.88

IGV [25] 69.18 46.26 18.37 12.65 10.41 31.06

Proposed 90.75 87.55 84.29 81.70 80.20 84.90

LMMSE [25] 53.81 26.19 12.65 10.48 13.95 23.42

Proposed 98.10 97.62 96.94 96.39 94.56 96.72

HPDH [25] 40.00 33.06 28.64 21.63 20.61 28.79

Proposed 97.07 96.53 95.71 95.17 94.76 93.25

Average [25] 70.34 59.24 50.88 37.03 28.71

Proposed 96.19 92.56 89.89 88.18 87.08

Table 7 Estimation accuracy comparison between conventional
algorithm and proposed method with Laplacian sharpening for
different demosaicing methods (unit %). Block size fixed to
256 × 256

Demosaicing
method

Laplacian sharpening (α)

0.1 0.2 0.3 0.4 0.5 Average

Bilinear [25] 100.00 100.00 100.00 100.00 100.00 100.00

Proposed 100.00 100.00 100.00 100.00 100.00 100.00

AHD [25] 58.64 59.46 60.14 61.70 63.61 60.71

Proposed 99.05 99.05 98.84 98.57 98.37 98.37

VNG [25] 73.73 71.97 70.61 70.07 69.25 71.01

Proposed 99.66 99.66 99.73 99.73 99.86 99.73

AMaZE [25] 92.04 91.63 90.61 89.73 88.50 90.50

Proposed 98.98 99.05 98.98 98.91 98.73 98.94

DCB [25] 99.86 99.86 99.86 99.86 99.86 99.86

Proposed 99.93 99.93 99.93 99.93 99.93 99.93

IGV [25] 68.44 67.01 64.42 61.16 56.60 63.53

Proposed 92.11 91.90 91.56 91.09 90.48 91.43

LMMSE [25] 76.46 77.35 78.64 79.32 80.00 78.35

Proposed 43.54 48.84 56.60 65.71 74.01 57.74

HPDH [25] 46.19 47.62 48.57 50.41 50.82 48.72

Proposed 96.73 96.60 96.67 96.73 97.07 96.76

Average [25] 76.85 76.86 76.61 76.53 76.08

Proposed 91.25 91.88 92.79 93.84 94.81
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proceed toward increasing the estimation performance,
even in the JPEG compression environment.

4.4 Discussion
The proposed method has a fairly high accuracy in de-
termining the Bayer CFA pattern type. Our method can
be used as the first step of the image forensic applica-
tions using the CFA pattern distortion. The results of
the proposed method are superior to those obtained
using the conventional method for all demosaicing algo-
rithms except bilinear interpolation. However, the pro-
posed algorithm as well as the conventional methods
cannot be practically applied to a JPEG compressed
image. The future challenge will be to increase the
estimation.

5 Conclusions
We presented an efficient CFA pattern identification in
this paper. We constructed a color difference image to
reflect the characteristics of different demosaicing
methods. To estimate the CFA pattern configuration, we
exploited singular value decomposition. The truncated
sum of the singular values was used to identify the Bayer
CFA pattern. Experimental results confirmed that the
proposed method generated acceptable estimation re-
sults in identifying the pattern. Compared with the

conventional method, the proposed method worked well
except for bilinear interpolation and JPEG compression.
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